ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

77. №3. 2024

Механика

УДК 539.3

DOI: 10.54503/0002-3051-2024.77.3-28

О НАПРЯЖЕННОМ СОСТОЯНИИ КУСОЧНО-ОДНОРОДНОГО СЛОЯ, ВЗАИМОДЕЙСТВУЮЩЕГО С КОЛЛИНЕАРНОЙ СИСТЕМОЙ ТРЕЩИН И СТРИНГЕРОМ ПРИ АНТИПЛОСКОЙ ДЕФОРМАЦИИ Мкртчян М. М., Мкртчян М.С.

Ключевые слова: напряжение, слой, трещина, стрингер, система сингулярных интегральных уравнений, коэффициент интенсивности напряжений, раскрытие трещины.

Mkrtchyan M.M., Mkrtchyan M.S.

On the stress state of a piecewise homogeneous layer interacting with a collinear system of cracks and a stringer under antiplane deformation

Keywords: stress, layer, crack, stringer, system of singular integral equations, stress intensity factor, crack opening.

This paper considers the problem of determining the components of the stress-strain state of a piecewise homogeneous layer under antiplane deformation, the upper face of which is reinforced by a stringer, the lower face is rigidly clamped, and a collinear system of cracks is located on the horizontal weld line of dissimilar materials.

Մկրտչյան Մ.Մ., Մկրտչյան Մ.Ս.

Հակահարթ դեֆորմացիայի պայմաններում Ճաքերի համագիծ համակարգի և ստրինգերի հետ փոխազդող կտոր առ կտոր համասեռ շերտի լարվածադեֆորմացիոն վիձակի մասին

Հիմնաբառեր՝ լարում, շերտ, ձաք, ստրինգեր, սինգուլյար ինտեգրալ հավասարումների համակարգ, լարումների ինտենսիվության գործակից, ձաքի բացվածք։

Հոդվածում դիտարկվում է առաձգական կտոր առ կտոր համասեռ շերտի լարվածադեֆորմացիոն վիճակի վերաբերյալ խնդիրը հակահարթ դեֆորմացիայի պայմաններում, երբ շերտի վերին եզրը ուժեղացված է ստրինգերով, ստորին եզրը կոշտ ամրակցված է, իսկ տարասեռ նյութերի միացման հորիզոնական գծի վրա դասավորված է համագիծ ճաքերի համակարգ։

В настоящей работе рассматривается задача об определении компонентов напряженно-деформированного состояния кусочно-однородного слоя при антиплоской деформации, верхняя грань которого усилена стрингером, нижняя грань жестко защемлена, а на горизонтальной линии спая разнородных материалов расположена коллинеарная система трещин.

1. Введение. В механике композитов при проектировании различных строительных и авиационных конструкций, в тензометрии и во многих других отраслях прикладной механики и инженерной практики весьма важным представляется исследование вопросов взаимодействия концентраторов напряжений типа трещин и стрингеров с массивными телами различных геометрических форм. Это объясняется тем, что вокруг этих концентраторов напряжений образуются локальные поля напряжений с большими и интенсивно изменяющимися градиентами, которые существенно снижают уровень прочности инженерных конструкций и их деталей. Поэтому качественное и количественное исследование вопросов концентрации напряжений представляет как теоретический, так и

практический интерес. Такие задачи стали предметом исследования многих авторов. В этом направлении укажем на работы [1-6], а также на статьи [7-9].

В настоящей статье рассматривается задача об определении напряженного состояния упругого кусочно однородного слоя при антиплоской деформации, когда на линии спая разнородных материалов расположена коллинеарная система трещин, нижняя грань слоя жестко защемлена, а его верхняя грань усилена стрингером конечной длины. Предполагается, что под действием приложенных касательных сил система упругий слой с трещинами и стрингером находится в условиях антиплоской деформации (продольного сдвига), причем для стрингера принята известная модель Мелана. При этих предположениях решение задачи методом интегрального преобразования Фурье сведено к решению системы сингулярных интегральных уравнений (СИУ) из двух уравнений. Решение определяющей системы СИУ построено известным численно аналитическим методом [12-14], позволяющим свести его к решению конечной системы линейных алгебраических уравнений (СЛАУ). Физические характеристики задачи представлены явными аналитическими формулами, произведен их численный анализ.

2. Постановка задачи и вывод основных уравнений. Пусть отнесенный к правой прямоугольной системе координат Oxyz кусочно-однородный упругий слой, находящийся в условиях антиплоской деформации в направлении оси Oz с базовой плоскостью Oxy, состоит из верхнего слоя $\Omega_+ = \{-\infty < x, z < \infty, 0 \le y \le h_+\}$ с модулем сдвига G_+ и нижнего слоя $\Omega_- = \{-\infty < x, z < \infty, -h_- \le y \le 0\}$ с модулем сдвига G_- . Слой в плоскости y = 0 содержит систему сквозных трещин, следы которых в плоскости Oxy составляют систему интервалов L:

$$L = \bigcup_{k=1}^{N} [a_k, b_k]; \ a_k < b_k \ (k = 1, 2, ..., N); \ b_k < a_{k+1} \ (k = \overline{1, N-1})$$

Пусть, далее, нижняя грань слоя жестко закреплена: $u_z^-(x, y)|_{y=-h_-} = 0$, где $u_z^-(x, y)$ - перемещение точек слоя по оси Oz. Кроме того, верхняя грань $y = h_+$ слоя на отрезке [c,d] усилена стрингером высотой h_1 с модулем сдвига G_1 в виде полосы-ленты $\omega_+ = \{c \le x \le d; h_+ \le y \le h_+ + h_1; -\infty < z < \infty\}$. Предположим, что на верхней грани $y = h_+ + h_1$ полосы ω_+ в направлении оси Oz действуют равномерно распределенные по оси Oz касательные силы интенсивности $T_1(x)$:

$$\tau_{yz}\Big|_{y=h_{+}+h_{1}} = -T_{1}(x) \ (c < x < d), \tag{1}$$

где τ_{yz} – компонента касательных напряжений. Кроме этого, будем предполагать, что на кромках x = c, x = d стрингера в направление оси Oz действуют равномерно распределенные касательные сосредоточенные силы P_1, P_2 . Требуется определить плотность дислокаций на берегах трещин, их раскрытие, коэффициент интенсивности напряжений (КИН), разрушающие касательные напряжения вне системы трещин на их линии расположения, а также действующие под стрингером касательные контактные напряжения. При этом для стрингера принимается модель одномерного упругого континуума Мелана [1, 10].

