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This paper focuses on analyzing methods for solving the trajectory construction problem: an existing approach - 
the Kalman filter and an alternative algorithm we developed. This approach aims to understand their underlying 
mechanisms and evaluate their effectiveness, advantages, and potential limitations when working with real IMU 
data. 
 

Միկիլյան Մ., Տոնոյան Վ. 

Գետնի վրա շարժվող օբյեկտի հետագծի որոշման նոր մոտեցում՝ հիմնված IMU տվյալների վրա 

 

Հիմնաբառեր՝ IMU տվյալներ, GPS տվյալների բացակայում, Կալմանի ֆիլտր, տվյալների զտում, 

գետնի վրա շարժվող օբյեկտի հետագիծ 

 

Ներկայացված աշխատանքի նպատակը գետնի վրա շարժվող օբյեկտի հետագծի կառուցման 

խնդիրը լուծելու մեթոդների համեմատական վերլուծությունն է, որը կատարված է գիտական 

գրականության մեջ լայնորեն հայտնի Կալմանի ֆիլտրի և մեր կողմից մշակված այլընտրանքային 

ալգորիթմի հիման վրա: Այս մոտեցման նպատակն է հասկանալ կիրառված մեթոդների հիմքում 

ընկած մեխանիզմները և գնահատել դրանց արդյունավետությունը, առավելությունները և հնարավոր 

սահմանափակումները՝ իրական IMU (Իներցիոն չափման միավոր) տվյալների հետ աշխատելիս: 

В данной работе анализируются методы решения задачи построения траектории, используя известный 
фильтр Калмана и разработанный нами альтернативный алгоритм. Целью данного подхода является 
понимание их базовых механизмов и оценка их эффективности, преимуществ и потенциальных 
ограничений при работе с реальными данными IMU (Инерциальный Измерительный Блок). 
 

Введение. Задача математического моделирования и оценки траектории 
движущегося объекта является неотъемлемой составляющей более крупных задач 
слежения и распознавания движущихся объектов, сопровождения целей. Без 
сомнения, указанная задача является актуальной и важной областью научных 
исследований. В последние годы наблюдается активное развитие технологий 
автономного управления, систем мониторинга и навигации. Задача отслеживания 
траектории движения объектов в пространстве становится всё более актуальной в 
самых разных областях: от логистики и транспорта до робототехники, авиации и 
даже бытовых электронных устройств. 

Одной из важнейших задач в таких системах является определение текущего 
положения и ориентации объекта, то есть его траектории. В большинстве совре-
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менных решений для этого используется система глобального позиционирования 
(GPS). Однако, когда использование GPS невозможно или затруднено, задача 
определения положения и ориентации движущегося объекта становится более 
важной.  

Для этих целей используются инерциальные измерительные устройства (IMU) – 
сенсоры, которые фиксируют также линейные ускорения и вращение объекта. С их 
помощью можно, теоретически, восстановить полную траекторию движения объекта, 
даже без внешних источников навигации. Однако такой подход сталкивается с рядом 
трудностей. Накапливающиеся ошибки, шумы и дрейфы, особенно при двойном 
интегрировании ускорений, могут быстро привести к сильным отклонениям от 
реальной траектории. Поэтому ключевую роль в системах навигации на базе IMU 
играют алгоритмы фильтрации и оценки состояния, способные минимизировать 
ошибки и стабилизировать расчёты. 

В научной литературе [1-5] и математической практике [8-11] активно изучаются 
гибридные модели. Гибридная модель - это математическая модель процесса или 
явления, основанная на сочетании различных математических объектов. Гибридные 
системы - математические модели систем управления, в которых “непрерывная 
динамика, порождаемая в каждый момент времени одной из априорно заданного 
набора непрерывных систем, перемежается с дискретными операциями, подающими 
команды либо на мгновенное переключение с одной системы на другую, либо на 
мгновенную перестройку с заданных текущих координат на другие координаты, либо 
на то и другое одновременно”. Таким образом, решение задачи для нелинейной 
системы может быть заменено решением такой же задачи для гибридной системы. 
Гибридные системы встречаются в прикладных областях электроэнергетики, 
авиастроения, автомобилестроения, обеспечения безопасности движения. 

