2U8UUSULP abSNhE3NPULLG P U22USPL UYUNGUTUSE SENtUUShl
M3BECTUS HALIMOHAJIbHOM AKAJIEMHUM HAYK APMEHUN

Utkhumthju 77, Ned, 2024 Mexannka

YIK 539.3 DOI: 10.54503/0002-3051-2024.77.4-70

ON THE CHARACTER OF FORCED VIBRATIONS OF PLATES HAVING
A PLANE OF ELASTIC SYMMETRY
AghalovyanL.A., Aghalovyan M.L., Zakaryan T.V., Tovmasyan A.B.
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The spatial problem on forced vibrations of composite plates, having a plane of elastic symmetry, is solved.
It is considered that on the facial surface of the plate normal and tangential loads act, which change
harmonically over time, and the lower facial surface of the plate is rigidly fixed. For solving such type of
problems, the hypotheses of classical and refined theories of plates and shells are not applicable. A
fundamentally new asymptotics for the components of the stress tensor and the displacement vector was
established, which made it possible to find an asymptotic solution to the problem, which becomes
mathematically exact if the external loads are algebraic polynomials from tangential coordinates. The conditions
for the occurrence of resonance are derived. It is shown that in such a plate the vibrations are purely flat and
anti-flat (transverse). The amplitudes of these oscillations have been determined. The amplitudes of these
oscillations are determined. The conditions for the occurrence of resonance are derived, and the values of
resonance frequencies are determined.
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Aranossn JI.A.,Aranossn M.JL., 3akapsn T.B., ToBmacsu A.B.
O xapakTepe BbIHYKICHHBIX K0Je0aHMii NIACTHH HMEIOLHX IJIOCKOCTh YIPYroii CHMMeTPpUH

KiroueBble ciioBa: AHU30TPOITHAA TIaCTUHA, 3D KOHeﬁaHI/lﬂ, PE30HAHC, aCUMIITOTUYECKOC PEIICHUE.

Pemena IMPOCTPpaHCTBEHHAA 3aJla4ya O BBIHYXICHHBIX KOJICOAHUSIX KOMIO3UTHBIX TUTaCTHH, HUMEIOIIUX
TUIOCKOCTh pryFOﬁ CUMMETPHUH. CLIP[TaeTCﬂ, YTO Ha JIMIEBYIO NIOBEPXHOCTH IIJIACTUHBI HCﬁCTByIOT HOpMaJIBHBIE U
TaHICHIHAJIbHBIC HAarpy3KH, KOTOPBIC 110 BPEMEHHU U3MEHAKOTCA rapMOHUYECKH, a HUKHAA JIMIEBAask IMIOBEPXHOCTH
IUTACTHHBI KECTKO 3aKpenyeHa. Knaccuueckas u CYIIECTBYIOIIHUE yTO‘iHéHHbIC TEOpUU NJIIACTUH UL PELICHUS
3a7a41 HEIPUMEHHUMBI. VYcranoBneHa TIPUHIUIIAAIIBHO HOBAsl aCUMIITOTUKA I KOMIIOHEHT TEH30pa HaHp}DKeHl/Iﬁ
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U BEKTOpa MNEPEMEIICHUs, II03BOJIMBIIASA HaWTH aCHMMITOTHYECKOE peuieHne 3aaadv, KOTOPOE€ CTAaHOBUTCS
MAaTE€MaTU4YE€CKH TOYHBIM €CJIIA BHCIIHUEC HArpy3Kd SBISIOTCSA aJIFCﬁpaH‘{CCKI/IMI/I MHOTOWICHAMH  OT
TAaHTCHIMAIbHBIX KOOPAWHAT. BriBeneHbl yCJI0BHSI BOSHUKHOBCHUS pPE30HAHCA. HOKaSaHO, YTO B TAKOW ILUTACTHHE
KOJIeOaHus SIBJISIIOTCS CyFy60 IUIOCKUMH W aHTUIIIOCKUMH (HOHEpe‘{HLIMI/I). OHpCHCJ’ICHLI AMIUTATYABI OTHUX
kosebanuii. BeiBeeHb YCJIOBHSI BOSBHUKHOBCHUS PE30HAHCA, OIPEACIICHBI 3HAYCHU PE30HAHCHBIX 4aCTOT.