Для вывода определяющих уравнений поставленной задачи кусочно-однородную упругую полосу в плоскости *Оху* вдоль оси *Ох* разрежем на верхнюю (Ω_1) и нижнюю (Ω_2) полосы, а затем для действующих на их гранях $y = \pm 0$ напряжений введем следующие обозначения $(L' = R/L; R = (-\infty, \infty))$:

$$-\tau_{yz}\Big|_{y=+0} = T_{+}(x) = \begin{cases} \tau_{+}(x) & (x \in L); \\ \tau(x) & (x \in L'); \end{cases} \quad -\tau_{yz}\Big|_{y=-0} = T_{-}(x) = \begin{cases} \tau_{-}(x) & (x \in L); \\ \tau(x) & (x \in L'); \end{cases}$$
(2)

Граничное условие при $y = h_+$ имеет вид:

$$\tau_{yz}^{+}\Big|_{y=h_{+}} = G_{+} \frac{\partial u_{z}^{+}(x,y)}{\partial y}\Big|_{y=h_{+}} = -H_{+}(x) = \begin{cases} -h_{+}(x) \ (x \in [c,d]); \\ 0 \ (x \notin [c,d]), \end{cases}$$
(3)

где $u_z^{\pm}(x, y)$ - смещения точек в направлении оси Oz, соответственно, верхней и нижней полос, которые в этих областях удовлетворяют уравнению Лапласа:

$$\Delta u_z^{\pm}(x,y) = \frac{\partial^2 u_z^{\pm}(x,y)}{\partial x^2} + \frac{\partial^2 u_z^{\pm}(x,y)}{\partial y^2} = 0.$$
(4)

Далее введем в рассмотрение следующие функции:

$$\chi_{\pm}(x) = \frac{T_{\pm}(x) \pm T_{-}(x)}{2};$$

$$w(x) = \frac{1}{2} \left(\frac{du_{z}^{+}(x, +0)}{dx} - \frac{du_{z}^{-}(x, -0)}{dx} \right) = \begin{cases} \varphi(x) & (x \in L); \\ 0 & (x \in R/L). \end{cases}$$
(5)

С помощью метода преобразования Фурье по переменной x, из уравнения (4) и граничных условий (2)-(3) в соответствии с обозначениями (5) приходим к ключевому уравнению задачи:

$$\chi_{+}(x) = -\frac{2G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} \frac{w(s)ds}{s-x} - \frac{2G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} K(s-x)w(s)ds + + \frac{G_{+}-G_{-}}{G_{+}+G_{-}} \chi_{-}(x) - \frac{2G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} R(s-x)\chi_{-}(s)ds + + \frac{G_{-}}{\pi} \int_{L} Q(s-x)H_{+}(s)ds \qquad (x \in R)$$

$$(6)$$

$$K(x) = \int_{0}^{\infty} \frac{G_{+} \operatorname{th}(\lambda h_{+})[1 - \operatorname{th}(\lambda h_{-})] - G_{-}[1 - \operatorname{th}(\lambda h_{+})]}{G_{+} \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-}) + G_{-}} \sin(\lambda x) d\lambda;$$

$$R(x) = \int_{0}^{\infty} \frac{1 - \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-})}{G_{+} \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-}) + G_{-}} \cos(\lambda x) d\lambda;$$

$$Q(x) = \int_{0}^{\infty} \frac{1}{\operatorname{ch}(\lambda h_{+}) [G_{+} \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-}) + G_{-}]} \cos(\lambda x) d\lambda;$$

Теперь, для производных смещений на границе полосы $y = h_+$ будем иметь

$$\frac{du_{z}^{+}(x,h_{+})}{dx} = \frac{2G_{-}}{\pi} \int_{L} \mathcal{Q}(s-x)w(s)ds + \frac{2}{\pi} \int_{L} R_{1}(s-x)\chi_{-}(s)ds - \frac{1}{\pi G_{+}} \int_{c}^{d} \frac{h_{+}(s)ds}{s-x} - \frac{1}{\pi G_{+}} \int_{c}^{d} M_{1}(s-x)h_{+}(s)ds; \qquad (x \in R)$$
(7)

где

$$R_{1}(x) = \int_{0}^{\infty} \frac{\operatorname{th}(\lambda h_{-})}{\operatorname{ch}(\lambda h_{+}) [G_{+} \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-}) + G_{-}]} \sin(\lambda x) d\lambda;$$

$$M_{1}(x) = \int_{0}^{\infty} \frac{(1 - \operatorname{th}(\lambda h_{-})) (G_{+} \operatorname{th}(\lambda h_{+}) - G_{-})}{G_{+} \operatorname{th}(\lambda h_{+}) \operatorname{th}(\lambda h_{-}) + G_{-}} \sin(\lambda x) d\lambda;$$

Далее, для стрингера воспользуемся дифференциальным уравнением деформирования стрингера с учетом (1) по модели Мелана при антиплоской деформации [10]

$$h_1 G_1 \frac{d^2 w_1}{dx^2} = h_+(x) - T_1(x) \ (c < x < d); \tag{8}$$

где $w_1 = w_1(x)$ компонента смещений точек стрингера в направлении оси Oz. При этом условие равновесия стрингера имеет вид

$$\int_{c}^{d} h_{+}(x) dx = P_{1} + P_{2} + \int_{c}^{d} T_{1}(x) dx.$$
(9)

