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Kazapsn K., Kazapsan P., Tepzsan C.
OtpaikeHue H NpeJiOMJIEHHE CIBHTIOBBIX YIPYIHX BOJIH OT IIEPHOANYECKH
CJIOUCTOTO YIPYTOro ¢JI0si U3 ABYX MaTePHAJIOB.

KioueBble cioBa: OTpa)X€HUE, TMPEIOMIICHHE, CABHAIOBas BOJIHA, IIEpUOAUYECKAs CTPYKTypa,
3aMpeneHHbIC 30HbI YaCTOT.

VccnenoBaHo MOBEAEHHE CABUIOBBIX BOJIH HPH B3aUMOJCHCTBUM C MEPHOANYECKH PACCIAUBAIOIIAMCS
YIPYTUM CJIOEM, PACIIOJIIOKEHHBIM MEXTY IBYMSI WACHTUYHBIMH YIPYTUMH HOJYNPOCTPAHCTBAMH. AHAIH3
COCPE/IOTOYEH Ha OIPENCNCHUH XAapaKTePUCTHKAX OTPAKCHUS W IPEJIOMIICHHS STHX BOJH OT CIIOHUCTOH
cTpykTyphl. Koadduiment npeiromieHus onpeaesercs Uil KOJINYSCTBEHHOH OLEHKHU JI0JIM BOJHOBOW 3HEPTHUH,
rnepeaaBaeMoi 4epe3 KOMIO3MTHBINA cioil. [loka3zaHo, YTO Korja 4acTOThl MaJarolleil CABHUIOBOW BOJIHBI B
npejieNiax 3arpelieHHO 30Hbl 4aCTOT COOTBETCTBYIOIIEH OCCKOHEYHOH MepHOANYEecKOr cpelbl, KodpduimeHt
MPOITYCKaHUsl yNPYrod BOJHBI OMM30K K HYNTIO. B 3THX YacTOTHBIX AMANa3oHax MEpHOAUYECKas CTPYKTypa
JIEMOHCTPHUPYET IIOYTH TIOJHOE OTPaKeHHe, a KOAQPUIMEHT oTpaXkeHHs pubmkaercs k eaunune. Y Haodopor,
KOI'/]a 4acTOThI IAJAIOIIeH BOJIHBI JIEKAT MEKIY JIIOOBIMHU JByMsI COCEAHHMHM 3aNpeleHHBIMH 30HAMH 4acToT ,
CYIIECTBYET KOHCYHBIH HabOp 4YacTOT, NPHU KOTOPBIX KOI(P(UIUEHT MPOMyCKaHUsS YIPYrHX BOJH JOCTHIAeT
exuuupl. Ha 9THX YacToTax OTpakaresibHas COCOOHOCTH IOJHOCTHIO MCYE3aeT M BOJIHA HICAIBHO MPOXOIHUT
4yepes3 CIOUCTYIO CTPYKTypy. Kpome Toro, Mel uccieayem u3MeHeHue (Ha3oBOro CABHUra OTPAXKECHHOH CIBUTOBOIL
BOJIHOH, KOT/]a CIIONCTAsi CTPYKTypa OIPaHUYCHA C OJHOH CTOPOHBI YIPYTHM HOJIYIIPOCTPAHCTBOM, @ C APYroM -
CBOOOHO# OT HANPSKCHHUI TOBEPXHOCTBIO.
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In this study, we investigate the behaviour of incident shear waves as they interact with a periodically
stratified bi-material elastic layer positioned between two identical elastic half-spaces. Our analysis focuses on the
reflection and transmission characteristics of such waves as they encounter the layered structure. The transmission
coefficient is defined to quantify the proportion of wave energy transmitted through the composite layer. It is
demonstrated that, when the frequencies of the incident shear wave fall within the bandgaps of the corresponding
infinite periodic medium, the transmissivity of the elastic wave approaches zero. In these frequency ranges, the
structure exhibits almost complete reflection, with the reflectivity nearing unity. Conversely, when the frequencies
of the incident wave lie between any two adjacent bandgaps of the infinite periodic medium, there exists a finite
set of frequencies at which the elastic wave transmissivity reaches unity. At these specific frequencies, the
reflectivity vanishes entirely, and the wave is perfectly transmitted through the layered structure. Additionally, we
examine the phase shift experienced by the reflected shear wave when the layered structure is by an elastic half-
space and the other by a free interface.