В этой связи особый интерес представляют алгоритмы фильтрации, не требующие 
большого количества вычислительных ресурсов, но при этом обеспечивающие 
надёжную работу в реальном времени. Одним из таких алгоритмов является фильтр 
Калмана [1,7], разработанный специально для обработки числовых данных. Он 
использует методы градиентного спуска и работу с углами Эйлера или 
кватернионами в упрощённой двумерной модели, что позволяет с высокой 
точностью определять ориентацию объекта на основе доступных измерений. 

В современных исследованиях [12-17] особое внимание уделяется также 
адаптивным методам, способным своевременно обнаруживать момент изменения 
режима движения и перестраивать модель в соответствии с новой динамикой 
объекта. Это особенно важно в задачах автономного вождения и робототехники, где 
даже незначительная ошибка в оценке положения может привести к серьёзным 
последствиям. Таким образом, проблема построения точной, адаптивной и 
эффективной системы оценки траектории на основе IMU является актуальной и 
практически значимой.  

Целью данной работы является: изучение алгоритма фильтра Калмана и его 
практическое применение для вычисления траектории движения наземного 
транспорта; представление нового алгоритма построения траектории движения 
наземного транспорта, а также вычисление длины пройденной траектории; сравнение 
результатов этого алгоритма с уже существующими решениями данной проблемы, 
такими как фильтр Калмана. Планируется рассмотреть теоретические основы работы 
с IMU, разобраться в математических моделях движения, способных на основе углов 
поворота и ускорений восстанавливать траекторию движения объекта во времени. 
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В данной работе делается упор на анализ методов решения задачи построения 
траектории: уже существующего подхода - фильтра Калмана и альтернативного, 
нами выведенного алгоритма, с целью понять их внутренние механизмы, оценить их 
эффективность, преимущества и возможные ограничения при работе с реальными 
IMU-данными. В рамках работы был разработан альтернативный подход к 
определению траектории движения наземного объекта, позволяющий также 
оценивать пройденное расстояние. Ключевая особенность предложенного метода 
заключается в использовании модифицированной формулы, основанной на 
преобразовании формулы усиления, которая внедряется на одном из этапов 
алгоритма. Согласно общепринятым научным представлениям, для подавления шума 
в данных ускорения эффективно применять фильтр нижних частот, в то время как к 
ориентационным данным на основе углов Эйлера подходит фильтрация верхних 
частот. После этого ускорения пересчитываются с учетом текущей ориентации с 
помощью матрицы поворота. На основании этих скорректированных данных 
проводится двойное интегрирование, в результате чего вычисляются координаты и 
расстояние. Однако, как показано как в научных публикациях, так и в ходе 
собственных экспериментов, такой подход подвержен значительным ошибкам, в 
особенности из-за накопления дрейфа при расчете скорости. В этой статье 
предлагается метод фильтрации данных ускорения, чтобы сделать данные ускорения 
доступными для интегрирования. 
 
Модель траектории движения объекта. Модели движения являются простым типом 
предиктора и довольно распространены среди простых систем. Цель моделей 
движения — предсказать следующую позицию на основе ряда прошлых наблюдений. 
Они могут не использовать ускорение и могут быть выражены как 

     1 ,s t s t v t t     

где t  – текущеe время,   1s t   - ожидаемое положение на следующем временном 

шаге,  s t  - положение на текущем временном шаге, а  v t  - скорость на текущем 

временном шаге. Для простейшей реализации, 

     1
1 .

s t s t
v t

t

 
   

Предположим, что выбор данных начинается в момент времени 0t . Интегрируя 

полученные данные, получим расчетное соотношение между перемещением  s t , 

скоростью  v t  и ускорением  a t  в области непрерывного времени: 

     
0

0

t

t

s t v d s t    (1) 

     
0

0

t

t

v t a d v t    (2) 
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где  0s t  – накопительное смещение от 0 до 0t ,  0v t  – скорость движения 

системы при 0t . Так как выходные из IMU данные являются дискретными, то вместо 

формул (1) и (2) должны воспользоваться квадратурными формулами, например, 

формулой трапеции. Принимая  0 0s t   и  0 0v t  , для  s t  получим: 