Интегрированием (8) легко находим

$$h_1 G_1 \frac{dw_1}{dx} = \frac{1}{2} \left(P_1 + P_2 \right) + \frac{1}{2} \int_c^d \operatorname{sign} \left(x - s \right) \left[h_+ \left(s \right) - T_1 \left(s \right) \right] ds.$$
(10)

Теперь в условие контакта упругой полосы и стрингера

$$u_{z}^{+}(x,h_{+}) = w_{1}(x)$$
 или $\frac{du_{z}^{+}(x,h_{+})}{dx} = \frac{dw_{1}(x)}{dx}$ $(c < x < d);$

подставим выражения из (7), (9) и (10) соответственно. После простых преобразований относительно неизвестных контактных напряжений $h_+(x)$ придем к следующему интегральному уравнению:

$$\frac{G_{-}}{\pi} \int_{L} Q_{1}(s-x) \varphi(s) ds - \frac{1}{\pi G_{+}} \int_{c}^{d} \frac{h_{+}(s) ds}{s-x} - \frac{1}{\pi G_{+}} \int_{L} M_{1}(s-x) h_{+}(s) ds -$$
(11)
$$-\frac{1}{2h_{1}G_{1}} \int_{c}^{d} \operatorname{sign}(x-s) h_{+}(s) ds = -\frac{1}{\pi} \int_{c}^{d} R_{1}(x-s) [\tau_{+}(s) - \tau_{-}(s)] ds +$$
$$+\frac{1}{2h_{1}G_{1}} [P_{1} + P_{2}] - \frac{1}{2h_{1}G_{1}} \int_{c}^{d} \operatorname{sign}(x-s) T_{1}(s) ds; \quad (x \in (c,d))$$

Из рассмотрения уравнения (6) на *L* совместно с (11), получаем определяющую СИУ задачи:

$$\begin{cases} \frac{1}{\pi} \int_{L} \frac{\varphi(s)ds}{s-x} + \frac{1}{\pi} \int_{L} K(x-s)\varphi(s)ds - \frac{G_{+}+G_{-}}{\pi G_{+}} \int_{c}^{d} Q(x-s)h_{+}(s)ds = \\ = -\frac{1}{G_{+}}\tau_{+}(x) - \frac{1}{G_{-}}\tau_{-}(x) - \frac{1}{\pi} \int_{L} R(x-s) [\tau_{+}(s) - \tau_{-}(s)]ds; \quad (x \in L) \\ \begin{cases} \frac{G_{-}}{\pi} \int_{L} Q(s-x)\varphi(s)ds - \frac{1}{\pi G_{+}} \int_{c}^{d} \frac{h_{+}(s)ds}{s-x} - \frac{1}{\pi G_{+}} \int_{L} M_{1}(s-x)h_{+}(s)ds - \\ -\frac{1}{2h_{1}G_{1}} \int_{c}^{d} \operatorname{sign}(x-s)h_{+}(s)ds = -\frac{1}{\pi} \int_{c}^{d} R_{1}(x-s) [\tau_{+}(s) - \tau_{-}(s)]ds + \\ +\frac{1}{2h_{1}G_{1}} [P_{1}+P_{2}] - \frac{1}{2h_{1}G_{1}} \int_{c}^{d} \operatorname{sign}(x-s)T_{1}(s)ds; \quad (x \in (c,d)) \end{cases}$$

Систему (12) рассматриваем при условиях

$$\int_{a_k}^{a_k} \varphi(x) dx = 0, \quad (k = \overline{1, N}), \tag{13}$$

эквивалентных условиям непрерывности смещений в концевых точках разреза, а также при условии равновесия стрингера (9):

Рассматривая же уравнение (6) вне разрезов, будем иметь:

$$\tau(x) = -\frac{G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} \frac{\varphi(s)ds}{s-x} - \frac{G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} K(s-x)\varphi(s)ds -$$
(14)
$$-\frac{G_{+}G_{-}}{\pi(G_{+}+G_{-})} \int_{L} R(s-x) [\tau_{+}(s) - \tau_{-}(s)] ds + \frac{G_{-}}{\pi} \int_{L} Q(x-s)h_{+}(s)ds \ (x \in L')$$

Таким образом, поставленная задача о напряженном состоянии упругой полосы с трещинами и стрингером сводится к решению системы (12) при условиях (9), (13). После решения (12), (9), (13) разрушающее напряжение определяется формулой (14).

3. Решение определяющей СИУ. Для решения определяющей СИУ (12), (9), (13) сначала введем безразмерные координаты и величины:

$$\begin{split} \xi &= \frac{x}{|a_1|}, \ \eta = \frac{s}{|a_1|}; \ \overline{h}_{+} = \frac{h_{+}}{|a_1|}, \ \overline{h}_{-} = \frac{h_{-}}{|a_1|}; \ \overline{h}_{1} = \frac{h_{1}}{|a_1|}; \ \alpha_{k} = \frac{a_{k}}{|a_1|}, \end{split} \tag{15} \\ \beta_{k} &= \frac{b_{k}}{|a_1|}; \ (k = \overline{1, N}) \quad \gamma = \frac{c}{|a_1|}, \ \delta = \frac{d}{|a_1|}; \ \mu = G_{+}/G_{-}; \ \mu_{1} = G_{1}/G_{+}; \\ L_{0} &= \bigcup_{k=1}^{N_{1}} (\alpha_{k}; \beta_{k}); \ \phi_{0}(\xi) = \phi(|a_{1}|\xi); \ \tau_{\pm}^{(0)}(\xi) = \frac{\tau_{\pm}(|a_{1}|\xi)}{G_{+} + G_{-}}; \ \overline{h}_{+}(\xi) = \frac{h_{+}(|a_{1}|\xi)}{G_{1}}; \\ P_{1}^{(0)} &= \frac{P_{1}}{|a_{1}|G_{1}}; P_{2}^{(0)} = \frac{P_{2}}{|a_{1}|G_{1}}; \ T_{1}^{(0)}(\xi) = \frac{T_{1}(|a_{1}|\xi)}{G_{1}}. \end{split}$$

