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Оптимальное по энергозатратам комбинированное управление электромеханическим 
манипулятором с ограничением на управляющее напряжение 
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Рассматривается задача построения оптимального по энергозатратам управления однозвенным 
электромеханическим манипулятором с ограничением на управляющее напряжение. Проанализированы 
различные структуры оптимального управления, вытекающие из принципа максимума Понтрягина. 
Показано, что при больших временах перехода оптимальным является управление, полученное без учёта 
ограничений, тогда как при малых временах возможны комбинированные управления двух различных 
структур. Однако лишь одно из них, в определённом диапазоне изменения конечного времени, является  
единственно допустимым и, следовательно, оптимальным. Разработан алгоритм построения такого 
комбинированного управления, реализуемость которого подтверждается результатами численного 
моделирования. 
 

Ավետիսյան Վ.Վ. 
 

Էլեկտրամեխանիկական մանիպուլյատորի ըստ էներգածախսերի օպտիմալ համակցված 

ղեկավարումը՝ ղեկավարող լարման սահմանափակմամբ 

 

Հիմնաբառեր: էլեկտրամեխանիկական մանիպուլյատոր, օպտիմալ ղեկավարում, էներգածախսեր 
 

Դիտարկվում է միաթև էլեկտրամեխանիկական մանիպուլյատորի օպտիմալ ըստ 

էներգածախսերի ղեկավարման խնդիրը՝ ղեկավարող լարման սահմանափակման առկայության 

պայմաններում։  Վերլուծվել են Պոնտրյագինի մաքսիմումի սկզբունքից բխող օպտիմալ 

ղեկավարման տարբեր կառուցվածքներր։ Ցույց է տրվել, որ  տեղափոխման բավականին մեծ 

ժամանակահատվածի դեպքում օպտիմալ է այն ղեկավարումը, որը գտնվել է առանց 

սահմանափակումները հաշվի առնելու, մինչդեռ փոքր ժամանակահատվածի դեպքում հնարավոր են 

երկու տարբեր կառուցվածքով համակցված ղեկավարումներ։ Սակայն դրանցից միայն մեկն է 

հանդիսանում միակ թույլատրելին և, հետևաբար, օպտիմալը՝ վերջնական ժամանակի փոփոխման 

որոշակի տիրույթում։ Մշակվել է համապատասխան համակցված ղեկավարման կառուցման  

ալգորիթմը, որի իրագործելիությունը հաստատվել է  թվային մոդելավորմամբ։ 

 
 

The problem of designing energy-optimal control for a single-link electromechanical manipulator with a 
constraint on the control voltage is considered. Various structures of optimal control, derived from Pontryagin’s 
maximum principle, are analyzed. It is shown that for large transition times, the optimal control is the one obtained 
without accounting for constraints, whereas for small transition times, combined controls of two different 
structures are possible. However, only one of them, within a certain range of terminal time variation, is uniquely 
admissible and, consequently, optimal. An algorithm for constructing such combined control is developed, and its 
feasibility is confirmed by numerical simulation results. 
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Introduction. Modern electromechanical manipulators are widely used in automated 
control systems, where the issues of energy efficiency, accuracy, and compliance with 
technological constraints play a crucial role [1–4]. When moving a manipulator under 
specified boundary conditions, the control problem for the electric drive arises in such a 
way as to minimize energy (in particular, thermal) losses while satisfying constraints on the 
control input [5]. These problems are especially relevant when operating with limited 
power sources or when it is necessary to extend the service life of the electric motor [6]. 
Similar problems have been repeatedly addressed in the scientific literature. For instance, 
[7] proposes a method for constructing energy – optimal trajectories for robot manipulators 
with holonomic constraints, based on minimizing energy consumption while considering 
control force limitations. In [8], the problem of optimal control of a flexible single – link 
manipulator is studied, taking into account inertial properties and vibrations; special 
attention is given to the energy functional and to control structures that include both bang – 
bang and smooth control segments. Moreover, in the context of modern high degree of 
freedom robots, [9] develops an energy – efficient trajectory planning strategy aimed at 
reducing energy consumption and improving motion smoothness. Various problems of 
minimizing energy consumption during transport and search operations performed by 
electromechanical manipulators are addressed in [10–14] and [15,16], respectively. 