               

     

0

0 1 1 2
1 0 2 1

1
1

...
2 2

2

t

t

N N
N N

v t v t v t v t
s t v d t t t t

v t v t
t t



 
        


 


 (3) 

Предполагая, что 1 0 2 1 1... N Nt t t t t t t        , то при 1N   получим 

     1

1 2

N
k k

k

v t v t
s t t




   (4) 

В дискретной области уравнение (4) принимает вид: 

     
1

1

2

N

k

v k v k
s N t



 
   (5) 

когда 1N  , таким образом, 

            

      
1

1 1
0 0

2 2

1 2 ... 1

N

k

a k a k
v N t v a a N t

a a a N t



 
      

     


 (6) 

            

      
1

1 1
0 0

2 2

1 2 ... 1

N

k

v k v k
s N t s v v N t

v v v N t



 
      

     


 (7) 

Тогда, смещение объекта по одной оси представится в виде: 
 

             

    

2

2

0 1 1 2 2 ... 1

1
0

4

s N N v N a N a v N t

a a N t

              

  
 (8) 

Таким образом, после получения начального ускорения от IMU и вычисления 
скорости, по формуле (8) вычисляется смещение. Однако, для больших N , 
применение этого уравнения приводит к огромной вычислительной нагрузке на 
систему компьютера, поскольку системе необходимо выделять огромные источники 
памяти для хранения данных ускорения с момента времени от 0 до N . Кроме того, 
система должна повторить все предыдущие расчеты относительно ускорений, чтобы 
обновить смещение движения объекта. 

Из уравнения (6) получим 
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       1
1

2

a N a N
v N v N t

 
     (9) 

       

       2

1
1

2
1

1 1
4

v N v N
s N s N t

v N t a N a N t

 
    

      
 (10) 

Уравнения (9) и (10) представим в виде: 

       1
1

2

a N a N
v N v N t

 
     (11) 

       

         2

1
1

2
1

1 1 1
4

v N v N
s N s N t

s N v N t a N a N t

 
    

        
 (12) 

Из формул (11) и (12) получим, что скорость объекта  v N  и перемещение 

движения  s N  можно вычислить рекурсивно. IMU дает данные ускорений xa , ya  

и za  на x , y  и z  декартовых осях. На основании уравнения (11), скорость объекта 

вдоль x , y  и z  осей представляются формулами: 

       
2

x x
x x

a t a t t
v t v t t t

 
     (13) 

       
2

y y
y y

a t a t t
v t v t t t

  
       (14) 

       
2

z z
z z

a t a t t
v t v t t t

 
      (15) 

Скорость объекта в трехмерном пространстве вычисляется по формуле: 

       x y zv t v t v t v t    (16) 

Аналогично, перемещение объекта вдоль осей X , Y  и Z  – представляется в 
форме: 

           21

4x x x x xs t s t t v t t t a t t a t t          (17) 

           21

4y y y y ys t s t t v t t t a t t a t t           (18) 

           21

4z z z z zs t s t t v t t t a t t a t t           (19) 

В интервале времени  ,t t t , перемещение объекта в пространстве равно: 
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                22 2

x x y y z zs t s t s t t s t s t t s t s t t           (20) 

Итак, в момент времени t , пространственная координата объекта равна 

      , ,x y zs t s t s t . В пространственной системе координат траекторию объекта 

можно построить, соединив все точки пространственных координат из 0t  до Nt . 

Поскольку система слежения основана на двойном интегрировании ускорения, то 
ошибки измерений IMU приводят к неверным результатам интегрирования и 
накопленному смещению во время интегрирования. Даже минимальные ошибки 
измерений приведут к огромным ошибкам вычислений, что приведет к низкой 
точности результатов отслеживания.  
 
