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Исследовано поведение сдвиговых волн при взаимодействии с периодически расслаивающимся 

упругим слоем, расположенным между двумя идентичными упругими полупространствами.  Анализ 
сосредоточен на определении характеристиках отражения и преломления этих волн от слоистой 
структуры. Коэффициент преломления определяется для количественной оценки доли волновой энергии, 
передаваемой через композитный слой. Показано, что когда частоты падающей сдвиговой волны в 
пределах запрещенной зоны частот соответствующей бесконечной периодической среды, коэффициент 
пропускания упругой волны близок к нулю. В этих частотных диапазонах периодическая структура 
демонстрирует почти полное отражение, а коэффициент отражения приближается к единице. И наоборот, 
когда частоты падающей волны лежат между любыми двумя соседними запрещенными зонами частот , 
существует конечный набор частот, при которых коэффициент пропускания упругих волн достигает 
единицы. На этих частотах отражательная способность полностью исчезает и волна идеально проходит 
через слоистую структуру. Кроме того, мы исследуем изменение фазового сдвига отраженной сдвиговой 
волной, когда слоистая структура ограничена с одной стороны упругим полупространством, а с другой - 
свободной от напряжений поверхностью.  

 

Ղազարյան Կ.Բ., Ղազարյան Ռ.Ա., Թերզյան Ս.Հ. 

Սահքի առաձգական ալիքների անդրադարձումը և բեկումը երկու նյութերից կազմված  

պարբերական շերտավոր առաձգական շերտից 

 

Հիմնաբառեր՝ անդրադարձում, բեկում, սահքի ալիք, պարբերական կառուցվածք, 

հաճախությունների արգելված գոտիներ: 

 

Հետազոտված է, պարբերական շերտավորվող առաձգական շերտի փոխազդեցությամբ 

պայմանավորված, սահքի ալիքների վարքը: Շերտը գտնվում է երկու նույնական առաձգական 

կիսատարածությունների միջև: Վերլուծությունը կենտրոնացված է շերտավոր կառուցվածքից այդ 

ալիքների անդրադարձման և բեկման բնութագրիչների որոշմանը: Բեկման գործակիցը որոշվում է 

կոմպոզիտային շերտի միջոցով փոխանցվող ալիքային էներգիայի մասնաբաժնի քանակական 

գնահատականի համար: Ցույց է տրված, որ երբ ընկնող սահքի ալիքի հաճախությունը գտնվում է 

համապատասխան անվերջ պարբերական միջավայրի արգելված գոտու հաճախության 

սահմաններում, առաձգական ալիքի բաց թողնման գործակիցը մոտ է զրոյին: Այդ հաճախական 

ընդգրկույթներում  պարբերական կառուցվածքը համարյա լրիվ անդրադարձում է ցույց տալիս, իսկ 

անդրադարձման գործակիցը մոտենում է մեկին: Եվ հակառակը, երբ ընկնող ալիքի 

հաճախություններն ընկած են հաճախությունների արգելված, ցանկացած երկու հարևան, գոտիների 

միջև, գոյություն ունի հաճախությունների վերջավոր քանակ, որոնց դեպքում առաձգական ալիքների 
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բաց թողնման գործակիցը հասնում է մեկին: Այդ հաճախություններում անդրադարձման 

հատկությունը ամբողջությամբ վերանում է, և ալիքը կատարելապես անցնում է շերտավոր 

կառուցվածքի միջով: Բացի այդ, ուսումնասիրում ենք սահքի ալիքով արտացոլված ֆազային 

շեղումը, երբ շերտավոր կառուցվածքը սահմանափակված է մի կողմից առաձգական 

կիսատարածությունով, իսկ մյուս կողմից՝ լարումներից ազատ մակերևույթով:  

 
In this study, we investigate the behaviour of incident shear waves as they interact with a periodically 

stratified bi-material elastic layer positioned between two identical elastic half-spaces. Our analysis focuses on the 
reflection and transmission characteristics of such waves as they encounter the layered structure. The transmission 
coefficient is defined to quantify the proportion of wave energy transmitted through the composite layer. It is 
demonstrated that, when the frequencies of the incident shear wave fall within the bandgaps of the corresponding 
infinite periodic medium, the transmissivity of the elastic wave approaches zero. In these frequency ranges, the 
structure exhibits almost complete reflection, with the reflectivity nearing unity. Conversely, when the frequencies 
of the incident wave lie between any two adjacent bandgaps of the infinite periodic medium, there exists a finite 
set of frequencies at which the elastic wave transmissivity reaches unity. At these specific frequencies, the 
reflectivity vanishes entirely, and the wave is perfectly transmitted through the layered structure. Additionally, we 
examine the phase shift experienced by the reflected shear wave when the layered structure is by an elastic half-
space and the other by a free interface. 