In this paper, we address the problem of designing energy – optimal control for a single-
link electromechanical manipulator subject to a constraint on the control voltage. The focus 
is on identifying the structure of the optimal control for different transition durations and on 
developing an algorithm for its construction based on Pontryagin’s maximum principle. 

 

 
1. Mathematical model of the electromechanical manipulator and problem 

statement. Let us consider a simple model of an electromechanical manipulator consisting 
of a separately excited direct current motor, a gearbox, and an arm with a load, rotating in 
the horizontal plane. Such a system can be regarded as a model of the simplest manipulator 
with a single degree of freedom. The motion of the described electromechanical system, in 
the given form, is defined by the following differential equation [17]: 

 

 2 2 2R I Jn k n knu     .              (1.1) 
 

Here   is the angular position of the manipulator arm relative to a fixed axis; 

I  is the moment of inertia of the arm (including the driven gear of the gearbox) with 
respect to the axis of rotation; J  is the moment of inertia of the motor armature (including 
the driving gear) relative to its rotation axis; n  is the gear ratio of the gearbox; R  is the 

electrical resistance of the armature winding; k  is a motor constant; u  is the control 
voltage applied to the motor input. 

Equation (1.1) is valid under the assumption that the electromagnetic time constant of 
the system is significantly smaller than both the duration of the robot’s working operation 
and the time required for the electric motor to reach a steady – state rotational mode under 
constant voltage. For many industrial electromechanical robots, this assumption is generally 
satisfied [1]. 

Let us now consider the problem of optimal control for system (1.1). 
It is required to find a programmed law of variation of the control voltage that transfers 

the manipulator, described by equation (1.1), from a given initial rest state 
 

0(0) , (0) 0                                    (1.2) 
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to a specified terminal rest state (1.3) at a fixed moment of time T  
 

( ) , (0) 0ТТ                                            (1.3) 
 

under the condition that the control satisfies the constraint 
 

( )u t U                                                           (1.4) 
 

where 0U   is the prescribed maximum allowable value of the control voltage and 
minimizes the functional 

 

 21

0

T

Q R u k dt    ,            (1.5) 

 

The functional (1.5) characterizes the total heat dissipation in the rotor winding of the 
electric motor during the control process [18]. The terminal time T  is fixed, but its value is 
refined in the course of solving the problem. 

In equations (1.1)–(1.5), we transition to dimensionless units (with primes subsequently 
omitted) and introduce the following notation and new variables: 

 

   2

2 1 2 0
1 1 1 2

/ , / , / , / ,

, , , , ,

t t T u u U k kn UT R RA knUT

Q T A Q Q Q k R A I Jn

      

             
   (1.6) 

 

where T  is the characteristic time of the robot’s working operation, taken as the unit of 
measurement and to be specified below.  

Then, relations (1.1)–(1.5) take the following form: 
1 1

1 2 2 2, uR kR         ,      (1.7) 

1(0) 0  ,  2 (0) 0  ,                                                                (1.8) 
 

1 1( ) TT   ,   2 ( ) 0T  ,                                                                     (1.9)  
 

( ) 1u t  ,                                                         (1.10)   
 

 2

1

0

T

Q u k dt    .                                                          (1.11) 

 

Thus, the problem formulated above is reduced to the equivalent problem (1.7)–(1.11). 

Without loss of generality, we assume that in (1.9) 1 0.T   
 

 
2. Analysis of the admissibility and optimality of various control structures. To 

solve problem (1.7)–(1.11), we apply the Pontryagin’s maximum principle [19]. The 
Hamiltonian of the system (1.7)–(1.11) has the form 

 

2 1 1
2 1 2 2 2( ) ( )H u k p p uR kR          ,                            (2.1) 

 

where 1p , 2p  are the adjoint variables determined from the equations 
 

1 2

2 1
1 2 2 1 20, 2 2 , 0 .p H p H ku k p kR p t T                      (2.2) 

 



93 

The maximum of the function (2.1), without taking into account the constraint (1.10), is 
found from the condition that the derivative of H  with respect to u  is zero: 

 

1
2 2( ) 2( ( ) ( )) ( ) 0uH t u t k t p t R      ,   0 t T                       (2.3) 

