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A quadrature formula is constructed for calculating integrals with a kernel in the form of a discontinuous 
Weber-Shafheitlin integral. It is shown that for the order n  of the quadrature formula, the formula is satisfied 

exactly for odd polynomials of order 2 1n  . As an example, an axisymmetric contact problem of pressing a 
smooth stamp into an elastic layer whose lower edge is rigidly fixed was solved and both the convergence and the 
efficiency of applying the mechanical quadrature method using the constructed quadrature formula are shown. 

 

Սահակյան Ա.Վ. 

Վեբեր-Շաֆհեյտլինի ինտեգրալով տրվող կորիզով ինտեգրալի համար քառակուսացման 

բանաձևի կիրառությունը առաձգականության տեսության առանցքահամաչափ կոնտակտային 

խնդրի լուծման համար 

 

Հիմնաբառեր` Վեբեր-Շաֆհեյտլինի ինտեգրալ, քառակուսացման բանաձև, առանցքահամաչափ 

կոնտակտային խնդիր, Բեսելի ֆունկցիաներ, մեխանիկական քառակուսացման բանաձևեր 

Կառուցված է քառակուսացման բանաձև Վեբեր-Շաֆհեյտլինի խզվող ինտեգրալ տեսք ունեցող 

կորիզով ինտեգրալի հաշվման համար: Ցույց է տրված, որ n  կարգի քառակուսացման բանաձևը 

ճշգրիտ է 2 1n   կարգի կենտ բազմանդամների համար: Ստորին եզրով կոշտ ամրակցված 

առաձգական շերտի մեջ ողորկ շտամպի մխրճման առանցքահամաչափ կոնտակտային խնդրի 

լուծման օրինակի վրա ցույց են տրված կառուցված բանաձևի հիման վրա մեխանիկական 

քառակուսացման բանաձևերի մեթոդի զուգամիտությունը և արդյունավետությունը: 

 
Построена квадратурная формула для вычисления интегралов с ядром в виде разрывного интеграла 

Вебера-Шафхейтлина. Показано, что при порядке квадратурной формулы n  формула выполняется точно 

для нечетных многочленов порядка 2 1n  . На примере решения осесимметричной контактной задачи о 
вдавливании гладкого штампа в упругий слой, нижняя грань которого жестко закреплена, показаны как 
сходимость, так и эффективность применения метода механических квадратур с использованием 
построенной квадратурной формулы.  

 
Введение. Приближенные методы решения сингулярных интегральных 

уравнений начали интенсивно развиваться с середины ХХ века. Среди первых работ 
в этом направлении отметим работы [1-9]. В дальнейшем было выполнено огромное 
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количество работ, посвященных приближенному вычислению сингулярных 
интегралов и решению интегральных уравнений, содержащих такие интегралы, 
отметим лишь небольшую часть из работ, опубликованных после 2000-ого года [10-
26]. Несомненно, этот перечень является далеко неполным и его можно было бы 
продолжить.  

Несмотря на такое большое количество работ по приближенным методам 
решения сингулярных интегральных уравнений, интерес к этой проблеме не убывает 
и продолжает оставаться на повестке дня.  

В настоящей работе предлагается квадратурная формула для вычисления 
интеграла с ядром, порожденным разрывным интегралом Вебера-Шафхейтлина, тем 
самым и возможность решения осесимметричных задач методом механических 
квадратур. Известно, что осесимметричные задачи теории упругости решаются, как 
правило, или в тороидальных координатах, например [27, 28], или при помощи 
оператора вращения, например [29-32]. В обоих случаях используются сложные 
преобразования, иногда приводящие и к замкнутым решениям, которые, однако, 
достаточно сложны для численного анализа. На примере осесимметричной 
контактной задачи о вдавливании гладкого штампа в упругий слой, нижняя грань 
которого жестко закреплена, показана эффективность применения метода 
механических квадратур. Рассмотрен случай, когда основание штампа неполностью 
контактирует со слоем и, следовательно, размеры зоны контакта подлежат 
определению. При помощи предлагаемой квадратурной формулы проведен 
детальный численный анализ задачи. 

