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OnrumMaiabHoe Mo JHepro3aTrpaTamMm KOMGMHHPOB&HHOC yYnpaBJieHHE JJIEKTPOMEXaHUYEeCKUM
MAaHUIIYJATOPOM C OTPAHHYCHHEM Ha YNIPaBJIAIOIICe HANIPAKCHH S

KiroueBble €J10Ba: SIEKTPOMEXaHUUCCKHIT MAHUITYIIATOP, ONTHMAIBHOE YIIPAaBICHHE, SHEPTrO3aTPaThl

PaccmaTpuBaeTcst 3ajada I[OCTPOCHHS ONTHMAIBHOIO IO DHEPro3aTrpaTaM YIPaBICHHS OJHO3BEHHBIM
9IEKTPOMEXaHIHICCKUM MAHHUITYSITOPOM C OrpaHHYCHHEM Ha yIpaBIsiioliee HampspkeHne. [IpoaHamM3upoBaHbL
pasIUYHBIC CTPYKTYpHI ONTHMAIBHOTO YIPABICHHS, BBITGKAIOMME M3 MPHHIHMIA MakcuMmyma [loHTpsruHa.
IToka3auo, 4TO IpH GOMNBIIMX BPEMEHAX MEPEXOfa ONTHMAIBHBIM SBISICTCS YIPaBICHHUE, IOTyIeHHOe 6e3 yuéra
OrpaHMYCHHI, TOra Kak IPH MalbIX BPEMECHAX BO3MOXHBI KOMONHHMPOBAHHBIC YIPABICHHS JBYX Pa3IHYHBIX
ctpykTyp. OfHAKO JHIIb OJHO M3 HHX, B ONPEACIEHHOM AHANA30HE W3MCHECHNS KOHEYHOIO BPEMEHH, SIBILSICTCS
CIUHCTBEHHO JOMYCTHMBIM W, CIICIOBATEIbHO, ONTHMANBHBIM. Pa3paboTaH aarOpHTM IIOCTPOCHHS TaKOro
KOMOMHIPOBAHHOTO YIPABICHHS, PEAIM3yeMOCTh KOTOPOrO MOATBEPIKAACTCS PE3yIbTATaMU YHCICHHOTO
MOJIETTUPOBAHHSL.
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The problem of designing energy-optimal control for a single-link electromechanical manipulator with a
constraint on the control voltage is considered. Various structures of optimal control, derived from Pontryagin’s
maximum principle, are analyzed. It is shown that for large transition times, the optimal control is the one obtained
without accounting for constraints, whereas for small transition times, combined controls of two different
structures are possible. However, only one of them, within a certain range of terminal time variation, is uniquely
admissible and, consequently, optimal. An algorithm for constructing such combined control is developed, and its
feasibility is confirmed by numerical simulation results.
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Introduction. Modern electromechanical manipulators are widely used in automated
control systems, where the issues of energy efficiency, accuracy, and compliance with
technological constraints play a crucial role [1-4]. When moving a manipulator under
specified boundary conditions, the control problem for the electric drive arises in such a
way as to minimize energy (in particular, thermal) losses while satisfying constraints on the
control input [5]. These problems are especially relevant when operating with limited
power sources or when it is necessary to extend the service life of the electric motor [6].
Similar problems have been repeatedly addressed in the scientific literature. For instance,
[7] proposes a method for constructing energy — optimal trajectories for robot manipulators
with holonomic constraints, based on minimizing energy consumption while considering
control force limitations. In [8], the problem of optimal control of a flexible single — link
manipulator is studied, taking into account inertial properties and vibrations; special
attention is given to the energy functional and to control structures that include both bang —
bang and smooth control segments. Moreover, in the context of modern high degree of
freedom robots, [9] develops an energy — efficient trajectory planning strategy aimed at
reducing energy consumption and improving motion smoothness. Various problems of
minimizing energy consumption during transport and search operations performed by
electromechanical manipulators are addressed in [10—14] and [15,16], respectively.

In this paper, we address the problem of designing energy — optimal control for a single-
link electromechanical manipulator subject to a constraint on the control voltage. The focus
is on identifying the structure of the optimal control for different transition durations and on
developing an algorithm for its construction based on Pontryagin’s maximum principle.