Furthermore, this study analyses the phase shift of the reflected shear wave occurring when one side of the 
layered structure is adjacent to an elastic half-space and the other side is bounded by a free interface. 

 
Introduction. 
The phenomena of reflection and transmission of elastic waves at the interface between 

two distinct media play a crucial role in a variety of scientific and engineering disciplines. 
In composites engineering, understanding how elastic waves interact at material boundaries 
is essential for the design and analysis of advanced composite structures. In geology and 
seismology, the propagation of elastic waves through different earth layers underpins the 
interpretation of seismic data, which is fundamental for studying the Earth's interior and for 
earthquake research. Seismic exploration also relies heavily on these phenomena, as the 
reflection and transmission of waves at subsurface interfaces are used to identify and 
characterise geological formations. Furthermore, in acoustics, the way elastic waves reflect 
and transmit at material boundaries determines the sound transmission properties of 
structures, influencing the design of materials and systems for noise control and sound 
insulation. The issues related to the reflection and transmission of elastic waves in layered 
media have been the focus of extensive analysis by numerous researchers. Their combined 
efforts established the basis for analysing wave behaviour at layered structure interfaces [1-
11]. 

When two distinct elastic materials are joined together, it is typically assumed that the 
interface connecting them is perfectly bonded. This means that, at the boundary, certain 
fundamental physical quantities must remain continuous from one material to the other. In 
particular, both the displacement and the traction (which represents the mechanical forces 
acting across the interface) are required to be continuous. The continuity of displacement 
ensures that there is no separation or slip at the boundary, so the deformations are 
transmitted smoothly. Similarly, the continuity of traction guarantees that the mechanical 
forces are balanced and transferred seamlessly from one material to the other. This 
idealisation is commonly adopted in analytical and computational models, as it simplifies 
the study of how forces and deformations are transmitted and distributed at the interface 
between different elastic materials    While the assumption of a perfectly bonded interface 
between two elastic materials simplifies analysis, it does not always represent actual 
conditions encountered in practice. In reality, interfaces may contain various defects, 
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damages, or other imperfections. Several theoretical models have been developed to 
represent imperfect interfaces [11-16]. 

The most commonly used models include the strain-gradient model, which accounts 
for higher-order mechanical effects at the interface; the spring model, which introduces 
interfacial compliance; the mass model, which considers additional interfacial inertia; and 
the combined spring-mass model, which incorporates both compliance and inertia effects. 
Each of these models offers a different perspective on how imperfections at the interface 
can affect wave transmission and reflection, and they play a crucial role in the accurate 
analysis of layered composite structures [17-24]. 

This study focuses on the behaviour of incident shear waves as they encounter a 
periodically stratified bi-material elastic layer that is positioned between two identical 
elastic half-spaces. The research centres on analysing how these waves are reflected and 
transmitted when passing through the layered medium. By examining the reflection and 
transmission properties, the study aims to provide a detailed understanding of the 
mechanisms governing wave interaction within the composite structure. The findings 
contribute to a broader comprehension of elastic wave dynamics in layered materials, which 
is relevant for various applications in engineering and the physical sciences. 

� 
Problem statement and matrix approach for periodic structure.  
Consider two homogeneous elastic half-spaces, composed of identical materials, 

separated by a periodically in perfect interfacial contact. This stratified layer consists of 
( 1, 2,..., )n n N repeating unit cells, with each cell comprising two distinct sub-layers 

formed from different elastic materials A  and B of widths ,a b . Each sub-layer is 

assumed to be perfectly bonded to its adjacent sub-layers. The composite layer extends 
from the top surface 0x   to the bottom surface x Nd  and d a b  .  

Shear waves propagation in stratified bi-material elastic layer obey to anti-plane 
equations of motion. Choosing the anti-plane deformation in the z - direction one has   

x xz y yz t,t zu     ,  ,xz x z yz y zu u          (1) 

where  , ,zu x y t  is the displacement in z - direction. 