Introduction

Depending on the winding angle or reinforcement method, often the corresponding
composite material is anisotropic and has a plane of elastic symmetry [1,2]. There are
relatively few works devoted to the study of stress-strain states and the solution of static
and dynamic problems of plates with a plane of elastic symmetry (13 independent
constants of elasticity).

The classical and refined theories of plates and shells consider only one class of
problems: it is assumed that the values of the corresponding components of the stress
tensor are given on the facial surfaces of the plates and shells (the first boundary value
problem of the theory of elasticity). These theories are not applicable for solving the
second (the values of the components of the displacement vector are given on the facial
surfaces) and mixed boundary value problems. As it follows from mathematically precise
solutions of individual even simple such problems, normal displacement depends on the
transverse coordinate, which contradicts to one of the basic conditions of classical theory.
Below it will be shown, that in similar problems the components of the stress tensor have
the same intensity, which is absent in the classical theory of plates and shells.

In last decades for solving spatial static and dynamic problems of plates and shells,
especially anisotropic ones, an effective turned out the asymptotic method for solving
singularly perturbed differential equations. The first works in this area are the works [3-
6]. Asymptotic theories of isotropic plates and shells [6,7] and anisotropic plates and shells
[8] have been constructed. A fundamentally new asymptotics, in comparison with the
classical theory, for the components of the stress tensor and displacement vector has been
established [8, 9], which allow to find solutions to the second and mixed static and
dynamic boundary value problems for single-layered and multilayered plates. To the
solution of the static spatial problems of single-layered and multilayered isotropic and
orthotropic plates and shells are devoted the monographs [7, 8, 10]. The method turned
out particularly effective for solving dynamic problems of orthotropic plates and shells
[8,11-14].

Waves, localized and interface oscillations in isotropic thin bodies by asymptotic
method were studied in [15-18]. The asymptotic method was used in [19,20] to study the
stress-strain states of layered structures.

In this paper are studied forced vibrations of anisotropic plates, which have a plane of
elastic symmetry. The asymptotic solution for a three-dimensional dynamic mixed
problem of theory of elasticity on forced vibrations of an anisotropic plate is obtained.
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1.Statement of the problem, basic equations and relationships

It is required to find in the area D = {(x,y,2):0<x<q 0<y<bh, —h<z<
h,2h <<l, l = min(a,b)}, which is occupied by a plate (Fig. 1) solutions to the
equations of motion of the three-dimensional problem of elasticity theory:

do. do. do. 2%u do. do. do 0%v

xx + Xy + Xz _ — Xy + yy + Yz _ —, o)
ox oy 0z at2 ox dy 0z at2
80z , 00y,  doz;  0%w

dx dy 2z Pare

z A

Fig.1. The structure of plate

and the relations of an anisotropic body, which have a plane of elastic symmetry [1,2]:

ou
== = A110xx + A120yy + Q130,; + A160xy

gx

v

2 = Q120xx T A220yy + 0230, + A260yy

ow

2z 4130xx + a330yy + A330;; + A360xy 2)
ov , 0w _ +

9z dy - a440yz A450yz

ou , ow

E + a = Q450y7 + As550y,

ou , ov

3y | ox = A160xx T A260yy T A360,; + Ag0xy

at the following boundary conditions at Z = h
Oxz(X, ¥, 1, ) = 04,(§,m) exp(if2e),
0yz(%,y, b, t) = 0y,(§,7) exp(i2t), 3)
022(%, ¥, h, ©) = —0,(§,n) exp(if20),
§= X =2 { = z
l ) n 1 ) hl
andatZ = —h
u(x,y,—h,t) =0, v(x,y,—h,t) =0, w(x,y,—h,t) =0 )
where (1 — the frequency of forced action.