 
1. Квадратурная формула. Пусть имеем интеграл 

     
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0

( , ) 1I r W r f d
  

        (1) 

где  

      2 1

0
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

 
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         
 

  (2) 

разрывной интеграл Вебера-Шафхейтлина достаточно общего вида,  J r - 

функция Бесселя первого рода,  f r  удовлетворяет условию Гельдера-Липшица на 

отрезке  0,1 .  

Основой для построения квадратурной формулы для указанного интеграла 
является спектральное соотношение, полученное в [33,34],  

         
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1 , 1 , 12 1
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 

  

где  
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       
     

   

2 1
, 1 , 1 2 2

1 2 ;
1 1n n n

n n
T P

n n


    



       
     

     
; 

   ,
nP x 

 - многочлен Якоби. 

Имея в виду спектральное соотношение (3), подынтегральную функцию  f   

аппроксимируем интерполяционным многочленом с узлами в корнях многочлена 
   , 1

nT r 
. Из представления многочлена 

   , 1
nT r 

 очевидным образом следует, 

что он четный и имеет 2n  корней  1,ix i n  . Следовательно, интерполяционный 

многочлен можно выписать в следующем виде:  

   
 

 
 

 

   
   

, 1

1,
1 1

1

2

n
i i n

i i i i n i

f x f x T r
f r

n r x r x xT x

 

 
 

 
   

      
  (4) 

Здесь  

         , 1 , 11
; 0 1,

2
i

i n i n ix T x P i n    
     , 

а также использовано выражение для производной от многочлена 
   , 1

nT r 
: 

         , 1 1,
12n n

d
T r r n T r

dr
   

        

Функцию  f r , определенную на  0,1 , продолжим на  1,0  нечетным обра-

зом. Тогда, из формулы (4) будем иметь: 

   
 

 
   
   

, 1

1,2 2
1 1
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i n

i i i n i

f x T rr
f r

n r x x T x

 

 
 

 
    

   (5) 

Воспользуемся формулой Кристофелля-Дарбу для многочленов Якоби [35] 
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где  
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   
   

, 2 1

2 1 1m m

m
k

m m
    


    

  

и сделаем в ней замену переменных 21 2x r   и 21 2i iy x    , получим 
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Подставляя (6) в (5), будем иметь 

     
       
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где  

       
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1 1n
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 . 

Подставляя последнее выражение в интеграл (1) и меняя порядок интегрирования 
и суммирования, будем иметь: 
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Подставляя же сюда значение интеграла из спектрального соотношения (3), 
окончательно получим следующую квадратурную формулу: 

         , ,

1

,
n

i i i
i

I r w f x R r x   




  (8)  

   

 
       

   
   

     
 

       

, 1

,

1, , 1
1 1

2
1

, , 1 , 1

1 2
0

1
; 0;

2

12 1
;

1 12

2
, ;

2 1

i
i n i

i

i n i n i

n

n i m i m
m

x P

n nn
w

n nx T x T x

mm
R r x r T x T r

m

 

 
   
 


     

 


 
  

          


       

        
       



 

Нетрудно проверить, что имеет место и следующая квадратурная формула: 

      
1

1 ,2 2

10

1
n

i i
i

f x x x dx w f x
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

   (9) 

Отметим, что формулы (8) и (9) выполняются точно, если функция  f r  

является нечетным многочленом порядка 2 1n , т.е. представима в форме 

   2
1nf r rQ r , где  1nQ x  - многочлен порядка 1n .  

 
2. Осесимметричная контактная задача о вдавливании гладкого кругового 

жесткого штампа в упругий слой, нижняя грань которого жестко защемлена. В 
цилиндрической системе координат Or z  рассмотрим упругий слой 0 z H  , в 

граничную поверхность 0z   которой, под действием силы P , вдавливается круго-
вой цилиндрический штамп с гладким основанием в форме тела вращения, 
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описываемого функцией  0
r

af r a
a

    
 

. Предполагается, что торец штампа-

цилиндра неполностью контактирует со слоем, т.е. зона контакта является кругом с 
радиусом b a .  

