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Pacuinpenue 3anpeTHBIX 30H YacTOT B ajIke ¢ NePHOANYECKUMH BHYTPEHHUMM IHAPHUPAMH, BHELIHUMH
0NOpaMH M NPHCOEINHEHHBIMH MACCAMHU

TIpencraBieH CpaBHUTEIbHBIH aHAIN3 MeXaHH3Ma (OPMHPOBAHUS 3AMPETHBIX 30H YacTOT B OJHOPOJHBIX
[pPEIBAPUTEIPHO HAMPSDKCHHBIX Oalkax C MEPHOAMYCCKHMH BHEIIHUMHU OIOPAaMH, IMIAPHUPAMH ¥ IIPHKPEI-
JNeHHBIMH MaccaMu. Ha ocHoBe teopunm Drioke MOTyYCHBI AaHAIMTHYECKUE BBIpaXEHHS Ul (YHKINH,
OIIPEAEIAIONICH CTPYKTYpY 3allpeTHBIX 30H. PAacCMOTPEHO HECKOJBKO MEPHUOANYECKHUX TOIOJIOTMYECKHX CHCTEM:
MeTa Oasika ¢ IPOMEKYTOUHBIMU BHEITHHMH ONOPAMH U IPHKPEIUICHHBIMHA MAacCaMH, MeTa 0ajka ¢ BHyTPEHHUMU
HIapHUPAMHU B T1ape ¢ MaccaMu. [ IepHoANYECKUX CTPYKTYP BBIBEACHBI JUCIIEPCHOHHBIC YPaBHEHUS 3aIPETHBIX
30H, IOCTPOEHBI M INPOAaHAIM3UPOBAHBI JUCIICPCHOHHBIE KpHBBIC. B crarhe HOBH3HOH SIBISIOTCS PE3yJbTaThI,
KacaloINecsl PaclIMpeHUs] Pe30HAHCHOM MOJIOCH! (POHOHHBIX 3aNpeIlCHHBIX 30H MeTa OalKi 3a CYET CIMSHUS
pa3enbHBIX MHOXECTB 3aIPETHBIX 30H, TCHEPHPYEMBIX BHYTPEHHHMH I[IapHUPAMH WIA BHCIIHUMH
IIPOMEKYTOUYHBIMU OTIOPAMH C IIPUKPEITIEHHBIMU MacCaMu.

KaroueBble ciioBa: TIEPUOUIECCKHUE CTPYKTYPBI, TECOPUA <1>n01<e, MHOTOITPOJIETHBIE 6am<14, LIapHUPBHI, 3aIIPETHBIC
30HBI, IPUCOCTUHEHHBIE MACCHI.
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A comparative analysis is presented of bandgap formation mechanism in homogeneous
prestressed beams with periodic external supports, hinges and attached local masses. Based
on the Floquet theory the analytical expressions are derived for deviation functions defining
bandgap structure. Several periodic topological structures are considered: meta beams with
intermediate external supports and attached masses, internal hinges paired with masses. For
periodic structures the band gap dispersion equations are derived, dispersion curves are
plotted and analyzed. The innovation in this paper is the results concerning widening of the
resonant bandwidth of a meta beam phononic bandgaps by merging of multiple separated
bandgaps generated by the internal hinges or external intermediate supports with attached
masses.

Introduction

In this paper, we investigate the problem of bandgaps for flexural waves in infinite
homogeneous pre tensioned meta beam with periodically attached masses, internal hinges
and external support for the purpose of using such meta beams in energy harvesting
applications.

In recent years has been growing interest in meta material thin-walled structures as
plates and beams widely used in piezoelectric energy harvesting systems [1-13].

The problems of localization of electro elastic waves in periodic piezoelectric beams
and applications in vibration energy harvesting are studied in [11,12] where it is shown that
the flexural vibration energy within bandgaps may be localized in the cells and can be used
for energy harvesting.

Locally resonant meta beams usually have narrow bandgaps, which significantly limits
its applications in engineering devices. Various approaches have been proposed to broaden
the frequency range of meta materials ‘bandgaps.

Among them is an optimization method based on the genetic algorithm proposed in [14]
to broaden bandgaps in multi-resonant piezoelectric metamaterial through the merging of
multiple separated bandgaps.

