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Plane in the Presence of Static Friction 

 
Key words: mixed boundary value problem, interphase rigid inclusion, static friction 

The plane stress state of a piecewise homogeneous plane consisting of two heterogeneous half-planes with an 
interphase finite inclusion subjected to normal and horizontal loads applied at a certain point is considered. It is 
assumed that, in addition to normal pressure, static shear contact stresses also act on the long sides of inclusion. The 
jumps in normal and shear stresses are associated with the generalized law of dry friction, the coefficient of which 
is a linear function of the coordinates of the touching points of the contacting surfaces. A governing singular integral 
equation of the second kind with variable coefficients is derived. The exact solution is constructed. 

 
Հակոբյան Վ.Ն., Ամիրջանյան Հ.Ա., Խաչիկյան Ա.Ս. 

Հանգստի շփման առկայության դեպքում բարակ, բացարձակ կոշտ միջֆազային ներդրակի և կտոր 

առ կտոր համասեռ հարթության կոնտակտի վերաբերյալ 

 

Հիմնաբառեր: խառը եզրային խնդիր, կոշտ միջֆազային ներդրակ, հանգստի շփում 

 

Դիտարկված է երկու տարասեռ կիսահարթություններից կազմված կտոր առ կտոր համասեռ 

հարթության հարթ դեֆորմացիոն վիճակը, երբ այն պարունակում է վերջավոր միջֆազային ներդրակ 

և դեֆորմացվում է ներդրակի որևէ կետում ազդող նորմալ և հորիզոնական կենտրոնացած բեռների 

ազդեցության տակ: Ենթադրվում է, որ ներդրակի երկար կողմերին, բացի նորմալ ճնշումից, 

առաջանում են նաև հանգստի շոշափող լարումներ, որոնց թռիչքները կապված են նորմալ լարումների 

թռիչքների հետ չոր շփման օրենքով, որի գործակիցը գծային ֆունկցիա է կոնտակտի մեջ մտնող 

կետերի կոորդինատներից: Ստացված է խնդրի որոշիչ հավասարումը փոփոխական գործակիցներով 

երկրորդ սեռի սինգուլյար ինտեգրալ հավասարման տեսքով և կառուցված է նրա փակ լուծումը:  

 
Рассмотренo плоско-деформированное состояние кусочно-однородной плоскости, состоящей из двух 

разнородных полуплоскостей с межфазным конечным включением, находящимся под воздействием 
нормальной и горизонтальной нагрузок, приложенных в некоторой его точке. Считается, что на длинных 
сторонах включения помимо нормального давления действуют также касательные контактные напряжения 
покоя и скачки нормальных и касательных напряжений взаимосвязаны по обобщённому закону сухого 
трения, коэффициент которого является линейной функцией от координаты соприкасающихся точек 
контактирующих поверхностей. Получено определяющее сингулярное интегральное уравнение второго 
рода с переменными коэффициентами и построено его точное решение.  
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Введение  
Изучению контактного взаимодействия абсолютно жёстких штампов и включений 

с различными однородными и составными деформируемыми основаниями посвящено 
огромное количество работ. Получены замкнутые и эффективные решения ряда 
эталонных задач в этом направлении, имеющие важное теоретическое и практическое 
значение. В монографиях [1-5] подытожены многие результаты, полученные в этом 
направлении. С другой стороны, известно, что напряжения, возникающие вблизи 
межфазных тонких остроугольных включений, находящихся на линиях стыка 
разнородных материалов в кусочно-однородных деформируемых телах у концевых 
точек включений имеют осциллирующие особенности, что, как и в контактных 
задачах с учётом полного сцепления, противоречит сути поставленных задач. В случае 
задач контактного взаимодействия штампа с плоским основанием и упругой 
полуплоскости для устранения этого дефекта Л.А. Галиным [6], А.В. Саакяном [7] и 
нами [8] были предложены новые модели контакта. В работе А.В. Саакяна [9] проведен 
сравнительный анализ этих трех моделей. Подобных исследований для межфазных 
включений, насколько нам известно, пока нет. Распространение модели контакта 
Л.А.Галина для модели межфазных включений приводит к сложным соотношениям, 
которые не допускают аналитических решений.  

Исходя из этого, предлагается модель контакта для межфазных включений с 
учётом трения покоя, которая не имеет указанный дефект и позволяет построить 
замкнутое решение поставленной задачи.  