 

and is attained at the point 
 

1
2 2( ) ( ) ( )(2 )u t k t p t R    .                                                                          (2.4) 

 

The variables 2  and 2p  in (2.4) are obtained by solving the boundary value problem 

(1.7)–(1.9), (2.4) with the optimal control (2.4) and have the form 
 

 3 3 2 2
1 1( ) 2 3 Тt T t T t      ,        3 2 2

2 1( ) 6 6 Тt T t T t      ,      (2.5) 

2 2
1 1( ) 24 Tp t R T   ,     3 2 2 2

2 1 1( ) 24 12T Tp t T R t T R      .      (2.6) 
 

According to (2.4)–(2.6), the optimal control (2.4) takes the form 
 

3 2 2 1 2
1 1 1( ) 6 6 ( 2 ) 6 .Т T Tu t kT t T k RT t RT                                 (2.7) 

 

From (2.7) it follows that ( )u t
 is a concave quadratic function that reaches its 

maximum at the point 
 

1/ 2t T k R
   .                                                                                             (2.8) 

 

The corresponding maximum value is 
 

1 2 1 3
1 1( ) 1.5 6T Tu t kT R k T   

     .                                            (2.9) 
 

Note that at the ends of the interval [0, ]T , the function ( )u t
 takes the values 

 

2
1(0) 6 Tu T R   ,      

2
1( ) 6 Tu T T R    ,                                       (2.10) 

 

which is important when verifying the fulfillment of the constraint ( ) 1u t  . 

As follows from (2.8) and (2.9), if 0t  , then the function ( )u t
 is monotonically 

decreasing over the entire interval [0, ]T . If 0 t T  , then ( )u t
 increases 

monotonically on the interval  *[0, ]t  and decreases monotonically on  *[ , ]t T . In both 

cases the maximum value ( )u t
 , regarded as a function of T , decreases monotonically on 

the interval [0, ) , taking values from   to 0 . Therefore, there exists a value 

' (0, )T T    such that the maximum value (2.9) reaches the admissible boundary of 

control: ( ) 1u t
  . From this equality, we find [20] 

 

 3 3' ( / 2) ( / 2) / 3T q D q D b a       ,            (2.11)  
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 
 

 
   

2 2 2 2
1

3 3 3 3 2
1 1

1

3 2 2 2 4 4 2 2
1 1

/ 3 3 ( ) / 4,

2 / 27 / ( ) / 4 6 / ,

/ 3 / 2,

/ 3 / 2 3 ( ) / 4 9 ( ) / 0.

T

T T

T

T T

p b a k

q b a d a k R k

b a k

D p q k R R k

    

      

  

      

 

 

Thus, for a fixed value of 1
T  and for any T  satisfying the inequality T T   , the 

control defined by formula (2.7) transfers system (1.7) from the initial state of rest (1.8) to 
the final state of rest (1.9), satisfies the constraint (1.10) and minimizes the functional 
(1.11). 

Taking into account the constraint (1.10) and according to the maximum principle, the 
optimal control that maximizes the Hamiltonian (2.3) is determined as follows: 

 

1, если ( ) 1, (т.е. ( ) 0),

( ) ( ), если ( ) 1, (т.е. ( ) 0),

1, если ( ) 1, (т.е. ( ) 0),

u

u

u

u t H t

u t u t u t H t

u t H t



 



  
  

   

         0 't T  ,       (2.12) 

 

where ( )u t
 denotes the optimal control (2.7) derived from the maximum condition (2.3) 

without considering the constraints.  
Let us examine the possible control structures (2.11) that may qualify as optimal. 

From the concavity property of the function ( )u t
, it follows that for 0 T T   , the 

maximum value of the control exceeds the constraint: ( ) 1u t  . Let us denote by  
 

16 TT R                                        (2.13) 
 

– the critical value of time at which the function ( )u t
 first reaches the constraint at the 

endpoints of the interval [0, ]T .  

Then, the following cases are possible: 
 

if  T T T   , then ( ) 1u t
   and 2

1(0) ( ) 6 1Tu u T T R       ,       (2.14) 
 

if 0 T T   , then ( ) 1u t
   and 

2
1(0) ( ) 6 1Tu u T T R       .  (2.15) 

 

Definition. A control ( )u t  is said to be admissible for problem (1.7)–(1.11) if it 

belongs to the class of piecewise – continuous functions [0, ]KC T , satisfies the constraint 

(1.10), and the corresponding solution of the system (1.7), (1.8) satisfies the terminal 
conditions (1.9). 