Considering a steady SH-wave propagation  exp ( )i ky t  , where ,k   are the 

wave number and frequency, the solutions for amplitude functions   ,v( )u x x  within each 

the sub-layers material    1) , ( 1) , ,x n d n d a x nd b nd       can be found as  

1 2 1 2
( ) sin( ) cos( ), v( ) sin( ) cos( )u x A px A px x B qx B qx    . (2) 

Here 
2 2

2 2
2 2

, , ,a b
a b

a b a b

G G
p k q k c c

c c

 
     

 
,  (3) 

,
a b

G G  are the shear modulus, ,a b   bulk density of sub-layers materials, 

correspondingly. 
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Enforcing the continuity of tractions and displacement at the contact interface 

0x nd b   of the two materials  

0 0

0 0

( ) ( )

( ) ( )
a b

u x v x

du x dv x
G G

dx dx




 (4) 

we can express 1 2,B B  via 1 2,A A  

0 0
1 1 0 0

0 0)
2 0 0

cos( ) cos( )
sin( )sin( )

sin( ) cos(
cos( )sin( )

a

b

a

b

G p px qx
B A px qx

G q

G p px qx
A px qx

G q

 
   

 
 

  
 

 (5) 

0 0
2 1 0 0

0 0
2 0 0

cos( )sin( )
sin( ) cos( )

sin( )sin( )
cos( ) cos( ) ;

a

b

a

b

G p px qx
B A px qx

G q

G p px qx
A px qx

G q

 
   

 
 

  
 

 (6) 

Introducing field vectors and constant vector   

( ) v( )
( ) , ( )( ) v( )

a b

u x x
x xdu x d x

G G
dx dx

   
    
      
   

u v ’ 1

2

A
A

A

 
  
 

 (7) 

the expressions of the vector    ( 1) ,u vn d nd   can be expressed via the vector A  

in the following matrix form 

 ( 1)u PAn d   (8) 

 v QAnd     

   
   

sin ( 1) cos ( 1)

cos ( 1) sin ( 1)a a

p n d p n d

G p p n d G p p n d

 

  

 
  
 

P   (9) 

11 12

21 22

0
11 0

0
12 0

=

sin( )cos( )
cos( )sin( );

sin( )sin( )
cos( )cos( )

a

b

a

q

q q

q

G p bq px
q bq px

G q

G p bq px
q bq px

G q

 
 
 

 

 

Q
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21 0 0

22 0 0

cos( )cos( ) sin( )sin( );

sin( )cos( ) cos( )sin( )
a b

b a

q G p bq px G q bq px

q qG bq px G p bq px

 

  
 (10) 

Omitting the vector  1 ( 1)C P u n d   leads to the following relation connecting 

values of the field vectors at a cells interface 

    1v Mund n d     (11) 

Here 1M QP  is a unimodal matrix  

sin( ) sin( ) sin( ) cos( ) cos( ) sin( )
cos( ) cos( )

sin( ) sin( )
sin( ) cos( ) cos( ) sin( ) cos( ) cos( )

M

a

b a b

b

a b

a

G p ap bq ap bq ap bq
ap bq

G q G p G q

G q ap bq
G p ap bq G q ap bq ap bq

G p

 



  

 
 
 
 
 
 

 (12) 

 Let note that elements of matrix M   do not depend of cell number n .  Repeating this 

procedure the n  -th times the propagator unimodal matrix Mn  can be found. The matrix 

M n links the field vectors at 0x   and x nd  surfaces of the waveguide.  

   0 , 1,2,....M u vn nd n N           (13) 

According to Sylvester's matrix polynomial theorem [28] for 2x2 matrices the elements 

of the n -th power of an unimodal matrix M n  can be cast as 

11 12

21 22

M n M M

M M

 
  
 

        (14) 

and can be simplified using the following matrix identity  

     
     

11 11 1 2 12 12 1

21 21 1 22 22 1 2

;

;

n n n

n n n

M m S S M m S

M m S M m S S

  

  

     

     
 (15) 

where   1nS    are the Chebyshev polynomials of second kind, namely 

   
   

   11 22

sin ( 1)
; cos ;

sin

1 1ˆ ;
2 2

n

n
S

Tr M m m

 
    



   

  (16) 

In addition to the finite sized bi-material layer we consider a corresponding infinite bi-
material layer. By applying the Floquet conditions at the unit cell boundaries, 

( 1) ,x n d x nd    we obtain: 

 ( ) exp( ) ( 1)nd d n d  v u   (17) 

Using (11) leads to the Floquet equation  

 cos( )d    (18) 

Here   is the complex Bloch wave number, and      is defined in (16).  
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Thus, the deviation function    – argument of the Chebyshev polynomials, as 

applied to the corresponding infinite periodic medium, defines the frequency "stopbands" 

under   1    and identifies the "passband" frequencies under    1   . 