Furthermore, this study analyses the phase shift of the reflected shear wave occurring when one side of the
layered structure is adjacent to an elastic half-space and the other side is bounded by a free interface.

Introduction.

The phenomena of reflection and transmission of elastic waves at the interface between
two distinct media play a crucial role in a variety of scientific and engineering disciplines.
In composites engineering, understanding how elastic waves interact at material boundaries
is essential for the design and analysis of advanced composite structures. In geology and
seismology, the propagation of elastic waves through different earth layers underpins the
interpretation of seismic data, which is fundamental for studying the Earth's interior and for
earthquake research. Seismic exploration also relies heavily on these phenomena, as the
reflection and transmission of waves at subsurface interfaces are used to identify and
characterise geological formations. Furthermore, in acoustics, the way elastic waves reflect
and transmit at material boundaries determines the sound transmission properties of
structures, influencing the design of materials and systems for noise control and sound
insulation. The issues related to the reflection and transmission of elastic waves in layered
media have been the focus of extensive analysis by numerous researchers. Their combined
efforts established the basis for analysing wave behaviour at layered structure interfaces [1-
11].

When two distinct elastic materials are joined together, it is typically assumed that the
interface connecting them is perfectly bonded. This means that, at the boundary, certain
fundamental physical quantities must remain continuous from one material to the other. In
particular, both the displacement and the traction (which represents the mechanical forces
acting across the interface) are required to be continuous. The continuity of displacement
ensures that there is no separation or slip at the boundary, so the deformations are
transmitted smoothly. Similarly, the continuity of traction guarantees that the mechanical
forces are balanced and transferred seamlessly from one material to the other. This
idealisation is commonly adopted in analytical and computational models, as it simplifies
the study of how forces and deformations are transmitted and distributed at the interface
between different elastic materials ~While the assumption of a perfectly bonded interface
between two elastic materials simplifies analysis, it does not always represent actual
conditions encountered in practice. In reality, interfaces may contain various defects,

104



damages, or other imperfections. Several theoretical models have been developed to
represent imperfect interfaces [11-16].

The most commonly used models include the strain-gradient model, which accounts
for higher-order mechanical effects at the interface; the spring model, which introduces
interfacial compliance; the mass model, which considers additional interfacial inertia; and
the combined spring-mass model, which incorporates both compliance and inertia effects.
Each of these models offers a different perspective on how imperfections at the interface
can affect wave transmission and reflection, and they play a crucial role in the accurate
analysis of layered composite structures [17-24].

This study focuses on the behaviour of incident shear waves as they encounter a
periodically stratified bi-material elastic layer that is positioned between two identical
elastic half-spaces. The research centres on analysing how these waves are reflected and
transmitted when passing through the layered medium. By examining the reflection and
transmission properties, the study aims to provide a detailed understanding of the
mechanisms governing wave interaction within the composite structure. The findings
contribute to a broader comprehension of elastic wave dynamics in layered materials, which
is relevant for various applications in engineering and the physical sciences.

#

Problem statement and matrix approach for periodic structure.

Consider two homogeneous elastic half-spaces, composed of identical materials,
separated by a periodically in perfect interfacial contact. This stratified layer consists of
n(n=1,2,...,N) repeating unit cells, with each cell comprising two distinct sub-layers

formed from different elastic materials A and B of widths a,b . Each sub-layer is
assumed to be perfectly bonded to its adjacent sub-layers. The composite layer extends
from the top surface X =0 to the bottom surface X = Nd and d =a+b.