Основная идея фильтра Калмана. Три последовательных вращения координат 
могут описать любое вращение. Рассмотрим тройные повороты, в которых первый 
поворот представляет собой угол   вокруг оси z  , второй поворот представляет 

угол    вокруг оси y , а третий поворот - угол   вокруг оси x . Не вдаваясь в 

подробности, расположим эти углы в трехмерном векторе, называемом вектором 

углов Эйлера и определяемым вектором  , ,
T   . Функция, которая сопоставляет 

вектор углов Эйлера с соответствующей матрицей вращения имеет следующий вид 

       , , ,zyx z y xR R R R        (21) 

где 

   

 

1 0 0 cos 0 sin

0 cos sin , 0 1 0 ,

0 sin cos sin 0 cos

cos sin 0

sin cos 0 .

0 0 1

x y

z

R R

R

    
            
          

   
     
  

 

Известно [6,7], что если 3b R  – вектор в мировых координатах и 3a R  – тот 
же вектор, выраженный в координатах, фиксированных на теле, то выполняются 
следующие соотношения: 

 , ,zyxa R b     (22) 

 или 

 , ,
T

zyxb R a    . (23) 

Основная идея фильтра Калмана заключается в оптимальной оценке состояния 
динамической системы, используя серию наблюдений, которые могут быть 
подвержены случайным ошибкам (шумам). Это достигается за счет комбинирования 
предсказаний системы и реальных измерений, чтобы минимизировать ошибку 
оценки. Метод используется в случае, когда наблюдения могут быть неполными или 
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неточными, а также когда система подвергается случайным изменениям, что делает 
традиционные методы недостаточно точными. 

Фильтр Калмана работает с динамическими системами, которые могут быть 
описаны линейными уравнениями состояния и наблюдения. Система описывается 
следующими уравнениями: 

1. Уравнение состояния: 

1k k k k k kx A x B u w   . (24) 

где: 

kx  -  вектор состояния системы на шаге k, 

kA  - матрица перехода состояния, описывающая, как состояние системы 

изменяется во времени, 

kB  - матрица, учитывающая влияние управляющих воздействий ku , 

kw  - шум процесса, представляющий случайные изменения в системе (обычно 

предполагается, что kw  имеет нормальное распределение с нулевым средним и 

ковариационной матрицей kQ ). 

 
2. Уравнение наблюдения: 

k k k kz H x v  . (25) 

где: 

kz  - вектор наблюдений на шаге k, 

kH  - матрица наблюдения, которая связывает состояние системы с наблюдаемыми 

величинами, 

kv  - шум наблюдений, также предполагающий нормальное распределение с нулевым 

средним и ковариационной матрицей kR . 

 
3. Прогнозирование 

На каждом шаге фильтра выполняется прогноз состояния и ковариации ошибки: 

1

1

ˆ ˆk k k k k

T
k k k k k

x A x B u

P A P A Q







 

 
. (26) 

где 

ˆkx  - предсказанное состояние, 

kP

 
- предсказанная ковариация ошибки. 

 
4. Коррекция: 

Когда становятся доступны новые данные kz , фильтр корректирует предсказание, 

используя формулу обновления: 
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 
 

 

1

ˆ ˆ ˆ

T T
k k k k k k k

k k k k k k

k k k k

K P H H P H R

x x K z H x

P I K H P

 

 



 

  

 

. (27) 

где 

kK  - матрица усиления (или коэффициент Калмана), которая контролирует 

насколько сильно обновление влияет на оценку состояния, 
ˆkx

 
- итоговая оценка после коррекции, 

kP  - ковариация ошибки после коррекции. 

 
Фильтр Калмана минимизирует ошибку состояния, основанную на предсказаниях 

и реальных измерениях, и адаптируется к изменяющимся условиям. Это делает его 
мощным инструментом для применения в задачах, где необходима высокая точность 
и надежность в условиях неопределенности и шума, например, в навигационных 
системах, робототехнике и динамическом управлении. Однако важным недостатком 
фильтра Калмана является  
 при решении задач позицирования нужно иметь два источника данных. Так как 

мы рассматриваем случай, когда второго источника (например, GPS) нет, то этот 
фильтр, который детально исследован в литературе, невозможно применить. 
Поэтому, для фильтрации данных нами выведена формула и произведены 
десятки тестов для проверки полученной формулы, 

 огромное количество арифметических операций, которое приводит к 
замедлению полученых результатов. В связи с этим возникает вопрос выработки 
нового вычислительного метода, который дает нужный результат, используя 
значительно меньшее количество арифметических операций. 