In accordance with the definition of admissible control and taking into account cases 
(2.14) and (2.15), let us represent control (2.12) in more specific structures corresponding 
to these cases: 
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1

1 2

1 2

( ), [0, ] and ( ) 0,

( ) 1, ( , ) and ( ) 0,

( ), [ , ] and ( ) 0.

u

u

u

u t t t H t

u t t t t H t

u t t t T H t

  


  
  

      
*T Т T   ,          (2.16) 

 

1

2 1 2

2

1, [0, ) and ( ) 0,

( ) ( ), [ , ] and ( ) 0,

1, ( , ] and ( ) 0,

u

u

u

t t H t

u t u t t t t H t

t t T H t

 
  
  

            *0 Т T  .         (2.17) 

 

In (2.16) and (2.17), the moments 1t  and 2t  denote the switching points between control 

regimes that arise when the optimal control reaches its boundary values: ( ) 1u t   . The 

functions 1( )u t  and 2 ( )u t  are defined on the intervals 2[ , ]t T  and 1 2[ , ]t t , respectively, 

and satisfy the conditions 1,2 ( ) 1u t   and ( ) 0uH t  . These functions may partially 

coincide with ( )u t
, but in the general case they are chosen to ensure admissibility. 

We use the results of work [20], in which, for given values of 0R  , 0k  , 1 0T  ,  

the conditions for admissibility of controls (2.16) and (2.17) were established. 
Let us denote by 
 

1

1 1
min 2

ln 1 1 exp 1 1 exp
T Tk kR

T
k R R

                      
           

      (2.18) 

 

– the minimum transition time of system (1.7) from state (1.8) to state (1.9) in the time-
optimal control problem with constraint (1.10) [21]. 

According to the results of [20] and taking into account cases (2.14) and (2.15), the 
admissibility of controls (2.16) and (2.17) is determined by the relationships between the 

quantities 'T (2.11), T 
(2.13) and minT (2.18). Two cases are possible. 

Case A. If min 'T T T  , then the structure (2.17) is inadmissible for 

min( , ],T T T  while the structure (2.16) is admissible for ( , ')T T Т . 

Case B. If min 'T T T   , then for all min( , )T T T   the structure (2.17) is 

inadmissible, and the structure (2.16) is admissible. In the latter case, the optimality of 
structure (2.16) in problem (1.7)–(1.11) is also proven. 

In summary: 

– if 'T T  , then control (2.7) is optimal in problem (1.7)–(1.11); 

– if min( , )T T T  , then the optimal control is the combined control (2.16), for which an 

algorithm is presented in Section 3; 

– if min(0, ]T T , then no admissible controls exist. 
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3. Algorithm for constructing the optimal combined control and numerical 
simulation. Let us proceed to the construction of the combined control (2.16) and the 

corresponding dependencies of 1φ ( )t , 2φ ( )t  for problem (1.7)–(1.11), relying on the 

conditions of admissibility and optimality established above. Let the problem parameters be 

fixed: terminal time T , coefficients R , k  and the terminal coordinate value 1 1( ) TT   . 

We integrate system (1.7) with the initial condition (1.8) over the interval 1[0, ]t , where 

the control is given by the function ( ) ( )u t u t  obtained without considering the control 

constraint. At the moment 
 

2 3 2 2
1 1/ 2 / / 4 / (6 ) /Tt T R k T T k R k      ,                   (3.1) 

 

when the control (2.7) reaches the boundary value ( ) 1u t  , we obtain the values of the 

phase variables 
 

 
 

3 3 2 2 (1)
1 1 1 1 1 1

3 2 2 (1)
2 1 1 1 1 2

φ ( ) 2 3 φ ,

φ ( ) 6 6 φ .