Shear waves propagation in stratified bi-material elastic layer obey to anti-plane
equations of motion. Choosing the anti—plane deformation in the Z - direction one has

0,0,, +0,6,, =p0,U,, ©,, =pud,u,,c, =uno U, (1)
where U, (X, y,t) is the displacement in Z - direction.

Considering a steady SH-wave propagation ~ exp[i(ky - (Dt)] , where K, ® are the
wave number and frequency, the solutions for amplitude functions U(X) ,V(X) within each

the sub-layers material X € (n -d,(n-1d + a) ,XE (nd —b, nd) can be found as

U = Asin(px)+A cos(px),  V(X) = B, sin(Gx) + B, cos(0x). )

Here

e fef o

are the shear modulus, [,sf}, bulk density of sub-layers materials,

correspondmgly.
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Enforcing the continuity of tractions and displacement at the contact interface

X, = nd —b of the two materials
U0%) = V(%)
G, du(x,) _G, dv(x,)
dx dx
we can express B, B, via A, A
B A (Gapcos( PX,) cos(ax,)
G,

+ sin( px, ) sin(gXx, )j +

G, psin( px,) cos(qX,, j
G,q

G, p cos( |oxo)sin<qxo)J+
Gy,q

+A, [cos( pX,)sin(gx,) —

B,=A [Sin( PX,) cos(ax,) —
G, psin(pXx, )sin(gx,)
A [ G,q

Introducing field vectors and constant vector

u(x) v(X) A
u(x) = G, dL(jj(XX) ,V(X) = G, d\(;(xx) ’A:[A;j

+cos(pX,) cos(qXO)J;

“4)

)

(6)

(M

the expressions of the vector ll((l"l —l)d ) , V(nd) can be expressed via the vector A

in the following matrix form

u((n-1d)=PA
V(nd):QA
sin( p(n—l)d) cos( p(n—l)d)
P=
G,pcos(p(n—1)d) -G, psin(p(n-1)d)

Q(q” 2 ]
Oy Oy

G, psin(b i
i psin(bq) cos(px,) +cos(bq) sin( px,);
G,q
q,, = cos(bg) cos(px,) - 2P Sln(gq;SIH( =
m
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d,, = G, pcos(bg) cos(px,) —G,q sin(bq) sin( px, );
,, =—0G, sin(bq) cos(px,) — G, p cos(bq) sin( px,)
Omitting the vector C = P_lu((l’l - l)d) leads to the following relation connecting

(10)

values of the field vectors at a cells interface

v(nd)=Mu((n-1)d) (11)
Here M = QP 'is a unimodal matrix
G_psin(ap)sin(bg) sin(ap) cos(bq) cos(ap)sin(bq)
cos(ap) cos(bq) ——* +
G,q G,p G,
M = (12)
G, sin(ap) sin(hq)

—G_ psin(ap) cos(bg) — G, qcos(ap)sin(bg)  cos(ap) cos(bg) -
G,p

Let note that elements of matrix M do not depend of cell number n. Repeating this
procedure the n -th times the propagator unimodal matrix M" can be found. The matrix
M " links the field vectors at X =0 and X =Nd surfaces of the waveguide.

M"u(0)=v(nd), n=12,..N (13)

According to Sylvester's matrix polynomial theorem [28] for 2x2 matrices the elements
of the N -th power of an unimodal matrix M " can be cast as

M M
M" :[ 1 12} (14)
M, M,

and can be simplified using the following matrix identity
M, =m,S,, (T]) -S, (T]); M, =m;,S,, (n)
M, =m,S,, (n); M., :mzzsn—l(n)_sn-z (n)
where Sn_l (1’]) are the Chebyshev polynomials of second kind, namely
sin((n+1
S,(n)= w cos(¢) =m;
(16)
1 A 1
n =5Tr(M ):E(m“ +my,);