 
О классической модели тонкого абсолютно жёсткого межфазного включения 
Сначала приведем решение задачи о взаимодействии кусочно-однородной 

плоскости и абсолютно жёсткого межфазного остроугольного включения, 
находящегося на линии стыка двух полуплоскостей из различных упругих материалов 

с коэффициентами Ламе 1 1,   и 2 2,   соответственно и полностью сцеплённого с 

матрицей. При этом полагаем, что кусочно-однородная плоскость находится в 
состоянии плоской деформации и отнесена к декартовой системе координат Oxy , ось 

абсцисс которой проходит вдоль линии стыка разнородных полуплоскостей, а 

включение размещено на интервале  ,a a  оси абсцисс и находится под влиянием 

нормальной и горизонтальной сосредоточенных нагрузок величины 0P  и 0T  

соответственно, приложенных к включению в некой внутренней точке 0x  (Фиг.1).  

Условия контакта включения с плоскостью в рассмотренном случае можно 
записать в виде: 

 

       

2(1) (1) (2)

1 2 1 2

( ,0) ( ,0), ( ,0) ( ,0)

( ,0) ( ,0), ( ,0) ( ,0)

y y xy xyx x x x
x a

u x u x v x v x

      
 

  (1a) 

1 2 1

1 2 2

( ,0) ( ,0)

( ,0) ( ,0)

v x v x x
x a

u x u x

    
   

  (1b) 

Здесь ( , )ju x y  и  ( , ) 1,2jv x y j   соответственно горизонтальные и нормаль-

ные составляющие вектора смещений точек разнородных полуплоскостей, 1  и 2 – 
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нормальное и горизонтальное жёсткие смещения включения , а   – угол поворота 

включения. 
 

Фиг. 1 
 
 
Следует отметить, что указанная задача в общей постановке, когда на берегах 

межфазной трещины заданы смещения, впервые была рассмотрена Черепановым в 
работе [10], где её решение было сведено к решению задачи сопряжения. 

Здесь же, для решения краевой задачи (1) будем использовать разрывные решения 
уравнений теории упругости для кусочно-однородной плоскости с трещиной, 
приведенные в [5]. Эти решения удовлетворяют условиям (1a) и определяют 

компоненты напряжений    ,j
y x y ,      , 1, 2j

xy x y j   и производные от 

смещений точек разнородных полуплоскостей на линии их стыка через скачки 

нормальных и касательных напряжений  x ,  x и дислокации смещений на 

длинных сторонах включения. Так как в рассматриваемом случае дислокации 
смещений равны нулю, то  

   

   

               

0 1
1 2

0 1
1 2

2 1 2 1

( )
,0 ,0 ( ) ;

( )
,0 ,0 ( ) ,

,0 ,0 ( ); ,0 ,0 ( ),

a

a

a

a

y y xy xy

d d s
v x v x x ds

s x

d d s
u x u x x ds

s x

x x x x x x





     
  

    
  

        



  (2) 

где  

   

   

1 0 2

1 0 2
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( )
,0 ( ) ;

a

y

a

a
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a

l l s
x x ds
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x x ds

s x






   

  


   

  




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       
 

 
   

 
           

21 2 1 2
1 1 2 2

0 1 1

2 2
1 2 1 2

2 2 2 1 1

, , ,
2 2 3

2
, 1, 2

3

j j

j j

j j jj

j j

d d

j

   
   

  

   
         

  

 

                     1 1 2 1 1 2 1 2 1 2
0 2 2 2 1 1 1 2 1 2 2 1;l l              .  

При помощи третьей и четвертой формул (2) удовлетворив условиям (1b), после 
некоторых выкладок, для определения комплексной комбинации скачков напряжений 
на длинных сторонах включения, придём к следующему сингулярному интегральному 
уравнению второго рода: 

 *

( )
( ) ; ,

a

a

iq s ds
x i a x a

s x


      

    (3) 

при условиях равновесия включения 

   0 0 0; Re .
a a

a a

x dx Q x x dx x P
 

       (4) 

Здесь 

     
   

   

1 2
1 2 2

0 0 0 1 2
0 2 2

; ; 1
d

Q P iT x x i x q
d

 
         

 
 ;     *

0d


   . 

Не останавливаясь на деталях, приведём решение уравнения (3) при условиях (4). 
Оно может быть записано в виде:  

      0
* 2

1

g qQ
x x x i a

q
          

.  (5) 

где 
1

0
1

q
g

q


 


. 