 
Shear elastic wave reflection and transmission.  
Consider now the reflection and transmission of the shear wave through periodically 

stratified bi-material elastic layer positioned between two identical elastic half-spaces. 

 
Figure 1: Reflection and transmission of shear  wave through   
layer sandwiched into elastic medium 
 

The shear displacements and shear stresses in the top  0x    and in the bottom 

Nd x    half-spaces can be cast as  

   
 

0 0

0 0

0 0
1 2

( , , ) ( ) exp ( ) ; ( , , ) ( ) exp ( )

( ) exp( ) exp( ) ; ( ) exp( )

, ;

i r t

xz xz

V x y t V x i ky t U x y t U x i ky t

V x A irx A irx U x A irx

dV dU
G G

dx dx

   

   

   

     (19) 

Here  

2
2

2 1 2
2

; , ;
d G

r k d K c K kd
c c

 
        


 

A , A , Ai r t ,
 
stand for the amplitudes of incident, reflected  and transmitted shear waves, 

respectively, G   is the shear modulus,   is the bulk density of  semi-space material 
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The conditions for perfect contact between displacements and shear stresses in an 
elastic medium and a bi-material stratified layer at 0,x x Nd  can be expressed as 

follows: 
(0) (0), ( ) ( )v U u UNd Nd         (20) 

where 

0 0

0 0

(0) ( )
(0) , ( )(0) ( )

V U Nd
NddV dU Nd

G G
dx dx

   
    
      
   

V U ;  (21) 

Taking into account (21) the amplitudes A ,Ar t  via Ai  can be found by solving the 

matrix equation 

11 12

21 22

exp( )
( )
i r t

i r t

A A A
irNd

Gir A A GirA

M M

M M

 
 


   
      

   (22) 

 
 

 

21 12 11 22

21 12 11 22

21 12 11 22

( ( )
,

( )

2

( )

i
r

idNq

i
t

A M Gr GrM i M M
A

M Gr GrM i M M

iAGre
A

M Gr GrM i M M



  
 

  

 
  

  (23) 

Defining reflection and transmission functions (coefficients) as  
2 2

, tr
r t

i i
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from (23) we get  
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      (25) 

Energy flux conservation is expressed via reflection and transmission coefficients in 
the following transmissivity and reflectivity identity 

1r tR R         (26) 

Using (25) and the following recurrence identity formula for the Chebyshev 
polynomials of the second kind 

2 2

1 1
2( ) ( ) ) ( 1( )

n n n n
S S S S

 
         (27) 

the relations (25) can be transform as 
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  (28) 

Since   1 0NS       at  N   when   1     the incident wave frequencies 

are in the "stopbands" of the stratified layer, the transmission function decreases as the 

number of cells increases. In contrast, within the "passbands,"   1    the transmission 

function exhibits periodic behaviour. 
Consider now the wave reflection from a finite-length stratified layer bounded on one 

side by an elastic half-space and on the other by a mechanically free surface. 

The amplitude of a reflection wave rA  can be found by solving the following  matrix 

equation  where ( )U Nd  is the unknown displacement at the layer  traction free surface.  
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   (29) 

From solution of (29) we have  
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  (30) 

Since the complex conjugate of the reflection coefficient r r iT A A  is equal its 

reciprocal, the magnitude rT  equal unity at any frequency   of incident wave. 

Writing rT   in the polar form of complex number we have 

 exp 2rT i   ,  (31) 

where       
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  (32) 

Formula (32) gives the phase shift for a shear elastic wave reflected from a finite-
length stratified layer, which is bonded to an elastic half-space on one surface and 
mechanically free on the other.�

 
Numerical analysis and discussions. 
We here will illustrate the obtained theoretical results providing numerical analysis 

concerning bandgaps of the stratified layer (counterpart infinite media) , reflection and 
transmission coefficients as well as reflection wave phase shifts. Numerical calculations 
have been carried out for materials listed in Table 1 

 

Table 1 
 
Substance 

  Bulk density 

 3kgm  

   Shear modulus 

 GPaG   
 Transversal velocity 

 1msc    

Aluminium 2700 25 3040 
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Copper 8900 46 2320 
Titanium 4500 42 3120 
 
Based on (28), the transmission and reflection of the elastic wave are considered when 

material of elastic semi-spaces is the titanium, the elastic reflector made of the aluminium 
and copper materials. Numerical analysis of counterpart infinite piezoelectric media will be 
carried out for the aluminium and copper materials. 