(15)

In addition to the finite sized bi-material layer we consider a corresponding infinite bi-
material layer. By applying the Floquet conditions at the unit cell boundaries,
x=(n-1)d,x =nd we obtain:

v(nd) = exp(xd)u((n-1)d) (17)
Using (11) leads to the Floquet equation
cos(kd) =n(w) (18)

Here x is the complex Bloch wave number, and M ((D) is defined in (16).
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Thus, the deviation functionT]((D)— argument of the Chebyshev polynomials, as
applied to the corresponding infinite periodic medium, defines the frequency "stopbands"

under |77 (a))| >1 and identifies the "passband" frequencies under |T'| (60)| <1.

Shear elastic wave reflection and transmission.
Consider now the reflection and transmission of the shear wave through periodically
stratified bi-material elastic layer positioned between two identical elastic half-spaces.

| B4

Elastic medium

Elastic medium

A - B
a

Figure 1: Reflection and transmission of shear wave through
layer sandwiched into elastic medium

The shear displacements and shear stresses in the top —00 < X <0 and in the bottom
Nd < X < 00 half-spaces can be cast as

V(x,y,t) =V, (x)exp[iky —ot)]; U(x,y,t)=U (x)exp[i(ky —ot)]

V, (x) = (A exp(irx) + A exp(—irx)); U, (x) = A exp(irx) (19)
zel :G%’ zez = G dUO 5

dx dx
Here

2
r:,/m—z—kz -d QZ—KZ;Q:ﬂ,c:F; K =kd
c c p

A;,A,,A,, stand for the amplitudes of incident, reflected and transmitted shear waves,

respectively, G is the shear modulus, p is the bulk density of semi-space material
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The conditions for perfect contact between displacements and shear stresses in an
elastic medium and a bi-material stratified layer at X = 0, X = Nd can be expressed as

follows:

v(0)=U(0), u(Nd)=U(Nd) (20)
where
V,(0) U,(Nd)
V(0) = deo(O) , UNd) = GdUO(Nd) ; @21
dx dx

Taking into account (21) the amplitudes Ar 5 IAt via A] can be found by solving the

matrix equation

M, M, A+A ~ A _
[le MZJ[Gir(Ai_Ar)J—(GirAjexp(erd) 22)

Ar :_A(le +Gr(GrM|z _i(Mn _Mzz))
M, —Gr(GrM,, +i(M, +M,,))

. (23)
Ao 2iAGre ™™
M, —GI‘(GI’M12 +i(M,, + Mzz))
Defining reflection and transmission functions (coefficients) as
2 2
A A
Rr =|—, R[ =|— (24)
Al (A
from (23) we get
. G’ (G*MAr* + M/ + M3, —2)+MJ,
"G (GMAT M+ M, +2)+ P -

R - 4G*r? .
t T ~2 2 (~2np2 2 2 2 2
G’r* (G*ML” + M] +MJ, +2)+MJ,
Energy flux conservation is expressed via reflection and transmission coefficients in
the following transmissivity and reflectivity identity

R +R =1 (26)

Using (25) and the following recurrence identity formula for the Chebyshev
polynomials of the second kind

S, () +S.,(m)-2nS, (S, , () =1 27)

the relations (25) can be transform as
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4G’r?

R = 2.2 2 2.2 2 2.2 2 2 2
4G +s; (G (G'mirt +m} +m ~2)+m’)

t

; (28)

Since SN_1 (T]) —>0 at N —00 when |1”| ((D)| >1 the incident wave frequencies
are in the "stopbands" of the stratified layer, the transmission function decreases as the
number of cells increases. In contrast, within the "passbands," |T] (co)| <1 the transmission

function exhibits periodic behaviour.
Consider now the wave reflection from a finite-length stratified layer bounded on one
side by an elastic half-space and on the other by a mechanically free surface.