Т

Т

t T t T t

t T t T t

 

 

    

    
                            (3.2) 

 

On the next interval 1 2( , )t t , by integrating system (1.7) with initial conditions (3.2) 

under constant control ( ) 1u t  , we obtain 
 

1 1 1 (1) 1 (1)
1 1 2 1 1

1 1 (1) 1
2 2 1

φ ( ) ( ) ( φ )[exp( ( )) 1] φ ,

φ ( ) ( φ )exp( ( )).

t k t t Rk k kR t t

t k k kR t t

   

  

       

    
   

     

(3.3) 

 

The values of the phase variables at the point 2t  will be denoted, respectively, by 
 

(2) (2)
1 2 1 2 2 2φ ( ) φ , φ ( ) φt t   .                                                (3.4) 

 

On the final interval  2 ,t T  the control has the form (2.4) 
 

1 2 2( ) ( ) ( ) / (2 )u t k t p t R     2 2( ) ( )p t A t t B    ,      (3.5) 
 

where 2 ( )p t  is the solution of the second adjoint equation (2.2), A  and B  are integration 

constants to be determined. 
Substitute expression (3.5) into system (1.7) 
 

2
1 2 2 2

( )
,

2

A t t B

R

  
      .                            (3.6) 

 

Integrating (3.6) with the initial conditions (3.4), we obtain 

3 2 (2) (2)
1 2 2 2 2 12 2
( ) ( ) ( ) ( ) ,

12 4

A B
t t t t t t t

R R
                    (3.7) 

 

2 (2)
2 2 2 22 2
( ) ( ) ( )

4 2

A B
t t t t t

R R
       .                       (3.8) 
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Taking into account (3.8), the control (3.5) can be written as 

2 (2)
1 2 2 22 2
( ) ( ) ( )

4 2 2

kA kB RA B
u t t t t t k

R R R


                   (3.9) 

 

For the admissible control 1( )u t  on  2 ,t T  the following conditions must be satisfied: 

1) boundary conditions (1.9);  

2) continuity of the control at the point 2t : 1 2( ) 1u t  ; 

3)  concavity and monotonicity: 0A  , /B RA k ; 

4) compliance with the constraint at the end: 1( ) 1u T   . 

From 2) we obtain 
(2)

1 2 2( ) 1
2

B
u t k

R
     or equivalently: 

 

(2)
22 (1 )B R k   .                                  (3.10) 

 

After substituting (3.10) into formulas (3.7) and (3.8) for t T , from condition 

2 ( ) 0T  (1.9) we find an explicit expression for 
 

(2) 2 (2)
2 2

2
2 2

4 (1 ) 4

( ) ( )

R k R
A

Т t Т t

  
 

 
,                                      (3.11) 

 

which is then substituted into condition 1 1( ) TT   (1.9). 

As a result, we obtain an equation with respect to a single parameter 2t : 
 

(2) (2)
2 (2)2 2

2 2 1 1

(1 ) 2
( ) ( ) 0

6 3
Tk

T t T t
R

  
      .           (3.12) 

 

It has two real roots 
 
 

(2) (2) 2 (2)
2 2 2 2 1 1

2
2 2

2 (2 ) 6 (1 ( ))( )

1 ( )

TR R R k t
t T

k t

        
 

 
,      (3.13) 

 

but only one – with the positive sign in front of the radical – satisfies conditions 1) – 4). 
This choice will also be confirmed in the numerical example below. 

When these conditions are satisfied, the problem is considered solved, and the obtained 
control is deemed admissible and optimal within the chosen structure. 

Let's present a numerical example of the implementation of the proposed algorithm for 
constructing the optimal control (2.16). Suppose the electromechanical manipulator is 
characterized by the following dimensional parameters [1], which enter into equation (1.1): 

 

25.9kg mI   ,   
4 22.45 10 kg mJ    ,   163n  ,               (3.14) 

3.6OmR  ,   0.233 N m /Ak   ,   110 VU  . 
 

When switching to nondimensional variables (1.6), we choose as the unit of time the 

quantity 1 0.345T nkU s  , equal to the time it takes the manipulator arm to rotate by 
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one radian when moving at a steady angular velocity 
1 1( ) 2.9nk U s    [1]. The 

nondimensional parameters of equation (1.7) then take the values: 
 

0.09R  ,   1k  .                                                                           (3.15)  
 

With an initial angle of zero 1(0) 0  rad, we set the final rotation angle 

corresponding to condition (1.9) equal to 
 

1 1Т   rad.                                                                                             (3.16) 
 

Construction of the optimal control (2.16) and the corresponding phase trajectories 

1φ ( ),t  2φ ( )t  is carried out in the following sequence: 

1. Using the given parameters (3.15), (3.16) and formulas (2.11), (2.13), and (2.18), 

determine the values: 0.735T   , ' 1.52T  , min 1.125T  . Since minT T T   , 

the case B considered in Section 2 is realized, in which min( , ') (1.125,1.52)T T T  . 

