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Kazapsn K.B.
YCToiYnBOCTD AKCHAILHO HATPYKEHHOM ABYXKOMIOHEHTHOM 0AJKH ¢ BHYTPEHHHM IIAPHUPOM,
YAepKUBAEMbIM YIIPYIOil IPYKUHOM

KitroueBsle ci1oBa: Gaika U3 ABYX MaTepHaloB, yCTOWYMBOCTE, BHYTPEHHHUH [IAPHUP, YIIPyTasi Olopa

B crarbe paccmaTpuBaercs npobiemMa yCTOHYMBOCTH JBYXKOMIIOHCHTHON aKCHAJIbHO Harpys>KCHHOW Oalku ¢
BHYTPEHHHUM IIAPHUPOM, YAEPKHBACMbBIM YIPYTOH MPYKUHHOW Oormopoi. JIist yeTblpex pasIMYHbIX KOMOMHAIMH
I'PaHUYHBIX YCJIOBHIT Ha KOHIAX OaJIKM MOTy4YeHbl XapaKTePHCTUUECKHE YPABHEHHUS, ONPE/IeIISIOIIHEe KPUTHIESCKHE
3HAYCHMS CHJIBI OCEBOTO CkaTus. Ha ocHOBE YHMCIIGHHOTO aHAlIM3a M3YYeHbI 3aBUCHMOCTH KPUTHUYECKOH OCEBOi
CHJIBI OT JKECTKOCTH TIPYXXHHHOH omopsl. ITokazaHo, 4TO )KECTKOCTh ONMOPbI BHYTPEHHEro IIAPHUPA 3HAYUTEIBHO
YBEJIUYMBACT KPUTHYECKUE 3HAUCHHS COKUMAIOIICH CHIIBL.

The paper discusses a stability problem for a bi-material axially loaded beam with an
interior hinge restrained by an elastic spring support. For different four combinations of beam
end conditions the characterizing equations are obtained defining critical values of axial
compression force. Based on numerical analysis the dependence of critical axial force are
studied versus the stiffnesses of spring support. It is shown that the stiffness of the hinge
spring support significantly increases beam axial force critical values.

Introduction

The study of stability problems of beams systems is very important in structural design as
they are the cornerstone for many structures. Due to technological needs homogeneous and
non-homogeneous beams with interior hinges widely used in bolting, swivel designs and
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suspension bridges. In this paper we specifically deal with static stability of compressed bi-
material beams with interior hinge strengthened by elastically constraint supports. The main
results of buckling of beams have been given in [1,2]. The stability of beams and plates with
hinges are considered in [3-6]. The static stability problem of a compressed inhomogeneous
infinite beam with periodically arranged supports is considered in [7]. The stability of multi
span beams rested on rigid and elastic supports is studied in [8]. Free vibrations of beams
with internal hinges and intermediate translational restraints are investigated in [9-11].
Forced vibrations of finite length meta beams with periodically arranged internal hinges are
discussed in [12].

Statements of the problem, the basic equations and contact conditions.

In dimensionless Cartesian coordinates x = Z/ L were all lengths are normalized to a beam
length L we consider a stabilty of a bi- material beam with an interior hinge restrained by
an elastic spring support (Fig.1,2) located at point x =3 (0 <p< 1). The beam is
compressed by the axial force P applied at the ends of the beam. The four different
combinations of beam conditions at the end points x =0, x =1 will be considered: beam

both ends clamped, both ends pinned, one end clamped other end pinned , one end clamped
other end sliding.

Hinge
//; P
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I ==19
o

X x=[3 x=1

Fig.1 Axially loaded bi-material beam with elastically constraint hinge
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Fig.2 The elastically constraint hinge

In dimensionless Cartesian coordinates bi-material beam stability equations can be cast as

4 2
DldV?+PL2d—VZ‘:O; 0<x<f
dx dx 0
d*w. d’w,
D 24+ P’ 2 =0; <x<l
>t dx* B
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Here Wj(x) is the lateral deflections of the beam neutral axis at point X, Dj, are the

flexural rigidities, j =1,2 .
Solutions of the equations (1) are

W (x) = C;sin(p,x)+C, cos(p,x)+C;x+C,
W,(x) = A4 sin( p,x) + A, cos(p,x) + A;x+ A4,

where p; = /D;lPLz

The hinge is strengthened by linear elastic restraint with spring constant ¢, .

The conditions at the hinge location point x =3 are:

moments are equal to zero

AW A I
dx’ dx’

0,

continuity of displacements

w(B)=m,(B)

and the balance of shear forces for the compressed beam

p EB) o DTB)_ ), EB)_ D)
X

dx’ dx oy’
The solutions satisfying conditions (3-5) can be cast as

W (x)=C;sin(p(x—P))+C;(x—B)+C,

Wy(x) = 4, Sin(pY(x—B))vL( 3—;4;J(X—B)+C4

@

3)

“4)

®)

(6)

were Y =+/D,D; b n=c,D, '’ is the non-dimensional spring constant , p=+F,

2 -1 s . . . . .
F,=PL D, is the non-dimensional normalized axial compressive force .