The amplitude of a reflection wave A, can be found by solving the following matrix

equation where U (Nd) is the unknown displacement at the layer traction free surface.
M, M + U (Nd
( n IZJ{ A+A J:[ ( )}exp(irNd) 29
le Mzz GIr(Ai_A-) 0
From solution of (29) we have

M,, +iGrM,,
M,, —iGrRM,,

A =-A [ (30)
Since the complex conjugate of the reflection coefficient T, = A, / A s equal its
reciprocal, the magnitude |Tr| equal unity at any frequency €2 of incident wave.

Writing Tr in the polar form of complex number we have

T, =—exp(2i¢), (1)

Gr(m,s, , (n)-S,.,(n))
m, S, (n)

Formula (32) gives the phase shift for a shear elastic wave reflected from a finite-
length stratified layer, which is bonded to an elastic half-space on one surface and
mechanically free on the other.#

where ¢(Q) = arctg(G'I/lM 2 } = arctg (32)

21

Numerical analysis and discussions.

We here will illustrate the obtained theoretical results providing numerical analysis
concerning bandgaps of the stratified layer (counterpart infinite media) , reflection and
transmission coefficients as well as reflection wave phase shifts. Numerical calculations
have been carried out for materials listed in Table 1

Table 1

Bulk density | Shear modulus | Transversal velocity
Substance o (kgm’3 ) G (GPa) c (ms’l )
Aluminium 2700 25 3040
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Copper 8900 46 2320
Titanium 4500 42 3120

Based on (28), the transmission and reflection of the elastic wave are considered when
material of elastic semi-spaces is the titanium, the elastic reflector made of the aluminium
and copper materials. Numerical analysis of counterpart infinite piezoelectric media will be
carried out for the aluminium and copper materials.

The condition | n(Q)|>1, where Q=wd Gﬁlp stand for titanium material defines
bandgaps of counterpart infinite piezoelectric media.

On Figure 2 for counterpart infinite media of the layer made of aluminium and copper
materials the deviation function curves versus frequency €2 are plotted.

| Titaninum, Aluminum+Copper , K=5, §=0.2 I Titaninum, Aluminum+Copper , K=5, f=0.5
1.6 . . . . 1.40 —
1.35]
1.5 = |
s = 130/
g 14 1.25/|
23 = 120
2 | 2 s
2 L2 3 |
2 I é 1.10
1y 1.05 |
100 . L . . ) 1.00!
s 6 7 3 9 10 " 12 3 7 8 9 10 1 12 13
Incident wave dimensionless frequency 0 Incident wave dimensionless frequency 0

Figure 2. Plots of a first and subsequent bandgaps for material at different values of parameter 3

Analysis of the function n(Q) shows that that variations in material arrangement

within the unit cell, as characterized by the filling coefficient [3 = a/ d, slightly affect the
lengths of the first bandgaps.

[ Tivaninum, AluminumsCopper , K=5, B=0.2, n=1 U] | Titaninum, Aluminum+Capper, K5, fs0.5, naS
1.0 1.0
_os 0.8
= =
£ 06 5 0.6
2 g
= .n
s 0.4 E
H S 04
=2 £
=02 =
' =02
0.0 |
0.0
El b i B L o 1 12 .
6 7 & 9 o 1 12 13
Incident wave dimensianless frequency 0
Incident wave dimensionless frequency O

Figure 3. Plots of a transmission functions at different values of parameter 3
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Transmission Ky

Titaninum, Aluminum+Copper, K=5, f=0.5, n=10
1.0 Titaninum, Aluminum+Copper, K=5, §=0.5, n=20

0.8
0.8
<
0.6 5 0.6
2
0.4 g 0.4
0.2 =02
0.0 0.0
7.0 7.5 8.0 8.5 9.0 7.0 7.5 80 8.5 90

Incident wave dimensionless frequency Q Incident wave dimensionless frequency 0

Figure 4. Plots of a transmission functions at different values of cell numbersn=10,n =20
between first and second bandgaps

Analysis of Fig. 4 illustrates that when the frequencies of the incident elastic wave fall
within the bandgaps of the corresponding infinite periodic medium, the transmissivity of
the elastic wave decreases significantly, approaching zero. In these frequency intervals, the
layer becomes highly reflective, with the reflectivity nearing unity. This phenomenon
occurs even in layers that contain a relatively small number N=35 of unit cells,
demonstrating the effect of bandgap formation on wave propagation in such structured
materials.