The conditions on the lateral surfaces of the plate we will not specify for now; by them is
caused the appearance of boundary layer .
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2.The asymptotic solution of the problem.
The solution of the formulated problem will be sought in the form

Oap(,y,2,t) = 0;j(§,n,{) exp(it),a, B = x,¥,2,i,j = 1,2,3, (5)
u(x,y,z,t) = u,(§,n,0) exp(ine), (u, v, w; uy, uy, u,)
Substituting (5) in equations (1) and elasticity relations (2) and in the newly obtained

system, moving to dimensionless coordinates and displacements
_ X _ y _ Z _ Uy _ uy _ Uy
E_Tjn_7l(_;i U_TI V_TI W_Ta (6)

h
as a result we will obtain the system singularly perturbed by the small parameter € = T

001, 901, _10013 -2Nn2
— 4+ e —+e°:U=0

aaf + aan + aa( + * ’

012 022 —1 0023 -2n2

— 4+ ==+ =4V =0
R

013 023 —1 0033 -2n2
— 4+ =4 =4+ :W =0, 7
aaf + an + a9 + ¥ ()
U
P = A12011 T Q12023 + A13033 + A160712,
av
an = A12011 T Q22023 + A33033 + Q6012

ow
-1 _
a2 13013 T A23023 + A33033 + A36072,

ow . _ v
— 4 £ — = Q.0 a4c0
W L1 e + AeeO
av au
2t T oy = %6011 + Q36027 + A36033 + A6012,
N? = ph?0?,

The solution of the singularly perturbed system (7) is the sum of the solutions of the

external problem (1°U%) and the boundary layer (Ip)[8]: I = I°Ut + 1.
The solution to the external problem we will seek out in the form of

ot = e 10l (€1, 0),1,j = 1,23, =0, N

(Uout’ Vout’ Wout) = ¢S (U(S), V(S), W(S)), (8)
where notation s = 0, N means summation by repeating (umbral) index s from 0 to number
of approximations N. From (8) it follows that the stresses must have the same intensity.

By substituting (8) into (7) and in each equation equating coefficients at the same powers
g, we will obtain the following consistent system for determining unknown functions

C,iS,S), HORMORTHOS

aaﬁ_l) 60&52_1) 60‘%53)

217(8) —
T + on + o + 0:U 0,
o 2 gy =
EL Gt VAl B PG
L0 2y e =,
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BU:;) = a1101(i) + a120'2(;) + a1303(§) + a1601(;)'

BV;_” = a1201(i) + azzo'z(? + a2303g) + ‘12601(;)'

a‘;'/:) = a130'1(i) + a230'2(;) + a3363§;) + a360'1(;)' o
aWa(:l_l) a:;_:) = a4,043 + 50,3,

awai_l) 6325) = a4502(§) + a5501(§),

aV;;‘l) 6U;:1) _ a160'1(i) + azso'z(;) + a36a§;) + a660'1(;)'

From the elasticity relations of system (9) all stresses can be expressed through
displacements by formulas

(s) _ 1 ( au® ave) (s)),

013 = 5 Qs =57 = Gas 75— + 0p3.
) _ i(_ U v (s))
(723 A Ays _(6)( + Ass _af + 0-23* 5 .
() _ 1 ow's (s) () _ 1 ow's )
O35 _Z(A33 o7 + 033, ), 017 = (413 P +0,%. ) (10)
() _ 1 w® () &) _ 1 we ()
O = Z(AZS ac + 025, ), 912 = 7| 436 T T 015. )
(s) aw -1 aw(s—1 (s) aw(s-1) aw(s—1)
0-13* = Q44 9 — Qys an > ¥23% T —Qys 8¢ + Qss an ,

0'35;1 = ;_E (ApzUCS™D + AV D) + % (AgzUC™D + A3V S-D),
01(2 = a% (A UG + 4,V 6D) + % (A1gUC™D + A,V 6D),
05 = 32 (AUC™ + ApgV D) + 2 (A UG + A5,V 67D,
0_1(;1 = aa_g (A1UCS™ + AggV ) + % (AeeU(S_l) + AZGV(S‘l)),
O-l'(]'m) =0,U™ =y =W =0 at m<0

where
a1 a12 a3 0 0 a4
a1z Az az3 0 0 ay d11 d12 d13 dj6 Ais Aen A

00 Ay Ayp Ay3 A 11 <12 <16

d13 dpz dzz dze 12 d22 423 Az

A= , Ay = ,Ay = Q12 222 A26],
0 0 0 ayqays0 a3 Ap3 A3z Azg Ay Ay As
0 0 0 agsass O d16 d26 36 66
d16 d26 3355 0 0 age

As = agqass —ags, A =A238;5 Azz =ALAs, (11)