1. Mathematical model of the electromechanical manipulator and problem
statement. Let us consider a simple model of an electromechanical manipulator consisting
of a separately excited direct current motor, a gearbox, and an arm with a load, rotating in
the horizontal plane. Such a system can be regarded as a model of the simplest manipulator
with a single degree of freedom. The motion of the described electromechanical system, in
the given form, is defined by the following differential equation [17]:

R(1+Jn2)('p+k2n2('p=knu. (1.1)

Here ¢ is the angular position of the manipulator arm relative to a fixed axis;
I is the moment of inertia of the arm (including the driven gear of the gearbox) with
respect to the axis of rotation; J is the moment of inertia of the motor armature (including
the driving gear) relative to its rotation axis; 7 is the gear ratio of the gearbox; R is the

electrical resistance of the armature winding; K is a motor constant; # is the control
voltage applied to the motor input.

Equation (1.1) is valid under the assumption that the electromagnetic time constant of
the system is significantly smaller than both the duration of the robot’s working operation
and the time required for the electric motor to reach a steady — state rotational mode under
constant voltage. For many industrial electromechanical robots, this assumption is generally
satisfied [1].

Let us now consider the problem of optimal control for system (1.1).

It is required to find a programmed law of variation of the control voltage that transfers
the manipulator, described by equation (1.1), from a given initial rest state

e(0)=¢", 0)=0 (12)
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to a specified terminal rest state (1.3) at a fixed moment of time 7'

T .
oT)=¢, ¢0)=0 (1.3)
under the condition that the control satisfies the constraint
lu(n|<U (1.4)

where U >0 is the prescribed maximum allowable value of the control voltage and
minimizes the functional

T
Q=R"[(u-ko) dt. (1)
0

The functional (1.5) characterizes the total heat dissipation in the rotor winding of the
electric motor during the control process [18]. The terminal time 7 is fixed, but its value is
refined in the course of solving the problem.

In equations (1.1)—(1.5), we transition to dimensionless units (with primes subsequently
omitted) and introduce the following notation and new variables:

t'=t/T, w'=u/U, k'=kn/(UT), R’=RA/(anTz),
Q' =T?4"Q0, Q/=Q%R, A=I+Jn*, ¢,=0—¢), ¢, =0,

where T is the characteristic time of the robot’s working operation, taken as the unit of
measurement and to be specified below.
Then, relations (1.1)—(1.5) take the following form:

(1.6)

$, =¢,, ¢,=uR"'—kR'q,, 1.7)

¢,(0)=0, ¢9,(0)=0, (1.8)

o (T)=0¢;, ¢,(T)=0, (1.9)

lu(n)|<1, (1.10)
T

o =_[(u—k¢)2 dr . (1.11)
0

Thus, the problem formulated above is reduced to the equivalent problem (1.7)—(1.11).
Without loss of generality, we assume that in (1.9) (plT > 0.

2. Analysis of the admissibility and optimality of various control structures. To
solve problem (1.7)—(1.11), we apply the Pontryagin’s maximum principle [19]. The
Hamiltonian of the system (1.7)—(1.11) has the form

H=—u-ko,) +po, +p,uR"' —kR'9,), 2.1)
where P, D, are the adjoint variables determined from the equations

p=—H, =0, p,=-H, ==2ku+2k’p,—p +kR"'p,, 0<t<T. 22)
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The maximum of the function (2.1), without taking into account the constraint (1.10), is
found from the condition that the derivative of H with respect to u is zero:

H, (t)=-2u@)-kp,(t))+ p,(O)R"' =0, 0<t<T 2.3)
and is attained at the point
u*(t)=ko,(t)+ p,()2R)". (2.4)

The variables @, and p, in (2.4) are obtained by solving the boundary value problem
(1.7)—(1.9), (2.4) with the optimal control (2.4) and have the form

0 (1) =(-2T7F +3T7¢ o], @,(t)=(-6T"F +6Tt) ] . 2.5)

p()=24R’T ¢, p,(t)=-24T R*@/t+12T°R’g| . (2.6)
According to (2.4)—(2.6), the optimal control (2.4) takes the form

u (t)y=—6kT ¢ t* +6T(k—2RT ")/t +6RT ¢! . 2.7)

From (2.7) it follows that u*(t) is a concave quadratic function that reaches its

maximum at the point

t,=T/2-k'R. (2.8)
The corresponding maximum value is
u'(t,)=15kT "o +6R’k'T ¢/ . 2.9)

Note that at the ends of the interval [0,7'], the function %" (¢) takes the values
u'(0)=6T Ro, u'(T)=-6T"Re,, (2.10)
which is important when verifying the fulfillment of the constraint |u(l)| <I.