При этом, приведённый поворот включения *  определяется через заданные 

нагрузки и координату 0x  точки приложения сосредоточенных сил по формуле: 

 
 
*

0 0 0 0

* 2

2 2 /

1 4

qP x T P

a

 
  

  
 . (6) 

Здесь 

       
 

1/2 1/2 2 1

1 2

æ æln 1
; ln ;

2 2 æ 1 æ

i i g
x x a a x

       
           

 

 *
0 0 1 2/ ; / ; æ 3 4 1,2 .j jx x a j          

Из (5) для скачков напряжений, действующих на длинных сторонах включения, 
получим выражения: 
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 
       

 

 
       

 

 

* 0 0 *

2 2

* 0 0 *

2 2

/ cos / 2 sin
;

1

/ sin / 2 cos
;

1

ln .

g x qP x qT a x
x

q a x

g x qP x qT a x
x

q a x

a x
x

a x

           
 

            
 

         

  (7) 

Отсюда, при помощи полученных значений скачков напряжений и разрывных 
решений можно определить комплексную комбинацию контактных напряжений на 
длинных сторонах включений по формулам: 

         

             

1 1 0 2 * 2
1

2 2
2 1

,0 ,0 ( )

,0 ,0 ,

y xy

y xy

ql l i l
x x i x x

q q

x x i x x x

 
       

 

       
  

Откуда 

     

   

     

   

1 0 2
1

2 0 2

1 0 2 * 2
1

2 0 2 * 2

,0 Re ( );

,0 1 ( );

,0 Im ( ) ;

,0 1 ( ) .

y

y

xy

xy

ql l
x x x

q

ql l
x x

q

ql l l
x x x

q q

ql l l
x x

q q


       

 
     

 
          

  
        

 

По этим формулам нетрудно установить, что контактные напряжения, как и скачки 
напряжений, в концевых точках включения имеют осциллирующую особенность.  
При этом 

     x f x x   , 

где  

 
       
       

* 0 0 *

* 0 0 *

/ sin / 2 cos

/ cos / 2 sin

x qP x qT a x
f x

x qP x qT a x

           
          

. 

Разложив функцию  f x  в ряд Маклорана, когда 0 0P  , и довольствуясь 

первыми двумя членами, получим 
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   

   

2 2*

0

2 20
*

0

2
1

22
1 4

Axx
f x A A O x

a qP

qTx xA
A O x

a qP a

         

            

  

где 

0 *

0

/ 2

/

qT a
A

qP

  



  

Отсюда видно, что когда горизонтальная нагрузка отсутствует и нормальная 

нагрузка приложена в средней точке включения, т.е. когда 0 0 0T x  , 

следовательно и * 0  , для функции  f x  получим представление 

   22 x
f x O x

a


   . 

 
Постановка задачи и вывод определяющих уравнений 

Рассмотрим задачу в несколько изменённой постановке. При этом, первое условие 
контакта включения с кусочно-однородной плоскостью в (1b) сохраняется. Второе же 
условие контакта, опираясь на выше полученные результаты, заменим двумя 

условиями      x f x x   и 1 2( ,0) ( ,0)u x u x , где как и выше функции  x

и  x соответственно скачки касательных и нормальных контактных напряжений, 

возникающих на длинных сторонах включения. При этом, коэффициент пропорцио-

нальности будем брать в виде линейного двучлена    1` 2 0 /f x f f x x a   , где 

1`f  и 2f – неизвестные постоянные, сумма которых равнa заданному числу f , кото-

роe мы условно назовём коэффициентом трения. Считаем также, что   1f x  . 

Тогда поставленную задачу можно сформулировать в виде следующей граничной 
задачи: 

 
1 2

1 2

( ,0) ( ,0)

( ) ( )

( ,0) ( ,0)

v x v x x

x f x x x a

u x u x

    
   
 

    (8) 

Требуется построить замкнутое решение поставленной задачи, изучить 
закономерности изменения контактных напряжений на длинных сторонах включения 
и угла поворота включений в зависимости от соотношений упругих характеристик 
полупространств, точки приложений сосредоточенных нагрузок и от величины 
коэффициента трения, а также провести сравнительный анализ решений граничных 
задач (1) и (8). 

Для решения поставленной задачи при помощи представлений (2), удовлетворив 
условиям (8), придём к следующей системе определяющих уравнений: 
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 

0 1 ( )
( ) ;

( ) ( ),

a

a

d d s
x ds

s x

x f x x


 
      

  


   (9) 

которую нужно рассматривать при условиях равновесия включения: 

     0 0 0 0; ; .
a a a

a a a

s ds P s s ds x P s ds T
  

            (10) 

Подставляя значение  x  из второго уравнения в первое придём к следующему 

определяющему сингулярному интегральному уравнению с переменными 
коэффициентами: 

  *

( )
( ) ,

a

a

q s
f x x ds

s x


   

    (11) 

где q  и *  – введённые выше обозначения. 