после чего (12) преобразуется в следующее СИУ:

$$\begin{cases} \frac{1}{\pi} \int_{L_0}^{\frac{\varphi_0}{\eta}} \frac{(\eta)d\eta}{\eta-\xi} + \frac{1}{\pi} \int_{L_0}^{L} K_0(\eta-\xi)\varphi_0(\eta)d\eta - \\ -\frac{\mu_1(\mu+1)}{\pi} \int_{\gamma}^{\delta} Q_0(\eta-\xi)\overline{h_+}(\eta)d\eta = F_1(\xi) \qquad (\xi \in L_0) \end{cases}$$

$$\begin{cases} \frac{1}{\pi} \int_{L_0}^{Q} Q_0(\eta-\xi)\varphi_0(\eta)d\eta - \frac{\mu_1}{\pi} \int_{\gamma}^{\delta} \frac{\overline{h_+}(\eta)d\eta}{\eta-\xi} - \frac{\mu_1}{\pi} \int_{\gamma}^{\delta} K_{10}(\eta-\xi)\overline{h_+}(\eta)d\eta + \\ + \frac{1}{2\overline{h_1}} \int_{\gamma}^{\delta} \operatorname{sign}(\eta-\xi)\overline{h_+}(\eta)d\eta = F_2(\xi) \left(\xi \in (\gamma,\delta)\right) \end{cases}$$

$$K_0(\xi) = \int_{0}^{\infty} \frac{\mu \operatorname{th}(\lambda\overline{h_+})[1-\operatorname{th}(\lambda\overline{h_-})]-[1-\operatorname{th}(\lambda\overline{h_+})]}{\mu \operatorname{th}(\lambda\overline{h_+})\operatorname{th}(\lambda\overline{h_-})+1} \operatorname{cos}(\lambda\xi)d\lambda;$$

$$Q_0(\xi) = \int_{0}^{\infty} \frac{1-\operatorname{th}(\lambda\overline{h_+})(\mu \operatorname{th}(\lambda\overline{h_-})+1)}{\mu \operatorname{th}(\lambda\overline{h_-})+1} \operatorname{cos}(\lambda\xi)d\lambda;$$

$$K_{10}(\xi) = \int_{0}^{\infty} \frac{(1-\operatorname{th}(\lambda\overline{h_+}))(\mu \operatorname{th}(\lambda\overline{h_-})+1)}{\mu \operatorname{th}(\lambda\overline{h_+})\operatorname{th}(\lambda\overline{h_-})+1} \operatorname{sin}(\lambda\xi)d\lambda;$$

$$\begin{aligned} R_{10}(\xi) &= \int_{0}^{\infty} \frac{\operatorname{th}(\lambda \overline{h}_{-}) \left[\mu \operatorname{th}(\lambda \overline{h}_{-}) + 1 \right] \operatorname{sin}(\lambda \xi) d\lambda; \\ F_{1}(\xi) &= -\frac{(\mu+1)}{\mu} \tau_{+}^{(0)}(\xi) - (\mu+1) \tau_{-}^{(0)}(\xi) - \\ &- \frac{(\mu+1)}{\mu} \int_{L_{0}} R_{0}(\eta-\xi) \left[\tau_{+}^{(0)}(\eta) - \tau_{-}^{(0)}(\eta) \right] d\eta; \quad (\xi \in L_{0}) \\ F_{2}(\xi) &= -\frac{\mu+1}{\pi} \int_{L_{0}} R_{10}(\eta-\xi) \left[\tau_{+}^{(0)}(\eta) - \tau_{-}^{(0)}(\eta) \right] d\eta + \frac{1}{2\overline{h}_{1}} \left[P_{1}^{(0)} + P_{2}^{(0)} \right] + \\ &+ \frac{1}{2\overline{h}_{1}} \int_{\gamma}^{\delta} \operatorname{sign}(\eta-\xi) T_{1}^{(0)}(\eta) d\eta; \quad (\xi \in (\gamma, \delta)) \end{aligned}$$

Далее, каждый интервал $(\alpha_k, \beta_k), (\gamma, \delta)$ системы СИУ (16) преобразуем в интервал (-1, 1), полагая

$$\xi = \frac{\beta_k - \alpha_k}{2}t + \frac{\beta_k + \alpha_k}{2}, \quad \eta = \frac{\beta_k - \alpha_k}{2}u + \frac{\beta_k + \alpha_k}{2} \quad (k = \overline{1, N}), \quad (-1 < t, u < 1), \quad \xi = \frac{\delta - \gamma}{2}t + \frac{\delta + \gamma}{2}, \quad \eta = \frac{\delta - \gamma}{2}u + \frac{\delta + \gamma}{2} \quad (-1 < t, u < 1)$$

в результате СИУ (16) преобразуется в систему интегральных уравнений относительно функций

$$\varphi_k(t) = \varphi_0 \left(\frac{\beta_k - \alpha_k}{2} t + \frac{\beta_k + \alpha_k}{2} \right); \quad (-1 < t < 1; \quad k = \overline{1, N})$$

$$\psi(t) = \overline{h}_+ \left(\frac{\delta - \gamma}{2} t + \frac{\delta + \gamma}{2} \right) \quad (-1 < t < 1)$$