As follows from (2.8) and (2.9), if ¢, <0, then the function u*(t ) is monotonically
decreasing over the entire interval [0,7]. If 0<?¢, <T, then u (f) increases
monotonically on the interval [0,#,] and decreases monotonically on [Z.,7']. In both

. * . .
cases the maximum value u" (7, ), regarded as a function of T, decreases monotonically on

the interval [0,+00), taking values from +oo to 0. Therefore, there exists a value
T =T"€(0,+00) such that the maximum value (2.9) reaches the admissible boundary of

control: u” (¢,) =1. From this equality, we find [20]

T'=3/~(q/2)+\D +3/~(q/2)-ND -b/(3a). @.11)
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p=-b"1(3a’)=-3k*(¢]) /4,
q=2b"1(27a’)+d/a=-k(¢|) / 4~ 6R’q] /k,

b/ (3a)=—ke! /2,

D=(p/3) +(q/2) =3k°R*(¢] )" 1 4+9R* (9] ) 1 k* > 0.

Thus, for a fixed value of (plT and for any T satisfying the inequality 7" '<T <, the

control defined by formula (2.7) transfers system (1.7) from the initial state of rest (1.8) to
the final state of rest (1.9), satisfies the constraint (1.10) and minimizes the functional
(1.11).

Taking into account the constraint (1.10) and according to the maximum principle, the
optimal control that maximizes the Hamiltonian (2.3) is determined as follows:

1 ecmu (1)>1, (r.e. H (t)>0),
w(t)=4u’ (), ecm ' (1)|<1, (re. H,()=0), 0<t<T", 2.12)
-1, ecmn u' (1) <—1, (t.e. H, (t)<0),

where u*(t ) denotes the optimal control (2.7) derived from the maximum condition (2.3)

without considering the constraints.
Let us examine the possible control structures (2.11) that may qualify as optimal.

From the concavity property of the function u : (2) , it follows that for 0 <T < T", the

maximum value of the control exceeds the constraint: %" (t) > 1. Let us denote by

T* =\J6RoT (2.13)

— the critical value of time at which the function u*(t ) first reaches the constraint at the
endpoints of the interval [0,7].

Then, the following cases are possible:

it T"<T<T',thenu’(t,)>1and u”(0)=-u"(T)=6T"Ro| <1, (2.14)
if0<T <T", then u"(¢,)>1 and u"(0)=—u"(T)=6T*Re, >1. (2.15)
Definition. A control u(#) is said to be admissible for problem (1.7)—(1.11) if it

belongs to the class of piecewise — continuous functions KC[0,T], satisfies the constraint

(1.10), and the corresponding solution of the system (1.7), (1.8) satisfies the terminal
conditions (1.9).

In accordance with the definition of admissible control and taking into account cases
(2.14) and (2.15), let us represent control (2.12) in more specific structures corresponding
to these cases:
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u'(t), te[0,4,]and H (¢)=0,
u(t)=11, te(t,t,)and H,(t)>0, T <T<T', (2.16)
u/(t), telt,,T]and H (t)=0.
1, t€[0,t,) and H, (¢) >0,
u(t)y=<u,(t), telt,t,]and H, (¢)=0, 0<T<T". (2.17)
-1, te(t,,T]and H (1) <0,

In (2.16) and (2.17), the moments #, and #, denote the switching points between control

regimes that arise when the optimal control reaches its boundary values: u* (t)==1. The

functions 1, () and u,(¢) are defined on the intervals [#,,7"] and [¢,,Z,], respectively,

and satisfy the conditions |u1’2 (Z)| <1 and H (t)=0. These functions may partially

coincide with 2" (?) , but in the general case they are chosen to ensure admissibility.

We use the results of work [20], in which, for given values of R >0, k>0, (plT >0,

the conditions for admissibility of controls (2.16) and (2.17) were established.
Let us denote by

4
R ko! kol
T . =—Inq|1+ [l—exp| — | |[1- [1—exp| ——+ 2.18
min kz p[ R J p( R ( )

— the minimum transition time of system (1.7) from state (1.8) to state (1.9) in the time-
optimal control problem with constraint (1.10) [21].

According to the results of [20] and taking into account cases (2.14) and (2.15), the
admissibility of controls (2.16) and (2.17) is determined by the relationships between the

quantities 7"'(2.11), T"(2.13) and T} (2.18). Two cases are possible.