The hybrid metastructure consists of a piezoelectric bimorph cantilever with segmented
electrodes shunted to resonant circuits and flexural resonators is considered in [15 ] were is
fixed the possibility of increasing gap bandwidth by merging separate mechanical and
electromechanical bandgaps.

The new approach suggested in [16] concerning widening of the resonant bandwidth of
a piezoelectric harvester based on phononic band gaps generated by internal hinges.

In [17 it is shown that in a multi-span beam rested on periodic rigid and elastic supports
the tensive and compressive axial forces sufficiently widening the multiple bandgaps of the
flexural waves. The widening of the bandgaps occurs also with increasing the stiffness of
the rotational spring attached to an elastic support.

The problem of reducing vibration transmittance in low-frequency regimes and over a
broad frequency range through the resonance-Bragg band gap coupling phenomena in
metamaterial rod is considered in [18].

Flexural frequency multiple bandgaps in metamaterial beams can be generated in many
ways.

Bandgap formation due to Bragg’s scattering in periodic beam consisting of two or
more kinds of materials are discussed in [19,20].

Bandgap formation in strings and beams with periodic local resonators or periodic
supports are considered in [21-23].
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Effects caused by bandgaps in the piezoelectric periodic meta beams are studied in
[24,25].

The review of the most recent developments in piezoelectric energy harvesting methods
for converting localized mechanical wave energy into electrical energy using artificially
designed mechanical structures are given in [26].

Governing equations and solutions

This section presents the basic dynamics equations, interface relations and solutions of an
Euler meta beam tensioned by an axial force. Tthree configurations of a periodic infinite
meta beam are considered: beam with periodic attached masses (M), beam with periodic
internal hinges paired with masses (MH), beam rested on periodic external supports when
at equal distance from suppoorts attached masses are located (MS).
Transverse vibration of the Euler beam is given by the following equation
o'w oW oW

0 +p4 =0; )
oz

EI
oz* or’

where W(Z,l‘) is the defection of beam, EI,p, A denote the flexural rigidity, the mass

density per unit volume and the cross-sectional area, respectively, O >0is the axial
tension force .
Consider W(Z,t) in the form

W(z,t)=U(z)exp(io?) 2
where ® is the circular frequency, U (Z ) is the amplitude function.

. . . . -1 . . L
Introducing the dimensionless coordinate X = zd , solutions for amplitude functions in a

beam repeated elementary unit cell x € (n -1, n) can be written as

U, (x) = A,, sin(px) + A,, sinh(gx) + 4, cos(px) + A,, cosh(gx)

:\/\/F2+4Qz+F :\/ F>+4Q° - F )
q 7 Ny 7 ;

Here QQ and F
2 74 2

Q2:(ndpA;F:dQ @
EI EI

are dimensionless notations of frequency and tensile force.

In (3) superscripts (i) denote segments
(-)>xe(n-1,n-1/2), (+) > xe(n-1/2,n)
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Beam with periodic attached masses (M)
Consider the beam in the basic unit cell x € (n - l,n) with masses m located at points

X, =n—1/2. Contact conditions at point x, =n—1/2 are the conditions of the

continuity in displacement, slope and moment of beam

dU.(x,) _dU_(x) d°U,(x) _d°U_(x,)

U,.(x)=U_(x,), , 5
(%) =U.(%) dx dx dx* dx? ©)
and the balance of shear force
d’U. (x d’U (x md’®*
o) _GOL0) MO (1) = w0, (x) ©)

dx’ dx’ EY
Here the dimensionless parameter |1 = m(pAd)~" determines the ratio of the

attached mass to the mass of a beam of length d .
At the end points of the periodic basic unit cell the Floquet conditions will be applied [19]

dU.(n)_, dU(n-1)  dU.(n)_ dU (n-1)

dx’ dx’ ’ dx’ dx’

dU,(n) _dU (n-1) ”
A Ty (n) =AU (n-1)
dx dx

Here A =exp(ikd) , k is the Floquet wave number.