 
 
Основная идея разработанного метода. Фильтрация данных. Одной из 

важных особенностей, которую необходимо учесть, это то, что используемые 
алгоритмы фильтрации не могут быть слишком сложными, чтобы процессор 
компьютера не замедлялся. Фильтры обычно используются для стабилизации 
данных, повышения точности и удаления шума. Датчик, который подвергается 
вибрации или электромагнитным силам, может выдавать неверный выходной сигнал 
и делать собираемые им данные непригодными для использования.  

В литературе известны фильтры нижних и верхних частот [10,11]. Принцип 
работы фильтра нижних частот заключается в реализации фильтра нижних частот на 
показаниях акселерометра и фильтра верхних частот на гироскопе с последующим 
объединением отфильтрованных данных. Задача фильтров нижних частот - 
отфильтровывать слишком высокие сигналы и пропускать только частоты ниже 
выбранного числа, фильтры верхних частот делают противоположное относительно 
данных гироскопа. Это означает, что фильтр верхних частот пропускает только 
частоты выше выбранного числа, что делает фильтр нижних частот дополнением к 
фильтру верхних частот.  
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Рис.1. Схема работы фильтра нижних и верхних частот  

 
 
В настоящей работе предложен новый подход к построению фильтра данных на 

основе фильтров нижних и верхних частот. С целью уменьшения помех, которые 
возникают при передачи данных с IMU датчика на контроллер, пропустим 
полученный сигнал акселерометра через фильтры, описание которых приведено 
ниже.  

При применении фильтра нижних и верхних частот, важным является вычисление 
частоты среза (cut-off frequency). Частота среза фильтра - это частота, на которой 
затухание сигнала достигает определенного минимального значения, или составляет 
1/√2 (≈ 0,71) в линейном масштабе. То есть амплитуда сигнала на частоте среза 
составляет 71% от входного значения.  

Так как при вычислениях используются несколько (в основном три по трем 
координатным осям) наборов данных акселерометра, то при обработки данных по 
каждой оси и по каждому направлению в фильтре нижних частот выбираем 
минимальное значение частоты пакета данных. Основываясь на многочисленных 
опытax и тестовых данных, выведена формула вычисления частоты среза, которая 
имеет следующий вид 

     cut_off min Re max_ peak , Re max_ peak ,Re max_ peak ,x y z  (28) 

где max_ peak i  – максимальное из значений данных в координатных направлениях 

, ,i x y z .  

После переходим к вычислению параметра усиления p . Этот коэффициент 

вычисляется следующей формулой, которая выведена на основе многочисленных 
тестовых примеров, при которых расчеты показывали, что она дает приемлемый 
результат и отличается от соответствующей формулы метода Калмана своей простой 
формой и незначительным количеством арифметических операций. 
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 p ,
2

N M


    (29) 

где N - число отсчетов, M  - максимум среди минимальных амплитуд ускорений по 
трем направлениям.  

Для анализа выведенной формулы рассмотрены конкретные данные. Применяя ее 
относительно собранных многочисленных данных, и, для сравнения, применяя 
относительно этих данных формулы (1)-(19) и сравнивая с реальными результатами, 
выяснилось, что, например, если реальный путь движущегося объекта составляет 6.1 
км, то численные расчеты дают примерно 5.5км, то есть разница составляет не более 
600 метров, т.е примерно 10%. Для сравнения отметим, что в работах [1,2] отмечено, 
что при соответствующих расчетах погрешность фильтра Калмана составляет 13%.  

 
 

 

 
 

Рис.2. Данные ускорения по трем координатным направлениям до и после 
фильтрации 
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На рис.2 приведены графики данных, полученных из IMU датчика и 
обработанных приведенным методом. Судя по рис.2, ускорение колеблется 
случайным образом с максимальным значением в 1 м/с2. Это означает, что объект 
имеет максимальное смещение на 1 м, даже когда он неподвижен. А это значит, что 
независимо от точности вычислений, ошибки и шум будут оказывать большое 
влияние на точность системы отслеживания. Для устранения шума и повышения 
точности применили полученную формулу, после чего данные ускорения можно 
будет использовать для интегрирования. После фильтрации данных ускорений, их 
приводим к глобальной системе координат по формулам (20)-(23). 