Case A. If T <T°<T' 6 then the structure (2.17) is inadmissible for

T e(T,,,T"], while the structure (2.16) is admissible for T € (T",T"").

Case B. If 7" <T . <T', then for all T € (T, ,T") the structure (2.17) is

inadmissible, and the structure (2.16) is admissible. In the latter case, the optimality of
structure (2.16) in problem (1.7)—(1.11) is also proven.
In summary:

—if T'< T <0, then control (2.7) is optimal in problem (1.7)—(1.11);
-if T e(T,;
algorithm is presented in Section 3;

-if T'e(0,7;,

in °

T ') , then the optimal control is the combined control (2.16), for which an

n?’

], then no admissible controls exist.

in
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3. Algorithm for constructing the optimal combined control and numerical
simulation. Let us proceed to the construction of the combined control (2.16) and the

corresponding dependencies of @, (1), 0, (t) for problem (1.7)«(1.11), relying on the
conditions of admissibility and optimality established above. Let the problem parameters be
fixed: terminal time 7', coefficients R, k and the terminal coordinate value o,(T)= (plr .

We integrate system (1.7) with the initial condition (1.8) over the interval [0, tl] , where

the control is given by the function ©(¢) = u" () obtained without considering the control
constraint. At the moment

t,=T/2=R/k—-JT*14-T"/(6ko' )+ R* / k>, G.1)

when the control (2.7) reaches the boundary value u" () =1, we obtain the values of the
phase variables

0,(t)= (—2T‘3t13 +377% )(plT =o!", (

3.2)

3.2 -2 1

0, (1) = (_6T fy +6T tl)(PlT = (P(z)'
On the next interval (ll,l‘z) , by integrating system (1.7) with initial conditions (3.2)

under constant control #(¢) =1, we obtain

0() =k (t=1,)+ Rk (k™ —@)exp(=kR™ (1 —1,)) - 1]+ 9",

1 1 1 1 (3
0, () =k = (k™ =0y )exp(=kR™' (¢ —1,)).
The values of the phase variables at the point £, will be denoted, respectively, by
P () =0, 9,()=05" . (34)
On the final interval [tz , T ] the control has the form (2.4)
u,(t) =ko,(t)+p,(t)/ (2R) p,(t)=—A(t—t,)+B, (3.5)

where p, (¢) is the solution of the second adjoint equation (2.2), A and B are integration

constants to be determined.
Substitute expression (3.5) into system (1.7)

. . —A(t-t,)+B 56
(pl (pz 4 (PZ 2R2 . .
Integrating (3.6) with the initial conditions (3.4), we obtain
A 3 B 2 (2) (2)
(Pl(t):_ﬁ(t_tz) +W(t_t2) +0, (t—1,)+97, 3.7
A B )
(1) =~z (1=1) + (1= 1) + 0. (3.8)
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Taking into account (3.8), the control (3.5) can be written as

kB—RA
u(t)=- (t % —(z t)+—+k(p(2) (3.9)
2R’ 2R
For the admissible control #,(f) on [tz ,T ] the following conditions must be satisfied:

1) boundary conditions (1.9);
2) continuity of the control at the point #,: #,(¢,) =1

3) concavity and monotonicity: A>0, B<RA/k ;
4) compliance with the constraint at the end: u,(7) > —1.

(2)

B .
From 2) we obtain u,(?,) = k¢, + E =1 or equivalently:

B=2R(1-k¢). (3.10)

After substituting (3.10) into formulas (3.7) and (3.8) for £ =T, from condition
o0, (T ) =0(1.9) we find an explicit expression for

_4R(—kel") 4R’

R 3.11
T—1)  (T-b) e

which is then substituted into condition @,(T) =@ (1.9).

As a result, we obtain an equation with respect to a single parameter Z,:

1— (2) 20
(1=ko; )(T ) +—2 (PZ (T-t,)+¢” —¢l =0. (3.12)
6R
It has two real roots
—2RpY £ (2R ) —6R(1— ke, (¢ S

= 22RO £VQROD) ~6R(—ko,(1 )0l 0D) o1y

1- k(Pz (t2 )
but only one — with the positive sign in front of the radical — satisfies conditions 1) — 4).
This choice will also be confirmed in the numerical example below.

When these conditions are satisfied, the problem is considered solved, and the obtained
control is deemed admissible and optimal within the chosen structure.