A;j — cofactor, corresponding to element a;; of determinant A.
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By substituting Gi?,ogsg) into two first equations of system (9), for determining

U®,V® we will obtain the system

ans g — aas Ty + 45020 = RO Em,0)

—Q4s ZZS) dss azgf) + 402V = R1(]S) &n,0) )
-1 s—1 _ 5
-1 -1 . g

By substituting the value of O'(S)

of W we will obtain the equation

into the third equation of system (9), for determination

a2w® 4 1 (s)
st W = R (En,0) (13)
) __y_ (2022 2053V _ 1 [ 0% (s-1) (s-1)
RY A5< o [asaz(ABU + Ags VD) +
+3 az — (Agz UGV +A23V(S 1))]

From the system (12) it follows that from the very beginning (s = 0)
displacements U®), V) are dependent, independent is the equation for W . And for
orthotropic plates (a,s = 0, As = aggay,) they are independent, to them are correspond the

shear vibrations (as, = é’ass = G—;, G,3, G,3 —modulus of shear). To the equation (13)

correspond the longitudinal vibrations. We can state that for plates with a plane of elastic
symmetry, shear vibrations are dependent from the very beginning, but they in the initial
approximation do not depend on longitudinal vibrations. For orthotropic plates, in the initial
approximation, all three vibrations are independent.

From system (12) V®can be expressed through U® by formula

) = — 1 _2UD a5 y(5) 4 pr(s)

V an? 302 " U +R, (14)
x(s) _ 1 f(ass p(s) (s)

Rv Asﬂz (a45 R + R )

and for determining U(S)taking into acount (14) we will obtain the equation

) —

z e+ (autass)0?° azz L+ 45020©) = R (15)
5(s) _ 2R ) 2R

R A <a55 6(2 +A5.Q3Ru +a Ays 652

The solution to the equation (15) is U = Ués) + UT(S) (¢,1,0), where UES) —is particular
solution. The characteristic equation of the homogeneous equation (15) is
A4 + (a4_4 + a55).Q312+A5.Qf = 0,
A 2
or k? 4+ (au4 + ass)k + 45 = 0,k = (Q—) (16)
The roots of this equation are
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- [(@sa—ass)?+4a2
k —(a44+a55)+v(a44+a55)2 44s _ (a44+55)+ | (Agq—0s5) " +4dis
1,2 —

Since 45 > 0 => k12 <0, A, =+b 024, /134 = +b2.Q i consequently

Ués) = D(S)cosbl.(z ¢+ D(S)smbl.(l*( + D cosbzﬂ ¢+ D(S)smbz.(z*{ (17)

(a44+a55)$\[(a44—a55)2 +4a3s
b1,2 = 2

According to (14),(17) we have
V& = D94, cosh, 2, + DS d;sinb, 0,7 +
+Dd,cosb,02, + D d,sinb, 0, + VS
dy = a%s (b — ass), d; = L (bzz — ass)
_ 277(8)
VT(S) _ﬁ% _ Z_seS;U(S) Aslﬂz (ass R(S) + R(S))
According to (10),(17), (18)
o) = (Dl(s) d115inb0,{ — Ddcosh, 0,7 +

+D(s)dlzsinb2.(2 {~DVdy,c08b,0,8 + o 5))
(s) _ _(D(s)d2151nb1.(2 {— D(s)ducosbl.() {+

+D5d,,sinb,02,{—D dy,cosb, 02,7 + J(S))

237
dyg = Q*bl(b% — Qss — Qgq), dip = -Q*bz(bz2 — Ass — Qg4)
dy = -Q*bl(azts) - aSSdl)( ) dyy = 0,by(a4s — assdy)
auy’ )AS
Ol3r = Qa5 a( Qa5 5 az + 150
(5) (S)
0'2(2[ = —a4_5 a{ +a 55 a( +O-2(§)*,

The solution to the equation (13) is
we =w® + w®En,0

w® = Dgs)cos\/ﬁﬂ*( + D(S)sin\/AﬁQ*( at AA—3 > 0,
4

W = DPch DPsh at <0,
4

A

0253) =3 i_jQ*A” (_DgS)Sin\[ Q C+D(S)cos\/i—jﬂ*() + ogng,at i—i >0,

ol = 3 [ 0Ass (Dg5>sh . ) o at <0,
(s)
(s) 1 ow (s)
331 Z(A33 a(T + 33*),

(18)

(19)

(20)

(21)

(22)

(23)



The general solution of the external problem contains 6 yet unknown functions
D (€,m)—D (€, 1) , which are uniquely determined using boundary conditions (3),(4).