When the hinge is absent instead of contact conditions (5) we have the conditions of

continuities of displacements, slopes, moments and the balance of shear forces

m(B)=m,(B)
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p, LB, PTG
dx dx
3 3
p LTB) , pp HB) _p, EWB) B ©
dx dx dx dx
Solutions satisfying these conditions can be written as
W (x)=C, sin(p(x—B))+ C, cos(p(x—B))+ C, (x—B)+ C, o
W,(x)=y"'C sin(py(x—B))+C, cos(py(x —B)) + C; (x—B) + 4,
Clamped-clamped beam
At clamped ends x = 0, x =1 we have the following boundary conditions
w,0) =020 _g 1y = 0,20 _ (10)

Satisfying solutions (9) the boundary conditions (10) from non-triviality of
all solutions the characteristic equation defining critical buckling force p2 =F,
find to be

ypcos((B—1yp) (sin(Bp)(-Bn+n+ 1 (~p*))+ peos(Bp) ((B-DPn-+1p*)) +

+sin((B-1)yp)( peos(Bp)(v*p* ~Pn)+nsin(Bp)) =0 (an

When the hinge is absent instead of (10), using solutions (7) we have the following
characteristic equation for the bi-material beam without the interior hinge

sin (B—1)yp)((v* +1)sin(Bp) —v* pcos(Bp) )+
+y(cos(B~1)yp) (psin(Bp) +2cos(Bp)) —2) =0

(12)
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Fig.3a,3b. Critical buckling force E) versus B for bi-material clamped beam

On the Fig.3a the curves of normalized critical buckling force F) = g * corresponding to
the smallest roots of the equation (11) dependence functions from hinge location
parameter [ are given for non- homogeneous beams y = 0.5 versus for different values of
spring stiffnesses 1. Black curve corresponds to case when the hinge is not support. On
Fig.3b the critical curves are plotted for non- homogeneous beams with different values of
Y when the hinge spring stiffnesses 1 =100. The optimum locations of the hinge
correspond to points where critical forces are maximal. For comparison on the Fig. 4 the plots
of normalized buckling force Po = p2 versus contact location point for bi-material clamped

beam in when interior hinge is absent.
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Fig. 4 Critical buckling force [‘B versus ﬁ for clamped bi-material beam without hinge

Pinned-pinned beam
At the pinned ends we have the following boundary conditions

2 2
=020 o =00 (13

22



The characteristic equation corresponding to these conditions can be founded as

2 2 . .
(Bn1=B)—v*p*)sin( py(1-B))sin(pB) =0 (14)
From (12) it follows that, when only the left uncoupled part of the beam buckles

2
F = TEZ/B2 , when only the right uncoupled part buckles F}, = nz/(y(l - [3)) )
When both parts buckle together £, = n(1—f3) /v

For beam without hinge the characteristic equation corresponding to conditions (11) can be
written as

ysin(Bp)cos((B—1)yp)+cos(Bp)sin((1-B)yp) =0 (15)
0

=300

Normalised critical force Py
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Fig.5a,5b. Critical buckling force Po versus B for bi-material pinned beam

The hinge optimum location where the critical buckling forces are maximal is at the midpoint

B=0.5
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Fig. 6 Critical buckling force Po versus B for pinned bi-material beam without hinge
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Clamped-pinned beam
At the one clamped and other pinned ends we have the following boundary conditions

=0 0w, 1) =0,
X

d*w, (1)
= —2==0 (16)

Corresponding to these conditions the characteristic equation defining critical force can be
found as

v’ p’sin((1-PB)yp)(pcos(Bp) —sin(Bp)) +
+(B—Dnsin((1-PB)yp)(Bp cos(Bp) —sin(Bp)) =0

For beam without hinge the characteristic equation can be cast as

amn

1’ (ycos(B—1)yp)(p cos(Bp) —sin(Bp) +

+sin(B—1)yp)( psin(Bp)+cos(Bp)) =0
Clamped-pinned edges,y=0.5
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(18)
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Fig.7a,7b. Critical buckling force Po versus B for bi-material clamped-pinned beam
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Fig. 8 Critical buckling force [‘B versus ﬁ for clamped-pinned bi-material beam without hinge
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Clamped -sliding beam
At the one clamped and other sliding ends we have the following boundary conditions

dW,©0) _ d, () _ dW(1) _
=0, =0, —=0
dx dx dx

The characteristic equation defining critical force can be found as

w(0)=0, (19)

(va(A-Bm—7’q>)cos((1-Byyg) —msin((1-B)rg)) g cos(Bg) = 0 (20)

For beam without hinge we have the following characteristic equation defining critical
force

sin(Bp) cos (B —1)yp)+vcos(Bp)sin(B-1)yp) =0 1)
| —

]
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Fig9a,9b. Critical buckling force R) versus B for bi-material clamped-sliding beam
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Fig. 10 Critical buckling force Po versus B for clamped- sliding bi-material beam without hinge
Results

As results from plots of Figures 3-10 for all considered boundary value problems the interior
hinge weakens the bi-material beam in stability decreasing critical values of compressed
force.
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The stiffness of the hinge elastic support makes the beam more stable, increasing critical
values of compressed force.

The critical values of the axial force for the bi-material beam with restrained interior hinge
and the bi-material beam without hinge is mostly similar for sufficiently large values of the
spring stiffnesses in all considered cases.
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