Кроме того, разработан также способ сглаживания скорости, убирания дрейфа и 
высокочастотных шумов. Результат приведен на рис.3, который показывает, что 
соответствующий результат, полученный методом Калмана (24)-(27), не устраняет 
явление дрейфа. 
 

 

 
 

Рис.3. Исключение дрейфа 
 
 

После фильтрации данных и исключения дрейфа на основе тестовых данных по 
формуле (19) построены траектории наземного транспорта на плоскости и для 
сравнения приведены соответствующие пути из Google Map. Нужно отметить, что 
так как одной из целей разработанного метода было использование минимального 
количества данных IMU и при расчетах угловые скорости не были учтены, то 
ориентация построенных графиков может не совпадать с ориентацией пути на карте. 
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Рис.4. Построение траектории и их сравнение с реальными на карте 
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Пошаговое описание метода. 
  
 Масштабирование. Переход из координатной системы на теле к глобальной с 

использованием углов Эйлера.  
 Преобразование Фурье относительно ускорений. Находим, из каких частотных 

компонент состоит сигнал в каждом направлении.    
 Спектральная фильтрация. Обнуляются низкочастотные составляющие спектра 

(подавление "дрейфа" и шумов низкой частоты). 
 Обратное преобразование Фурье. Преобразуем очищенный сигнал обратно во 

временную область.   
 Зануление первых отсчетов. Устраняется начальный шум после фильтрации. 
 Обрезка интервала. Убираем начальное время, т.е. время, когда объект 

трогается, разгоняется и т. д., так как в это время дрейфа очень много из-за 
больших колебаний.  

 Оценка максимальных пиков (колебаний). Cut-off выбирается как 0.75 от 
максимального ускорения. Мы их удаляем. Вычисления показывают, что 0.75 
лучший коэффициент на статистической основе.  

 Проектирование фильтров High pass/low pass. Проектируются фильтры, 
характеризуется максимально гладкой амплитудно-частотной характеристикой в 
полосе пропускания.  

 Разделение сигнала на низкочастотные и высокочастотные составляющие. 
 Вычисление параметра усиления. Вычисляется коэффициент смешивания на 

основе минимальной амплитуды спектра. 
 Смешивание низкочастотных и высокочастотных частей. Восстанавливается 

сигнал с учетом вклада этих частот. 
 Переход к глобальной системе координат. Применение матриц вращения. 
 Интегрирование ускорений для получения скоростей. Используются формулы 

(1)-(19). 
 Фильтрация скоростей. Сглаживание скоростей, убирание дрейфа и шумов. 
 Коррекция скоростей. Устраняется накопленная ошибка в интегрировании.      
 Вычисление пути. Интегрируются скорости по формулам (1)-(19), чтобы 

получить пройденный путь. 
 Расчет длины пройденного пути и построение графиков. 

 
 

Основные результаты. Можно отметить, что траектория, рассчитанная 
предложенным методом, визуально совпадает с маршрутом, отображённым на карте. 
Кроме того, итоговое значение пройденной дистанции соответствует ожидаемому и 
погрешность составляет не больше 8%. Это позволяет заключить, что 
представленный подход обеспечивает не только высокую точность, но и 
демонстрирует лучшую производительность по сравнению с решением, полученным 
на основе традиционного фильтра Калмана. 

Предложенный нами метод демонстрирует лучшие характеристики по сравнению 
с фильтром Калмана, особенно в плане скорости обработки и устойчивости к 
ошибкам. В отличие от фильтра Калмана, наш алгоритм не требует построения 
сложных математических моделей, что значительно упрощает его реализацию и 
ускоряет работу. Кроме того, в отличие от простых фильтров вроде low-pass и high-
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pass, наш подход позволяет эффективно бороться с дрейфом, не теряя важных 
деталей движения. Благодаря предварительной очистке данных от смещений до 
интегрирования, удаётся повысить точность восстановления траектории и снизить 
влияние накопленных погрешностей. 
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