3.The determination of unknown functions of the solution

For determining the values of Df), Dgs), Dgs), Dis) we satisfy conditions (3),(4) with
respect to Oy, Oy, U, v. Using formulas (8), (17) - (19) we have
D1(S)d11C1 - DZ(S)d11C2 + D?ES)d12C3 - D4(S)d12C4_ = el(S)
Dl(S)d21C1 - DZ(S)dZICZ + D?ES)d22C3 - D(S)d22C4_ = eéS) (24)
D¢, — D¢, + D¢y — Dy =
D(S)d1C2 - D(S)dlcl + D(S)d2C4 - D(S)d2C3 - e(S)
Where

o) = ay07" ~ o, o = g0} ~of2,

013(0) =e0fy, 00 =0, s#0
(S) U(S) (Er l ); ez(l,S) = _VT(S) (E) r]l _1)
c1 = 51nb1.(2*, ¢, = cosbyf2,, c3 =sinby(2,, c, = cosb,(l,

By Cramer’s formula
( )

D = 1,234 (25)
d11C1 —dqy16;  dizc3 —diac,
dpic1  —dy1C; dypcz —dyycy
C2 _Cl C4 _C3
dqic, —dic;  dycy  —dycs

Ay = = (dy—dq)(d11dz —

—d,,d,1)cos2b, 0, C052b2.(2
A]( is obtained from A, by replacing j-th column with column from free terms e( )i
1,2,3,4.
According to (25) we have

D1(S) = ;_1 (31(S)d22 - eZS)dlz) Dz(S) = ;_2 (81(S)d22 - 325)‘112)
1 1
Cc C
DY = 2(efdp —ef7dyy), DY =3 (eVdyy —efdiy). o)
2 2
6; = (d11dz, — d12d1)c0s2b1 02
8, = (d11dz; — dy2d31)c0S2by02
At cos2b,02, = 0 or cos2b,f2, = 0 the resonance will occur. The resonant

frequencies are

E\/})—(Zn—l) .Q——\[ (2n—1), n€eN.

Using (20), (22) and satisfying to conditions (3), (4) relatively o,,, w, we will obtain the
system
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Dés)cs — Dés)c6 = eés) (27)

—D&¢s +Dcs = e
from which is follows

() ( s) (s)

D — & c5+e_65)c6 ) _ el Cs+eg Co

> cosz\[i—i.(z* ' 6 cosz\[i—z.()* ’

) _ 1) o) _ 24 Al 1), (s
e =W 7 (&n,—1), e = _E\/ﬁ (‘733 + 0331)@1 (28)
o0 = e0fy, 03P =0,5%0

As ™ A
cs = cos [20,, cg=sin |20, at =2>0
Ay Ay Ay
The resonant frequencies are

1 —_—
N A LT
Q_Zh(Ag) \/p (2n—1),n €N

To the case (21),(23) correspond

() () ).
D) — & ¥ % p(s) _ C S5 "G eés) — _VV:(S)(S:T]: ~1),

- ) - ]
ch2 /|§—z . ch2 /|§—i o,

) _ 24 [|ha| (4, ()
€ = A33\/ (033 +033T)€=1 (29)

— A3
cszch\/ﬁ—j[)*, c6:sh\/—

A
Ay
Az

Since ch2 \/
Ay

aren’t resonant.

0., at 2<o
Ay

(2, # 0 there is no resonance, i.e. longitudinal vibrations in this case

4. On mathematically precise solutions
If functions in O3, ()';,'Z, 04, included in the boundary conditions (3) are polynomials

from &,77, the iteration breaks at the certain approximation, which depends on the degree

of polynomial. As a result, we will have the mathematically exact solution in the external

problem. Particularly, at 0¥, = const, oy, = const, o7, = const the process breaks at initial