As indicated by the transmission function plots, there exists a set of frequencies
between any two bandgaps where the transmission function reaches a value of one,
meaning that reflectivity effectively disappears. This phenomenon occurs consistently in
the frequency ranges that lie between adjacent bandgaps. The presence of these specific
frequencies can be explained by examining the behaviour of the transmission function
outside of these intervals. In the range between two bandgaps, the transmission function
possesses a number of zeroes, which are determined by the underlying physical properties
of the system. The existence of a set of such frequencies can be explained as follows.

Between two any bandgaps |T]| <1 the function has N —1 zeros given by

From (14), it follows that at these frequencies,#

Sui (n)zo,Rt =1L(R =0).
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| TWeaniuam, AluminumsCopper, K=5, fi=0.5,n=10 Titaninum, Aluminums+Copper, K=5, §=0.5n=5

Phase shift &
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Phase shift ¢
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Incident wave normalised frequency I+ " A
Incident wave normalised frequency 0

Figure 5. Phase shift plots of the reflected wave

The graph in Figures 5 based on (40) shows how the phase shift d)(Q) changes with
frequency. Blue curves correspond to N =10, blue curves to N =15 structures. The phase

shift is a function of the normalized frequency Q=100Q .
As it follows from the plots on Figure 5 within the first bandgap the phase shifts

d)(Q) reach its minimal and maximal values at the first and second gap boundaries

o= —n/ 2, TI:/ 2 . Outside of the gaps between the first and the second gaps there are the

N —1 phase shift “resonance” curves each exhibiting repeated transitions from — Tc/ 2

to TC/2.

Conclusions.

This study investigates the interaction between incident shear waves and a periodically
layered bi-material elastic layer positioned between two identical elastic half-spaces. The
analysis demonstrates that when the frequency of the incident shear waves falls within the
bandgaps inherent to the equivalent infinite periodic medium, the transmissivity of the
elastic waves becomes nearly zero. As a result, the waves are almost completely reflected,
with the reflectivity approaching unity. This behaviour highlights the strong reflective
nature of the layer within the bandgap regions. In contrast, for frequency ranges located
between adjacent bandgaps, there exist certain discrete frequencies where the transmissivity
of the elastic waves reaches unity. At these frequencies, perfect transmission occurs, and
reflectivity is negligible. This phenomenon underscores the existence of transmission
windows between bandgaps, where wave propagation through the layered structure is
unhindered.

This phenomenon underscores the existence of transmission windows between
bandgaps, where wave propagation through the layered structure is unhindered.
Specifically, within these frequency intervals situated between two adjacent bandgaps, the
transmission function attains a value of one. As a result, the reflectivity effectively drops to
zero, allowing elastic waves to pass through the structure without significant attenuation or
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reflection. These transmission windows are a direct consequence of the physical properties
of the periodic system, and their presence is consistently observed in the plots of the
transmission function. Thus, between the bandgaps, the structure transitions from being
highly reflective to fully transparent to incident elastic waves, which is a key characteristic
in the analysis of wave propagation in such media. #

The phase shift of the reflected shear wave is analysed for the scenario in which one
side of the layered structure is adjacent to an elastic half-space, while the opposite side is
bounded by a free interface. Within the first bandgap, it is observed that the phase shift
values attain their minimum and maximum precisely at the boundaries of the gap.
Furthermore, in the frequency interval between the first and second bandgaps, phase shift
resonance curves emerge, each exhibiting repeated transitions.
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