на интервале (-1,1):

$$\begin{cases} \frac{1}{\pi} \int_{-1}^{1} \frac{\varphi_{k}(u)du}{u-t} + \frac{1}{\pi} \sum_{\substack{m=1\\m\neq k}}^{N} \int_{-1}^{1} K_{km}^{(1)}(t,u)\varphi_{m}(u)du + \frac{1}{\pi} \sum_{m=1}^{N} \int_{-1}^{1} K_{km}(t,u)\varphi_{m}(u)du - \\ - \frac{\mu_{1}(\mu+1)}{\pi} \int_{-1}^{1} Q_{k}(t,u)\psi(u)du = l_{1k}(t); \qquad (-1 < t < 1; \ k = \overline{1,N}) \\ - \frac{1}{\pi} \sum_{m=1}^{N} \int_{-1}^{1} \hat{Q}_{m}(t,u)\varphi_{m}(u)du - \frac{\mu_{1}}{\pi} \int_{-1}^{1} \frac{\psi(u)du}{u-t} - \frac{\mu_{1}}{\pi} \int_{-1}^{1} \hat{K}(t,u)\psi(u)du + \\ + \frac{\delta - \gamma}{4\overline{h_{1}}} \int_{-1}^{1} sign(u-t)\psi(u)du = l_{2}(t), \qquad (-1 < t < 1) \end{cases}$$
(17)

где

$$K_{km}^{(1)}(t,u) = \left(u - \frac{\beta_{k} - \alpha_{k}}{\beta_{m} - \alpha_{m}}t + \frac{\beta_{m} + \alpha_{m}}{\beta_{m} - \alpha_{m}} - \frac{\beta_{k} + \alpha_{k}}{\beta_{m} - \alpha_{m}}\right)^{-1}; \qquad (m,k = \overline{1,N})$$

$$K_{km}(t,u) = \lambda_{m}^{(1)}K_{0}\left(\lambda_{m}^{(1)}u + \frac{\beta_{m} + \alpha_{m}}{2} - \lambda_{k}^{(1)}t - \frac{\beta_{k} + \alpha_{k}}{2}\right); \qquad (m,k = \overline{1,N})$$

$$Q_{k}(t,u) = \lambda^{(2)}Q_{0}\left(\lambda^{(2)}u + \frac{\delta + \gamma}{2} - \lambda_{k}^{(2)}t - \frac{\beta_{k} + \alpha_{k}}{2}\right); \qquad (k = \overline{1,N})$$

$$\tau_{k}^{(1)}(t) = \tau_{-}^{(0)}\left(\lambda_{k}^{(1)}t + \frac{\beta_{k} + \alpha_{k}}{2}\right); \qquad \tau_{k}^{(2)}(t) = \tau_{+}^{(0)}\left(\lambda_{k}^{(1)}t + \frac{\beta_{k} + \alpha_{k}}{2}\right)\left(-1 < t < 1; k = \overline{1,N}\right)$$

$$\begin{split} R_{km}(t,u) &= \lambda_{m}^{(1)} R_{0} \left(\lambda_{m}^{(1)} u + \frac{\beta_{m} + \alpha_{m}}{2} - \lambda_{k}^{(1)} t - \frac{\beta_{k} + \alpha_{k}}{2} \right); \quad \left(m, k = \overline{1, N}\right) \\ \hat{R}_{m}(t,u) &= \lambda_{m}^{(1)} R_{10} \left(\lambda_{m}^{(1)} u + \frac{\beta_{m} + \alpha_{m}}{2} - \lambda^{(2)} t - \frac{\delta + \gamma}{2} \right); \quad \left(m = \overline{1, N}\right) \\ \hat{Q}_{m}(t,u) &= \lambda_{m}^{(1)} Q_{0} \left(\lambda_{m}^{(1)} u + \frac{\beta_{m} + \alpha_{m}}{2} - \lambda^{(2)} t - \frac{\delta + \gamma}{2} \right); \quad \left(m = \overline{1, N}\right) \\ \hat{K}_{m}(t,u) &= \lambda^{(2)} K_{10} \left(\lambda^{(2)} \left(u - t \right) \right); \quad \tilde{T}_{1}(u) = T_{1}^{(0)} \left(\lambda^{(2)} u + \frac{\delta + \gamma}{2} \right); \\ l_{1k}(t) &= F_{1} \left(\lambda_{k}^{(1)} t + \frac{\beta_{k} + \alpha_{k}}{2} \right); \quad (k = \overline{1, N}; \ t \in (-1, 1)) \\ l_{2}(t) &= F_{2} \left(\lambda^{(2)} t + \frac{\delta + \gamma}{2} \right); \quad (t \in (-1, 1)) \end{split}$$

$$\lambda_m^{(1)} = (\beta_m - \alpha_m)/2, \quad (m = \overline{1, N}); \quad \lambda^{(2)} = (\delta - \gamma)/2,$$

а условия (9), (13) - в следующие условия:

$$\int_{-1}^{1} \varphi_{k}(u) du = 0; (k = 1, N);$$

$$\int_{-1}^{1} \psi(u) du = P_{0} + T_{0}; P_{0} = \frac{2\left(P_{2}^{(0)} - P_{1}^{(0)}\right)}{\delta - \gamma}; T_{0} = \int_{-1}^{1} \tilde{T}_{1}(u) du.$$
(18)

К системе СИУ (17) при условиях (18) применим изложенный в [12–14] метод решения СИУ, полагая

$$\varphi_k(t) = \frac{x_k(t)}{\sqrt{1-t^2}} \quad (-1 < t < 1, \ k = \overline{1, N}); \ \psi(t) = \frac{y(t)}{\sqrt{1-t^2}} \quad (-1 < t < 1),$$