Для решения уравнения (11) при условиях (10) введём в рассмотрение анали-

тическую во всей комплексной плоскости разрезанной вдоль интервала  ,a a

комплексную функцию  z  по формуле 

   1

2

а

а

d
z

i z

  
 

   .    (12) 

Тогда, как и в [8], решение уравнения (11) можно свести к решению следующей 
задачи Римана с переменным коэффициентом: 

         *x G x x g x x a      ; (13) 

     *
*

( )
;

( ) ( )

f x iq
G x g x x a

f x iq f x iq

 
      

, 

решение которого записывается в виде [11,12]: 

     
    *

02

а

а

z g d
z C z

i z


  
   

     .     (14) 

Здесь 

  ( )1
e ,zz

z a
 


 ln1

( )
2

а

а

G d
z

i z

 
 

   , 
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знаки   над функциями означают их значения соответственно на верхнем и нижнем 

берегах интервала  ,a a , а 0C  – постоянная, подлежащая определению. Причем, 

так как   1G x   , то  

   
2 2

2 2

( ) ( ) 2 ( )
ln arg arg arg

( ) ( )

f x iq f x iqf x q
G x i G x i i

f x iq f x q

  
  

 
. 

При этом, как и в [10], нужно взять ту ветвь функции  G x , аргумент которой в 

точке x a   находится в интервале  0,2 . Следовательно, так как 1q  , то 

имеем [10]  

  2 2

2 ( ) ( )
arg arctg 2arctg

( )

qf x f x
G x

q f x q

   
         

.  

Далее, перейдём к определению неизвестных постоянных, входящих в (14). Для 
этого, используя поведение интеграла Коши на бесконечности, несложно установить, 

что в рассматриваемом случае по формуле (12) функция  z на бесконечности 

имеет следующее представление: 

       

 

2

2
0 0 0

1 1

2

1 1
,

2

а а

а а

z d O z
iz z

P x P O z
iz z



 



 
            

       

 
   (15) 

а по формуле (14) - представление 

     
   

 

*2 21

21
0

1 1
1

2

1
1 ,

а

а

g dc
z O z O z

iz z z

c
C O z
z z

 






                 
        


,   (16) 

где 

 
 

2 2
1 2

1 1 2 22
2 1 2

arctg arctg ln
2

f fa f q q f
c f f f

f q q q f f

                   
  

если 2 0f   и 

1
1

2
arctg

fa
c

q



       если     2 0f  . 
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Сравнивая поведения функции  z  на бесконечности по формулам (15) и (16), 

используя при этом условия (10), придем к соотношениям:  

 

*
0 0 0 0 0

1 2 1* *
0 0

* *
0 1 *0 0

0 * 0 0
0

/ /
; ;

1 1

; ; ,
2

T P x f f T P
f f f f

x x

a x cP x
C P x

i I a

 
   

 

          

   (17)  

где  

    

   
 

1

*
1 1 0 2 2

/ ; .
а а

а а

e dd
c c a I

f iq q f

 


 

  
  

     
   

Отсюда следует, что для исключения поворота включения, т.е. чтобы *  равнялся 

нулю, нормальную нагрузку нужно приложить в точке 0 1x c . В случае, когда 

0 0T  , т.е. когда горизонтальная нагрузка отсутствует, очевидно, что для 

исключения поворота включения нормальную нагрузку следует приложить в точке 

0 0x  . Тогда из первого соотношения (17) получим 1 0.f   Несложно проверить 

также, что при 1 0f   автоматически 1 0c  . 

Вычислим интеграл 0I . При больших значениях z  будем иметь: 

     2 2 2 1
1 1 2/ 2 / 2

z
z c z a c c O z

z
      


, 

где 

    

   
 

 

 

2
22 * 2 2 2 1 2

2 2 1 2 22
2

2 2 2
1 21

1 2 222 2
2 1 2

2 2

arctg arctg 2
2

arctg arctg ln 0
2

0 0

f fa f
c a c f q f f q qf

f q q

f fa f f q f q
f f f f

f q q f f q

c f

 
          

  
     
    
 

 

Следовательно, если взять замкнутый контур , содержащий интервал  ,a a , 

то справедливо соотношение [3] 

      2 2 2
1 1 2

1
/ 2 / 2

2

tdt z
z c z a c c

i t t z z

            . 
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Тогда, стягивая контур   на интервал  ,a a , используя соотношения Племеля-

Сохоцкого для интегралов Коши и учитывая, что  z  есть решение однородного 

уравнения (13), т.е.      x G x x    , получим: 

       
 

 
22

2 1
1 2 .