 
Фиг. 1 Схематическое представление задачи 

 
Перейдем к безразмерным координатам: 

   , ,r z a    

и величинам 

       *, , , , , , ; , ,r z z rzu u b H a u w b h       . 

Здесь, независимо от пункта 1, используются обозначения   для модуля сдвига и 

  для коэффициента Пуассона материала упругого слоя. 
Решив осесимметричную задачу для слоя при граничных условиях 

   

 
   

*

*

0 ,
,0

0 ,

,0 0 0 ,

, 0; , 0; 0 .

p b

b

u h w h

    
   

   
      

       

 (10) 

где  p   - искомое нормальное контактное напряжение, для нормальной 

компоненты перемещения граничных точек слоя будем иметь: 

          
*

0

0

,0 1 , ,
b

w L t M t p t tdt       (11) 

Здесь  

     0 0 0

0

,L t J ts J s ds


   ,           3 4    ,  

       0 02 2 2
0

2 2 sh 2
, 1

4 1 2 ch 2

hs hs
M t J s J st ds

h s hs

   
         

  

В зоне контакта штампа-цилиндра с упругим слоем имеем условие: 

P

H

a

b
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     * *,0 0 1w f b           (12) 

где * a    - относительная осадка штампа,  f   - функция, описывающая осно-

вание штампа.  
Должно выполняться также условие равновесия штампа-цилиндра: 

 
*

2
0

2
b

P
p d

a
    

   (13) 

Подставив выражение  ,0w   из (11) в условие контакта (12), получим 

определяющее интегральное уравнение с логарифмической особенностью в виде 

разрывного интеграла Вебера-Шафхейтлина  0 ,L t  : 

          
*

0 *

0

1 , ,
b

L t M t p t tdt f          (14) 

Для того, чтобы построить решение уравнения (14) при условии (13) методом 
механических квадратур на основе предложенных выше квадратурных формул (8) и 

(9), сведем интервалы интегрирования к интервалу  0,1 . Будем иметь: 

            

 

1

* * *

0

1
2

*

0

1 , , 0 1b L N d f b

b d Q

               

   




 (15) 

где    *p b      - новая искомая функция, 
22

P
Q

a



 - безразмерная 

внешняя сила, 

     0 0

0

,L J J d


      , 

     
* *

*
0 0

2 2 2 20
*

*

2 2 sh 2

, 1

4 1 2 ch 2

h
b h b

b
N J J d

h
h b

b



  
    

          
          

 .  

Решение системы уравнений (15) будем искать в виде: 

   *

21

 
  


, (16) 

тогда система (15) примет вид: 
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        
   

 

1
* * *

2
*0

1
*

22
*0

, , 0 1
11

1

f b
L N d

b

Q
d

b

    
         



 
 






  (17) 

Условием для определения длины зоны контакта *b  является  

 * 1 0   (18) 

Выпишем формулы (8) и (9) применительно к системе (17), т.е. когда 
0, 0.5    , 

       

   

1

02
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2
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1
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i i i
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


 
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 (19) 

где  

         

     
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1
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, 1 , 1 2 2
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
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
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

  

Согласно (5) имеем  

   
 

 
   
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2 1
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n r x x T x



 


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 
  (20) 

Применив формулы (19) к системе (17), получим: 

 

       
 

 
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0 *

1 *

* 2
1 *

, ,
1
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f b
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b

Q
w x

b





  
       

 




  (21) 

Выбрав в качестве точек коллокации для первого уравнения узлы квадратурных 
формул (19), получим систему линейных алгебраических уравнений из 1n   урав-
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нений относительно 1n  неизвестных: n  значений   * 1,ix i n   и 

безразмерной осадки штампа * .  