The condition | ( ) 1,|    where 
1d G   stand for titanium material defines 

bandgaps of counterpart infinite piezoelectric media.  
On Figure 2 for counterpart infinite media of the layer made of aluminium and copper 

materials the deviation function curves versus frequency   are plotted.  
 
 

 
 

Figure 2. Plots of a first and subsequent bandgaps for material at  different values of parameter    

 

Analysis of the function     shows that that variations in material arrangement 

within the unit cell, as characterized by the filling coefficient a d  , slightly affect the 

lengths of the first bandgaps. 
 

 
Figure 3. Plots of a transmission functions at  different values of parameter   
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Figure 4. Plots of a transmission functions at  different values of cell numbers 10, 20n n   

between first and second bandgaps  
 
Analysis of Fig. 4 illustrates that when the frequencies of the incident elastic wave fall 

within the bandgaps of the corresponding infinite periodic medium, the transmissivity of 
the elastic wave decreases significantly, approaching zero. In these frequency intervals, the 
layer becomes highly reflective, with the reflectivity nearing unity. This phenomenon 
occurs even in layers that contain a relatively small number 5n   of unit cells, 
demonstrating the effect of bandgap formation on wave propagation in such structured 
materials.  

As indicated by the transmission function plots, there exists a set of frequencies 
between any two bandgaps where the transmission function reaches a value of one, 
meaning that reflectivity effectively disappears. This phenomenon occurs consistently in 
the frequency ranges that lie between adjacent bandgaps. The presence of these specific 
frequencies can be explained by examining the behaviour of the transmission function 
outside of these intervals. In the range between two bandgaps, the transmission function 
possesses a number of zeroes, which are determined by the underlying physical properties 
of the system. The existence of a set of such frequencies can be explained as follows. 

Between two any bandgaps 1   the function   has 1N   zeros given by  

   1
0 cos , 1, 2.....( 1)m m N m N       . 

From (14), it follows that at these frequencies,�

 1 0NS    , 1, ( 0)R R
t r
  .    
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Figure 5. Phase shift plots of the reflected  wave 

 

The graph in Figures 5 based on (40) shows how the phase shift     changes with 

frequency. Blue curves correspond to 10n  , blue curves to 5n   structures. The phase 

shift is a function of the normalized frequency ˆ 100   . 
As it follows from the plots on Figure 5 within the first bandgap the phase shifts 

    reach its minimal and maximal values at the first and second gap boundaries 

2, 2    . Outside of the gaps between the first and the second gaps there are the 

1N   phase shift “resonance” curves   each exhibiting repeated transitions from  2    

to 2 . 

 
Conclusions. 
This study investigates the interaction between incident shear waves and a periodically 

layered bi-material elastic layer positioned between two identical elastic half-spaces. The 
analysis demonstrates that when the frequency of the incident shear waves falls within the 
bandgaps inherent to the equivalent infinite periodic medium, the transmissivity of the 
elastic waves becomes nearly zero. As a result, the waves are almost completely reflected, 
with the reflectivity approaching unity. This behaviour highlights the strong reflective 
nature of the layer within the bandgap regions. In contrast, for frequency ranges located 
between adjacent bandgaps, there exist certain discrete frequencies where the transmissivity 
of the elastic waves reaches unity. At these frequencies, perfect transmission occurs, and 
reflectivity is negligible. This phenomenon underscores the existence of transmission 
windows between bandgaps, where wave propagation through the layered structure is 
unhindered. 

This phenomenon underscores the existence of transmission windows between 
bandgaps, where wave propagation through the layered structure is unhindered. 
Specifically, within these frequency intervals situated between two adjacent bandgaps, the 
transmission function attains a value of one. As a result, the reflectivity effectively drops to 
zero, allowing elastic waves to pass through the structure without significant attenuation or 
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reflection. These transmission windows are a direct consequence of the physical properties 
of the periodic system, and their presence is consistently observed in the plots of the 
transmission function. Thus, between the bandgaps, the structure transitions from being 
highly reflective to fully transparent to incident elastic waves, which is a key characteristic 
in the analysis of wave propagation in such media. �

The phase shift of the reflected shear wave is analysed for the scenario in which one 
side of the layered structure is adjacent to an elastic half-space, while the opposite side is 
bounded by a free interface. Within the first bandgap, it is observed that the phase shift 
values attain their minimum and maximum precisely at the boundaries of the gap. 
Furthermore, in the frequency interval between the first and second bandgaps, phase shift 
resonance curves emerge, each exhibiting repeated transitions.  
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