где $x_k(t)$ и y(t)-функции, принадлежащие гельдеревскому классу функций на отрезке [-1,1], а затем выберем произвольное натуральное число M. Далее, следуя известной процедуре [11], систему (17) при условиях (18) сведем к следующей СЛАУ:

$$\begin{cases} \frac{1}{M} \sum_{n=1}^{M} \frac{x_{k}(u_{n})}{u_{n}-t_{r}} + \frac{1}{M} \sum_{\substack{m=1 \ m\neq k}}^{N} \sum_{n=1}^{M} K_{km}^{(1)}(t_{r},u_{n})x_{m}(u_{n}) + \frac{1}{M} \sum_{m=1}^{N} \sum_{n=1}^{M} K_{km}(t_{r},u_{n})x_{m}(u_{n}) - \frac{\mu_{1}(\mu+1)}{M} \sum_{n=1}^{M} Q_{k}(t_{r},u_{n})y(u_{n}) = l_{1k}(t_{r}); \quad (k = \overline{1,N}; \quad r = \overline{1,M-1}) \\ \sum_{n=1}^{M} x_{k}(u_{n}) = 0; \quad (k = \overline{1,N}) \\ \frac{1}{M} \sum_{m=1}^{N} \sum_{n=1}^{M} \hat{Q}_{m}(t_{r},u_{n})x_{m}(u_{n}) - \frac{\mu_{1}}{M} \sum_{n=1}^{M} \frac{y(u_{n})}{u_{n}-t_{r}} - \frac{\mu_{1}}{M} \sum_{m=1}^{N} \sum_{n=1}^{M} \hat{K}(t_{r},u_{n})y(u_{n}) + \frac{\pi(\delta-\gamma)}{4\overline{h_{1}}M} \sum_{n=1}^{M} \operatorname{sign}(u_{n}-t_{r})y(u_{n}) = l_{2}(t_{r}); \quad (r = \overline{1,M-1}) \\ \frac{\pi}{M} \sum_{n=1}^{M} y(u_{n}) = P_{0} + T_{0}, \end{cases}$$

отсюда определяются неизвестные $\{x_k(u_n)\}$ $(k = \overline{1, N}; n = \overline{1, M})$ и $\{y(u_n)\}$ $(n = \overline{1, M})$. Здесь

$$u_n = \cos\left(\frac{2n-1}{2M}\pi\right); \quad \left(n = \overline{1,M}\right), \qquad t_r = \cos\left(\frac{\pi r}{M}\right); \quad \left(r = \overline{1,M-1}\right) \quad (19)$$

чебышевские узлы, т.е. корни, соответственно, уравнений $T_M(u) = 0$, $U_{M-1}(t) = 0$ где $T_M(u)$ и $U_{M-1}(t)$ - многочлены Чебышева первого и второго родов соответственно.

Перейдем к определению КИН разрушающих касательных напряжений в концевых точках a_k , b_k трещин $(a_k; b_k)(k = \overline{1, N})$. Если в известных формулах для КИН однородного тела в случае антиплоской деформации [15] модуль сдвига заменить приведенным модулем сдвига, то для КИН кусочно-однородного тела получим следующие формулы [15]:

$$K_{III}(a_{k}) = \frac{G_{+}}{1+\mu} \lim_{x \to a_{k}+0} \sqrt{2\pi (x-a_{k})} \phi(x);$$

$$K_{III}(b_{k}) = -\frac{G_{+}}{1+\mu} \lim_{x \to b_{k}-0} \sqrt{2\pi (b_{k}-x)} \phi(x). \qquad (\mu = G_{+}/G_{-})$$
(20)

В безразмерной форме формула (20), в соответствии с (15) примет вид

$$K_{III}^{0}(a_{k}) = \frac{K_{III}(a_{k})}{\sqrt{\pi |a_{1}|}G_{+}} = \frac{\sqrt{\lambda_{k}^{(1)}}}{1+\mu} x_{k}(-1); \quad (k = 1, N),$$

$$K_{III}^{0}(b_{k}) = \frac{K_{III}(b_{k})}{\sqrt{\pi |a_{1}|}G_{+}} = -\frac{\sqrt{\lambda_{k}^{(1)}}}{1+\mu} x_{k}(1); \quad (k = 1, N).$$
(21)

Входящие в (21) значения $x_k(\pm 1)$ функции $x_k(t)$ определяются при помощи интерполяционного многочлена Лагранжа по чебышевским узлам (19) и выражаются формулами [12]:

$$x_{k}(1) = \frac{1}{M} \sum_{n=1}^{M} (-1)^{n+1} x_{k}(u_{n}) \operatorname{ctg}\left(\frac{2n-1}{4M}\pi\right);$$

$$x_{k}(-1) = \frac{1}{M} \sum_{n=1}^{M} (-1)^{M+n} x_{k}(u_{n}) \operatorname{tg}\left(\frac{2n-1}{4M}\pi\right); \quad (k = 1, N).$$

Для безразмерных раскрытий трещин $W_k(t)$ с учетом (15) можем записать [12]:

$$w_{k}(t) = \int_{-1}^{t} \frac{x_{k}(\eta) d\eta}{\sqrt{1 - \eta^{2}}} = \frac{\pi}{M} \sum_{u_{n} \le t} x_{k}(u_{n}); \quad (-1 \le t \le 1).$$

$$w_{k}(t) = \frac{2}{b_{k} - a_{k}} \hat{w}_{k} \left(\frac{b_{k} - a_{k}}{2}t + \frac{b_{k} + a_{k}}{2}\right); \quad (-1 \le t \le 1).$$
(22)

где $\hat{w}_k(x)$ раскрытия k -того трещины.

Рассмотрим частный случай, когда на линии соединения разнородных полос содержится одна трещина L = (-a, a), (a > 0). Предположим, что на берегах трещины действуют одинаковые напряжения $\tau_{+}^{(1)}(x) = \tau_{-}^{(1)}(x) = \tau(x)$ $(x \in L)$. В этом частном случае система (17) запишется в виде:

$$\begin{cases} \frac{1}{\pi} \int_{-1}^{1} \frac{\tilde{\varphi}(u)du}{u-t} + \frac{1}{\pi} \int_{-1}^{1} \tilde{K}(u-t)\tilde{\varphi}(u)du - \\ -\frac{\mu_{1}(\mu+1)}{\pi} \int_{-1}^{1} \tilde{Q}(t,u)\tilde{\psi}(u)du = -\frac{(\mu+1)^{2}}{\mu}\tau_{0}(t); \quad (t \in (-1,1)) \\ \frac{1}{\pi} \int_{-1}^{1} \hat{Q}(t,u)\tilde{\varphi}(u)du - \frac{\mu_{1}}{\pi} \int_{-1}^{1} \frac{\tilde{\psi}(u)du}{u-t} - \frac{\mu_{1}}{\pi} \int_{-1}^{1} \hat{K}(u-t)\tilde{\psi}(u)du + \quad (t \in (-1,1)) \\ + \frac{\delta-\gamma}{4\overline{h}_{1}} \int_{-1}^{1} \operatorname{sign}(u-t)\tilde{\psi}(u)du = \frac{P_{1}^{(0)} + P_{2}^{(0)}}{2\overline{h}_{1}} + \frac{\delta-\gamma}{4\overline{h}_{1}} \int_{-1}^{1} \operatorname{sign}(u-t)\tilde{T}_{1}(u)du. \end{cases}$$

$$(23)$$

где

$$\begin{split} \tilde{\varphi}(t) &= \varphi\left(at\right); \quad \tilde{\psi}(t) = \frac{1}{G_{+} + G_{-}} \psi\left(at\right); \ \tau_{0}(t) = \frac{1}{G_{+} + G_{-}} \tau\left(at\right); \quad (-1 < t < 1) \\ \tilde{K}(u-t) &= \int_{0}^{\infty} \frac{\mu \operatorname{th}(\lambda \overline{h}_{+})[1 - \operatorname{th}(\lambda \overline{h}_{-})] - [1 - \operatorname{th}(\lambda \overline{h}_{+})]}{\mu \operatorname{th}(\lambda \overline{h}_{+}) \operatorname{th}(\lambda \overline{h}_{-}) + 1} \operatorname{sin} \lambda(u-t) d\lambda; \\ \tilde{Q}(t,u) &= \frac{\rho_{1}}{2} \int_{0}^{\infty} \frac{1}{\operatorname{ch}\left(\lambda \overline{h}_{+}\right) \left[\mu \operatorname{th}(\lambda \overline{h}_{+}) \operatorname{th}(\lambda \overline{h}_{-}) + 1 \right]} \cos \lambda \left(\rho_{1}u - t + \rho_{2}\right) d\lambda; \\ \hat{Q}(t,u) &= \int_{0}^{\infty} \frac{1}{\operatorname{ch}\left(\lambda \overline{h}_{+}\right) \left[\mu \operatorname{th}(\lambda \overline{h}_{+}) \operatorname{th}(\lambda \overline{h}_{-}) + 1 \right]} \cos \lambda \left(u - \rho_{1}t - \rho_{2}\right) d\lambda; \\ \hat{K}(u-t) &= \int_{0}^{\infty} \frac{\left(1 - \operatorname{th}\left(\lambda \overline{h}_{-}\right)\right) \left[\mu \operatorname{th}(\lambda \overline{h}_{+}) - 1 \right]}{\mu \operatorname{th}(\lambda \overline{h}_{+}) \operatorname{th}(\lambda \overline{h}_{-}) + 1} \sin \lambda(u-t) d\lambda; \\ \mu &= \frac{G_{+}}{G}; \ \mu_{1} = \frac{G_{1}}{G_{+}}; \ \rho = \frac{\delta - \gamma}{4\overline{h}_{+}}; \ \rho_{1} = \frac{\delta - \gamma}{2}; \ \varepsilon = \frac{\delta + \gamma}{2}, \end{split}$$

а

Далее, как и в общем случае, из системы (23) и условий на щели
$$(-a, a)$$
 и стрингере (c, d) , из (9) и (13) будем иметь СЛАУ:

$$\begin{cases} \frac{1}{M} \sum_{m=1}^{M} \left[\frac{1}{u_m - t_r} - \tilde{K}(u_m - t_r) \right] x(u_m) - \frac{\mu_1(\mu + 1)}{M} \sum_{m=1}^{M} \tilde{Q}(t_r, u_m) y(u_m) = \\ = -\frac{(\mu + 1)^2}{\mu} \tau_0(t_r); \quad (r = \overline{1, M - 1}) \\ \sum_{m=1}^{M} x(u_m) = 0; \\ \frac{1}{M} \sum_{m=1}^{M} \hat{Q}(t_r, u_m) x(u_m) + \frac{1}{M} \sum_{m=1}^{M} \left[\frac{\mu_1}{u_m - t_r} + \mu_1 \hat{K}(u_m - t_r) - (r = \overline{1, M - 1}) \right] \\ - \frac{\pi \rho}{M} \operatorname{sign}(u_m - t_r) \left[y(u_m) = \frac{P_1^{(0)} + P_2^{(0)}}{2\overline{h_1}} + \rho \int_{-1}^{1} \operatorname{sign}(u - t) \tilde{T}_1(u) du; \\ \frac{\pi}{M} \sum_{n=1}^{M} y(u_n) = P_0 + T_0. \end{cases}$$

$$(24)$$

где u_m и t_r соответствующие чебышевские узлы из (19). В этом случае формулы (21) для безразмерных КИН в точках – а и а преобразуются к виду:

$$K_{III}^{(0)}(-a) = \frac{1}{\mu+1} x(-1); \quad K_{III}^{(0)}(a) = -\frac{1}{\mu+1} x(1).$$
(25)

Далее, для простоты примем $au_0(t) = 0.01$ и $P_1^{(0)} / \overline{h_1} = P_2^{(0)} / \overline{h_1} = 0.01$ $ilde{T}_1(t) \equiv 0.01$. Тогда, после решения системы (24), при разных значениях параметров $\overline{h}_{\!_+}, \overline{h}_{\!_-}, \mu, \mu_1, \rho, \rho_1, \epsilon$, находим соответствующие значения КИН в концевых точках трещины по формулам (25) и соответствующее раскрытие трещины по формуле (22). Таблица 1 Значения КИН $K^0_{...}(\pm a)$ ($\mu = 0.5, \mu = 10, \overline{h} = 5, \overline{h} = 1, \rho = \rho_1 = 1$)