approximation. For this case we have
u= 10O exp(it), v =1V exp(iNt),
Oy = 8_10'1(-2) exp(ildt), oy, = 8‘102((3)) exp(i0t)
U = Dl(o)cosbl.(z*{ + Dz(o)sinbl.(l*{ + Déo)cosbzﬂ*Z + Dio)sinbzﬂ*{
V© = pOd, cosh, 02,7 + DV d,sinb, 02,7 +
+D3(0)d2cosb2!2*Z +Dio)dzsinb2(2*( (30)
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) _

off = 1 (Dl(o)dusinbl.()*( — D" d,; cosh, 0.7 +

+D§°)dlzsinbza*(—pio)dlzcosbzrz*g) ,

O-Z(g) = Ai(Dl(O)dzlsinbl.Q*z - DZ(O)dz:LCOSbl.Q*{ +

5

D(O)dzzsinbzﬂ*( — Dio)dzzcosbzﬂ*()

A
D1(0) 5618( 013d; — 033d51)

A
Dz(o) 5;25( 013d;; — 033d13)

A
D3(0) 5638( or3dz1 — 053d11)

A
ngo) = 5648( 013dy1 — 033d11)
for the remaining values we have
w = WO exp(int), Oy = 8_10'1(1) exp(i0t),
Oy = 8_10'1(2) exp(if2t), oy, = 8_10'2(2) exp(it),
Oy = € 10( )exp(i.()t),
at 23>0

Ay

Wéo) = Dgo)cos\/i—3

Q.7+ DPsin \[A—3 Q.
4 A4

5O _ As3 ow(©® (©) _ A13 W an
33 A ac ) 11 A _af )
5O _ A3 W © ©) _ Ase oW
22 A az ) 12 A az >
0 0
D(O) = —eé )C6 D(O) - _ é )
5 ) 6 ]
0052\[%!2* cosz\[gn*
© 40, o o o [m
€, 1y, €033 |5, G5 = €0s [ f,, cg=-sin » 0,
at =<0
Ay L
A A
Wy = DV h\[—"‘ D(O)sh\/—3 2.4,
Ay Ay
50 _ Ass oW (0) _ Az 0W©® -
33 A at i 11 A at T
0_(0) _ Azs w0 © _ Aze D aw(®
22 A az ) 12 A az >
0
DO — % % © _ _etes
ch2 ch2
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Ay A3 A3

0 40, A
eé ) = ——e0fy , cs =ch N, c¢s=sh 0,.
Azz Az Ay Ay

Obtained in the work the solution to the external problem satisfies the equations of
motion, elasticity relations and boundary conditions (3), (4) on the facial surfaces of the plate.
It, as a rule, will not satisfy the boundary conditions on the lateral surface of the plate. The
arising discrepancy, according to the asymptotic method for solving singularly perturbed
differential equations, is eliminated by constructing the solution for the boundary layer [3,
21]. All component of stresses and displacements decrease rapidly (exponentially) with
distance from the lateral surface into the inside of the plate. This solution is constructed
separately (autonomously) and is conjugated with the solution to the external problem in the

manner described in [6,8], we do not stop on this. In elasticity theory this is known as end
effects [22].

Conclusions

The asymptotic solution to the spatial dynamic problem of forced vibrations of
anisotropic plates, which have a plane of elastic symmetry, is determined One of the facial
surfaces of the plate is rigidly fixed, and the opposite facial surface is subject to normal and
tangential loads, which are harmonically changed over time. It is shown, that for solving this
class of problems (the second and mixed boundary value problems of elasticity theory) the
hypotheses of classical and refined theories of plates are not applicable. The asymptotics for
all components of the stress tensor and displacement vector was established, which made it
possible to find the asymptotic solution to the three-dimensional problem.

All components of the stress tensor expressed in terms of the components of the
displacement vector. For determining the tangential components of the displacement vector,
the system of two ordinary differential equations of the second order is derived, which is
reduced to the solution of the ordinary differential equation of the fourth order. To it
corresponds plane shear vibrations, which in the case of orthotropic plates break down into
two independent shear vibrations. For determining the normal component of the
displacement vector, the ordinary differential equation of the second order is derived; to
which are correspond the longitudinal vibrations.

Analytical solutions to all equations have been found The conditions for the occurrence
of resonance have been established, and the values of the resonant frequencies have been
determined. The case of anisotropy has been established at which in the longitudinal
vibrations of the plate resonance is impossible.
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