       
 

 

 

**
0 *

1 * *

* 2
1 *
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1 1
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i i
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f b x
w R x x N x x x

b b
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w x

b






        

 




 (22) 

Очевидно, что при каждом значении *b  система (22) будет иметь решение, 

однако оно будет удовлетворять условию (18) только при определенном значении 

*b .  

Условие (18) с учетом выражения (20) записывается в виде: 
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 

 
   
   

0, 0.5
*

* 1,0.52
1 1

12
1 0

2 1 1

n
i n

i i i n i

x T

n x x T x



 


   

 
  (23) 

Подбором *b , по методу деления отрезка пополам, добиваемся удовлетворения 

условия (23) и находим искомое значение *b .  

После определения величин   * 1,ix i n  , контактное давление под штампом 

определится по формуле: 
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  (24) 

Очевидно, что при * 1b   и выполнении условия (23), т.е. при определенном 

значении внешней силы maxQ , контактное давление на границе зоны контакта 

обращается в ноль. Если же * 1b   и maxQ Q , то контактное давление 

определяется формулой  
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 
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

 


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 
  (25) 

где   * 1,ix i n   решение системы (22) при * 1b  . 

 
2.1 Численный анализ. Расчеты проводились для штампа с параболическим 

основанием, задаваемым формулой   20.1f    . Численный анализ сходимости 

решения показал, что даже при достаточно малой толщине слоя 0.1h  , когда в 

большей степени проявляется влияние регулярного ядра, значения *b , найденные 
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при 8n   и 16n   с обеспечением выполнения условия (23) до порядка 910 , 

отличаются друг от друга на величину порядка 510 . Расчеты, проведенные для 
заданного значения внешней силы Q  по описанной выше процедуре, оказались 

сильно времязатратными.  
Для построения зависимости между приложенной силой Q  и радиусом зоны 

контакта *b , целесообразно применить следующий подход: задать значение *b , 

решить систему из первых n  уравнений системы (22) вместе с уравнением (23) и 
затем из последнего уравнения системы (22) найти соответствующее значение силы 
Q . 

На фиг. 2 приведены графики зависимости между приложенной силой Q  и 

радиусом зоны контакта *b , рассчитанные для разных значений толщины слоя. У 

правого конца каждой кривой приведено то значение силы maxQ , когда основание 

штампа полностью контактирует с основанием, но концентрации напряжений у 
границы пока нет.  

Фиг. 2. Кривые зависимости Q - *b  при разных значениях толщины h . 

 
На фиг. 3 приведены графики зависимости между приложенной силой Q  и 

осадкой штампа * , рассчитанные для тех же значений толщины слоя. Графики 

обрываются на соответствующих значениях maxQ . Для выяснения закономерности 

поведения кривой для maxQ Q  были проведены расчеты осадки штампа в случае, 

когда на границе зоны контакта контактное давление обращается в бесконечность. 
Выяснилось, что кривые плавно продолжаются, не претерпевая никаких изменений 

при переходе через значение maxQ . 

На Фиг.4 представлены кривые распределения контактного давления при разных 

значениях внешней силы max0.02;0.07; 0.1985;0.35Q Q  , когда 0.5h  . 
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Фиг. 3. Кривые зависимости * – Q  при разных значениях толщины h . 

 

Фиг. 4 Распределение контактного давления 
 

На фиг.5 представлены зависимости предельной силы maxQ  и соответствующей 

ей осадке штампа *max  от толщины слоя h . 

 

 Фиг. 5 Кривые зависимости maxQ – h  и *max – h . 
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Заключение. Возможно впервые построена квадратурная формула для вычисле-
ния интеграла с ядром, являющимся разрывным интегралом Вебера-Шафхейтлина 
достаточно общего вида. Метод механических квадратур на основе построенной 
квадратурной формулы опробирован на решении осесимметричной контактной 
задачи о вдавливании гладкого штампа с неплоским основанием в упругой слой, 
закрепленный по нижней грани. Эффективность метода проявляется в возможности 
подробнейшего численного анализа, представленного в виде графиков на Фиг. 2-5. 
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