2. Choose 1.5 (1.125,1.52)T   . 

3. For the selected value of T , construct the optimal control profile (2.16). In this 

process, the switching time 1 0.57t   is calculated using formula (3.1), and to determine 

the switching time 2t  the following procedure is applied. 

First, using formulas (3.10) and (3.11), the coefficients 0.0594A  , 0.0016B   

are calculated so that all the admissibility conditions for the control 1( )u t  (3.9), formulated 

in items 1)–4) of Section 3, are satisfied. Then, the switching time 2t  is determined as the 

root of equation (3.13). 

Figure 1 shows the graph of the function 2( )F t , defined by equation (3.13) for the 

numerical values of the parameters (3.15), (3.16), 1.5T  . The function 2( )F t  has the 

form: 
 

(2) (2) 2 (2) (2)
2 2 2 1

2 2 (2)
2

0.18 0.0324( ) 0.54(1 )( 1)
( ) 1.5

1
F t t

       
  


 

 

where the values 
(2) (2)
1 1 2φ φ ( )t , 

(2) (2)
2 2 2φ φ ( )t  are determined by formulas (3.3) and 

(3.4) at  2t t . 

From the graph in Figure 1, it is seen that the equation 2( ) 0F t   on the interval 

(0.57,1.5)  has a unique solution. The result of the numerical solution is 2 0.7373t  , 

which confirms the correctness of the chosen parameters A , B  and the uniqueness of the 
constructed optimal control.  

Figures 2–4 show the graphs of the optimal control (2.16) and the dependencies 1φ ( )t ,

2φ ( )t , obtained at 1.5T  . The control ( )u t (fig. 2) has a combined structure: on the 
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initial interval 1[0, ]t  and the final interval 2[ , ]t T  it varies according to a smooth 

(parabolic) law, while on the middle interval 1 2[ , ]t t  it takes a constant value ( ) 1u t  , 

satisfying the constraint ( ) 1u t   for all [0, ]t Т . 

 
 Based on the results of numerical simulation, the following values were obtained: 
 

1 4φ .(1 0.5) 1 002  rad, 2 9φ .(1 0.5) 0 009  rad, 

which correspond to an accuracy on the order of 310 , upon reaching the final state. 
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0.1
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2( )F t  

2t
2t
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0.4

0.6

0.8
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( )u t  

t
2t
  1t  

Fig. 2 
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Since the moment is uniquely determined from equation (3.15), the corresponding 

admissible control (2.16), satisfying constraint (1.10) and transferring system (1.7) from the 
rest state (1.8) to the final rest state (1.9), is also unique. Therefore, it is optimal in the 
sense of minimizing the functional (1.11). 

The calculated value of the functional (1.11) in nondimensional units is 1 0.029Q  . 

By converting to dimensional variables using the corresponding formulas (1.6), we obtain 
the amount of thermal losses 33.6 JQ  (1.5), corresponding to the implemented optimal 

control. 
Thus, the proposed algorithm ensures the construction of an optimal control according 

to criterion (1.11), satisfying the constraints and providing a high – precision 
implementation of the required transition. 

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

2 ( )t  

t
1t  2t



Fig. 4

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4
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1.0

1( )t  

t
1t  2t

  

Fig. 3 

1.5 
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Conclusion. This study addresses the problem of constructing energy-optimal control 
for a single-link electromechanical manipulator subject to a control voltage constraint. 
Based on Pontryagin’s maximum principle, it is established that for large transition times, 
the optimal control corresponds to the unconstrained solution, whereas for small transition 
times, a combined control structure is required. An algorithm for such control is developed, 
and its feasibility is confirmed by numerical simulations demonstrating compliance with 
the control constraint and boundary conditions while ensuring minimal energy 
consumption. 
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