2 2

a

a

f x cq tdt x a
x c x c

x f x iqf t iq t t x 


 
            

  

Отсюда, при 0x   придем к равенству: 

    
22
1

0 22 2

a

a

cdt a
I c

qf t iq t


 
       
 . 

 Далее, учитывая, что в рассматриваемом случае  

 
    

   

1

2 2
,

xe f x iq
x

x q f x


 

 


    (18) 

для скачка нормальных контактных напряжений на длинных сторонах включения 
получим формулу: 

 
   
   

0 * 1 1

2 2

1 / expq P x c q x
x

x q f x

           
 

   (19) 

Здесь введены обозначения 

           1/2 1/2 1 ( )
; arctg ;

x x f x
x a x a x x

q

      


 

       
1

arctg / arctg /1
.

a

a

f t q f x q
x dt

t x


 

   

Определим также нормальные контактные напряжения на длинных сторонах 
включения. По формулам (2), используя уравнение (11), будем иметь  

       

       

2
1 2 * 20 0 2 2

2
2 2 * 20 0 2 2

,0 ( ) ;

,0 1 ( ) ;

y

y

f x l f x ll P f l
x x

q q a

f x l f x ll P f l
x x

q q a

  
           

  
            
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     

     

1 0 2 * 2

2 0 2 * 2

,0 ( ) ;

,0 1 ( ) .

xy

xy

l l l
x f x x

q q

l l l
x f x x

q q

  
        

  
         

 

Вычислим также производную от горизонтальных смещений под включением. 
Используя при этом уравнение (11), найдём: 

        20 2
1 2 0,0 ,0 1 ( ) .

d qf
u x u x f x x P f x

a
           

   (20) 

 В выше рассмотренном случае, когда на включение в точке 0x   действует 

только нормальная сосредоточенная нагрузка величины 0P , скачки нормальных и 

касательных контактных напряжений принимают следующие простые виды:  

 
 

   
 

 
   

0 1 2 0 1

2 22 2
2 2

exp exp
; .

/ /

q P x q f x P x
x x

x q f x a a x q f x a

          
    

 (21) 

 
Численные расчёты 

Проведены численные расчёты и сравнены графики безразмерных скачков нор-

мальных и касательных напряжений    * 0/x a ax P   ,    * 0/x a ax P   , 

действующих на длинных сторонах включения, определённые по классической 
модели полного сцепления и по предложенной здесь модели с учётом трения покоя 
при одинаковых значениях физико-механических и геометрических параметров. На 
фигурах 2 и 3 соответственно пунктиром приведены графики скачков безразмерных 
нормальных и касательных напряжений, определённых в рамках модели полного  

  
                         Фиг.2                                                                     Фиг. 3  
сцепления, а сплошными линиями графики тех же величин, полученные с исполь-
зованием предложенной здесь модели, при различных значениях параметра f . При 

этом для упругих характеристик разнородных полуплоскостей, сосредоточенных 
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нагрузок и приведённой координаты их точки приложения приняты следующие 

значения 1 20.3, 0.4, 2,      0 0/ 0.3,T P  и 
*
0 0.3x  . 

Из фигур видно, что графики безразмерных скачков нормальных напряжений, 
полученных по обеим моделям, очень близки и мало отличаются друг от друга. Что же 
касается скачков касательных контактных напряжений, то в рассматриваемом случае, 
самим близким к результату, полученному при полном сцеплении, получается в случае 
когда 0.28f  . 

 
Заключение 
Таким образом, в работе предложена модель контакта абсолютно жёсткого 

остроугольного межфазного включения с учётом трения покоя. В рамках этой модели 
выведено определяющее уравнение задачи в виде сингулярного интегрального 
уравнения второго рода с переменными коэффициентами и построено его точное 
решение. Получены простые выражения для контактных напряжений, действующих 
на длинных сторонах включения и горизонтальных смещений точек плоскости, 
соприкасающихся с включением. Проведён численный эксперимент и сравнены 
графики безразмерных скачков контактных напряжений, построенных при помощи 
моделей полного сцепления и с учётом трения покоя. Сравнение показало, что при 
надлежащем выборе коэффициента трения результаты, полученные обеими моделями, 
в основной части контактной зоны, не содержащей концевые точки зоны контакта, где 
контактные напряжения полученные в рамках классической модели полного 
сцепления осциллируют, мало отличаются друг от друга.  
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