Let's present a numerical example of the implementation of the proposed algorithm for
constructing the optimal control (2.16). Suppose the electromechanical manipulator is
characterized by the following dimensional parameters [1], which enter into equation (1.1):
I=59kg-m*, J=245-10"kg-m’, n=163, (3.14)
R=3.60m, £=0.233N-m/A, U=110V.

When switching to nondimensional variables (1.6), we choose as the unit of time the
quantity 7 = nkU ™" = 0.34535 , equal to the time it takes the manipulator arm to rotate by
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one radian when moving at a steady angular velocity @ = (nk )_1 U~29s" [1]. The
nondimensional parameters of equation (1.7) then take the values:

R~0.09, k~1. (3.15)

With an initial angle of zero ¢,(0)=0rad, we set the final rotation angle

corresponding to condition (1.9) equal to
@l =1 rad. (3.16)
Construction of the optimal control (2.16) and the corresponding phase trajectories
¢,(?), @,(t) is carried out in the following sequence:
1. Using the given parameters (3.15), (3.16) and formulas (2.11), (2.13), and (2.18),
determine the values: 7" =0.735, T'=1.52, T . =1.125. Since 7" <7, <T',
the case B considered in Section 2 is realized, in which 7' € (T, ,T") =(1.125,1.52).

2. Choose T'=1.5€(1.125,1.52).

3. For the selected value of 7, construct the optimal control profile (2.16). In this
process, the switching time #, = 0.57 is calculated using formula (3.1), and to determine

n?’

the switching time Z, the following procedure is applied.

First, using formulas (3.10) and (3.11), the coefficients 4=0.0594, B=0.0016
are calculated so that all the admissibility conditions for the control %, (l‘ ) (3.9), formulated
in items 1)—4) of Section 3, are satisfied. Then, the switching time 7, is determined as the

root of equation (3.13).
Figure 1 shows the graph of the function F' (l‘z), defined by equation (3.13) for the

numerical values of the parameters (3.15), (3.16), T =1.5. The function F'(£,) has the

form:

0,180 +/0.0324(0% ) ~0.54(1- 02 )¢ 1)

(2)
1-¢,
where the values (piz) = (Piz) (), (P(zz) = (sz)

G4)at t=t,.

F(t,)=15-t,—

t,) are determined by formulas (3.3) and
2

From the graph in Figure 1, it is seen that the equation [ (l‘z) =0 on the interval
(0.57,1.5) has a unique solution. The result of the numerical solution is £, =0.7373,

which confirms the correctness of the chosen parameters A, B and the uniqueness of the
constructed optimal control.

Figures 2—4 show the graphs of the optimal control (2.16) and the dependencies @, (1),
@,(t), obtained at 7 =1.5. The control u(¢) (fig. 2) has a combined structure: on the
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initial interval [0,#,] and the final interval [¢,,7] it varies according to a smooth

(parabolic) law, while on the middle interval [7,,#,] it takes a constant value u(¢) =1,
F(t,) 1

03

02

01

!
!
02 04 M»—" 08 10 12 14 15

~Y

Fig. 2

satisfying the constraint |u(t)| <1 forall £ €[0,T].

Based on the results of numerical simulation, the following values were obtained:
¢,(1.5) =1.00024 rad, @,(1.5)=0.00099 rad,

which correspond to an accuracy on the order of 107, upon reaching the final state.
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Since the moment is uniquely determined from equation (3.15), the corresponding
admissible control (2.16), satisfying constraint (1.10) and transferring system (1.7) from the
rest state (1.8) to the final rest state (1.9), is also unique. Therefore, it is optimal in the
sense of minimizing the functional (1.11).

The calculated value of the functional (1.11) in nondimensional units is O, = 0.029.

By converting to dimensional variables using the corresponding formulas (1.6), we obtain
the amount of thermal losses O =33.6J (1.5), corresponding to the implemented optimal

control.
Thus, the proposed algorithm ensures the construction of an optimal control according
to criterion (1.11), satisfying the constraints and providing a high — precision

implementation of the required transition.
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Conclusion. This study addresses the problem of constructing energy-optimal control
for a single-link electromechanical manipulator subject to a control voltage constraint.
Based on Pontryagin’s maximum principle, it is established that for large transition times,
the optimal control corresponds to the unconstrained solution, whereas for small transition
times, a combined control structure is required. An algorithm for such control is developed,
and its feasibility is confirmed by numerical simulations demonstrating compliance with
the control constraint and boundary conditions while ensuring minimal energy
consumption.
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