		11		• • 1			• 1 /
	ε	-15	-10	-7	-4	-2	0
	$K_{III}^0(-a)$	0.0282	0.0263	0.0232	0.0175	0.0141	0.0131
	$K^0_{III}(a)$	0.0284	0.027	0.0245	0.0197	0.0156	0.0131
I	3	2	4	7	10	15	18

|--|

3	2	4	7	10	15	18	
$K^0_{III}(-a)$	0.01517	0.01927	0.02434	0.0269	0.0284	0.02865	
$K^0_{III}(a)$	0.0137	0.0171	0.02291	0.0262	0.0282	0.02858	
	$\mathbf{U}_{\mathbf{U}}$						

Вычисленные по формулам (25) значения КИН $K_{III}^0(-a)$ и $K_{III}^0(a)$ в зависимости от параметра є (є∈[-15,18]) (при этом длина стрингера является постоянной) при фиксированных значениях параметров $\overline{h}_+, \overline{h}_-, \mu, \mu_1, \rho, \rho_1$ приведены в таблице 1. Следует отметить, что увеличение параметра ε можно интерпретировать как перемещение стрингера слева направо.

Значения КИН $K_{III}^0(-a)$, $K_{III}^0(a)$ имеют минимальное значение при $\varepsilon = 0, [c,d] = [-a,a]$, т.е. когда трещина и стрингер расположены одинаковы, притом оба значения КИН при возрастании параметра $\varepsilon < 0$ уменьшаются, и $K_{III}^0(-a)$ всегда меньше, чем $K_{III}^0(a)$, а при возрастании параметра $\varepsilon > 0$ значение КИН возрастают и $K_{III}^0(-a)$ всегда больше, чем $K_{III}^0(a)$.

Вычисленные по формуле (22) безразмерные раскрытия трещины $w_1(t)$ для различных значений параметра ε и при фиксированных значениях $\mu = 0.5, \mu_1 = 10$, $\overline{h_+} = 5, \overline{h_-} = 1, \rho = \rho_1 = 1$ графически изображены на рис. 1. По мере изменения $\varepsilon \rightarrow 0$ эти графики спускаются вниз, приближаясь к предельной кривой при $\varepsilon = 0$. На рис. 2 также изображены безразмерные раскрытия трещины $w_1(t)$ для различных значений параметра μ при фиксированных значениях $\mu_1 = 10, \overline{h_+} = 5, \overline{h_-} = 1, \rho = \rho_1 = 1, \varepsilon = 5$. В этом случае получается, что раскрытие трещины минимальное, когда полоса однородная.

ЛИТЕРАТУРА

- Melan E. Ein Beitrag zur Theorie geschweister Verbindungen. Ingr. Arch., 1932, Bd. 3, No 2, S. 123–129.
- 2. Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974, 640с.
- 3. Попов Г.Я. Концентрация упругих напряжений возле штампов, разрезов, тонких включений и подкреплений.-М.: Наука, 1982, 344с.

- 4. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М: Наука, 1974, 456с.
- 5. Александров В.М., Мхитарян С.М. Контактные задачи для тел с тонкими покрытиями и прослойками. М: Наука, 1983, 488с.
- 6. Hakobyan V.N. Stress concentration near defects in homogeneous and compound bodies. LAP LAMBERT Academic Publishing, Germany, 2011, 148p.
- Grigoryan N.V., Mkrtchyan M.M. On the Interaction at Anti-Flat Deformation of Stress Concentrators of the Type of Cracks and Stringers with Regard to the Layer Manufactured from Miscellaneous Materials. Key Engineering Materials, 2019, v. 828, pp. 81-88.
- 8. Zhang B. et al. Stress intensity factors and plastic zones of stiffened panels with multiple collinear cracks. Theoretical and Applied Fracture Mechanics, 2020, T. 110, C. 102816.
- Matur M. S. et al. Numerical Analysis of Flat Panel Composite Material for Two-Bay Crack Arrest Competency with Fractured Central Longeron. Journal of The Institution of Engineers (India), Series D, 2024, C. 1-12.
- Мхитарян С.М. О двух смешанных задачах, связанных с вопросами взаимодействия концентраторов напряжений различных типов с массивными телами при антиплоской деформации. В.сб.: Механика деформируемого твердого тела, Ереван. Изд–во НАН Армении, 1993, Стр. 129–143.
- Манукян Э.А., Мкртчян М.С. Об антиплоской задаче кусочно-однородного упругого слоя, содержащего на линии спая систему щелей и абсолютно жестких тонких включений. Известия НАН РА Механика, т.63, № 2, 2010, стр. 21-33.
- 12. Панасюк В.В., Саврук М.П., Дацышин А.П. Распределение напряжений около трещин в пластинах и оболочках. Киев: Наукова думка, 1976, 443с.
- Erdogan F., Gupta G.D., Cook T.S. The numerical solutions of singular integral equations. Methods of Analysis and solution of Crack Problems; pp. 368-425. Noordhoff Intern. Publ., Leyden, 1973.
- 14. Theocaris P.S., Iokamidis N.I. Numerical Integration Methods for the solution of singular Integral Equations. Quart. Appl. Math., vol XXXV, No1, pp. 173-185, 1977.
- Саврук М.П. Коэффициенты интенсивности напряжений в телах с трещинами.-Механика разрушения и прочность материалов. Спр. пособие под общей редакции В.В. Панасюка, т. 2, Киев: Наукова думка, 1988, 619с.

Сведения об авторах:

Мкртчян Мгер Мушегович, млад. науч. сотр. Института механики НАН РА, E-mail: <u>mmher628@gmail.com</u>

Мкртчян Мушег Сережаевич, – к.ф.м.н., вед. науч.сотр. Института механики НАН РА, Тел.: +374 98 801956, E-mail: <u>muscheg-mkrtchyan@rambler.ru</u>

Поступила в редакцию 7 июня 2024г.