Applying to the solutions (3) the contact (5,6) and the Floquet conditions (7) we get the
equation determining the Floquet wave number

B(1+2*)+y(A*+1)+ ok’ =0 )
where

a=-2p(p’q+nQ’ cos(p)sinh(q)+q° ) ~4pq( p* +4” ) cos(p) cosh(q) +

+2ug<¥’ sin( p) cosh(q),

B=-pa(p’+7°),

Y=2pq(p” +4)cos(p)+2pq( p* +4" ) cosh(q) +n(~q)¥’ sin(p) + wpQ’ sinh(g);

A similar type of this equation has been obtained and discussed in [27] for a vibrating
piecewise bi-material periodic beam.

Taking into account A = eXp (ikd ) the equations (8) can be written as
oL+ 2B cos(2kd ) + 2y cos(kd) = a.— 2P + 4B cos® (kd ) + 2y cos(kd) = 0

Solving it we get

cos(kd) =m(Q,0,n)

_ _ 2, .2 ©
H(Q:Q,H)= yi\/ 40;[?;8[3 +y
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Solutions (9) define the two Floquet spectrum of beam frequencies. When there are no
masses L =0 then solutions are cos(kd) —> cos(p),cos(kd) — cosh(q)

Since the Euler—Bernoulli beam vibration equation is not hyperbolic, one of the spectrum is
the Floquet pseudo spectrum [27] which corresponds to the limiting case

cos(kd) — cosh(q).

Beam with periodic internal hinges paired with attahed masses (MH)
Consider the beam in the basic unit cell x € (n —l,n) with internal hinges and paired

masses 7 located at points x, =n—1/2 .

In this case the contact conditions at point X, =7 — 1/ 2 are conditions of the continuity in

displacement, namely the first of equation (5), and the balance of shear force (6). Besides
these conditions we have the conditions that at the hinges are zero moments

AU, (x) . dU.(x,)
dx’ dx’
Applying to the solutions (3) contact conditions (5,6) and the Floquet conditions (7) and

condition (10) we get the equation determining the Floquet wave number A

(W +1) pa( pg’ sinh(g) ~ p'gsin(p)) +

+x(2 pgsin(p)cosh(q) +pC¥ ( p* +4° )sin(p)sinh(g) ~ 2 pg" cos(p) sinh(q)) =0
Solving it we get

cos(kd) =n(2,0,1)

6 0.1 22" a5in(p)cosh(a)~2pg" cos(p)sinblq) +uCY (p° +4° sin(p)sinh(q) (')
n0n)= 2p'qsin(p)—2pq’ sinh(q)

—0, ) (10)

)

Beam rested on periodic external supports with periodic masses (MS)
Consider the beam in the basic unit cell x € (n -1, n) rested at points X =n—1,x=n

on external supports, when at x, =#n — 1/ 2 the masses are attached.

In this case the contact conditions (5,6) are valid, together with these conditions we have to
consider the following Floquet conditions

U,(n)=0,U_(n-1)=0

dU+(n)_de_(n—1) d2U+(n)_kd2U_(n—1) (13)
dx dx Toax dx’

Applying conditions (5,6,13) to solutions (3) we have the equation determining the Floquet
wave number

(A2 +1) f+gr=0 (14)
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Solving (14) we get

cos (kd ) =1 (Q,0,u), n(Q,Q,u)z—% (15)

where

f=2pq(p2+q2)[psinh(q>—qsin(p)+zu92 [qsin@—psinh(jjjj

g=4pq(p* +)(gsin(p) cosh(g) - pcos(p)sinh(g)) +

2407 (cosh(q)((qz ~p)eos(p)-7') +p(4q sin [g’]sinh @ +2gsin(p)sinh(q) +pcos(p>D;

Deviations functions 1 (Q, 0, u) in (9),(12),(15) define the bandgaps of eigenfrequencies

Q) were the flexural waves cannot propagate, when |T](Q,Q,],t)| >1 (values of k are

complex). The stopband edges of -eigenfrequencies are given by condition

n(Q.0.n)=1

Discussion, numerical results

The imaginary parts of the Floquet wave number Im(kd) define the attenuation of the
flexible waves whose frequencies are inside the bandgaps, while the real part of the Floquet
wave number Re(kd) defines the dispersion of the flexible waves, whose frequencies are
outside the bandgaps. The lowest contours of the attenuation curves, where Im(kd) — 0
define the maps of the first bandgap frequencies.

On Figures 1,2,3 the attenuation curves Im(kd) versus frequency €2 are plotted,
illustrating the variation of bandgap widths for M, MH and MS configurations. For these
configurations the two different plots are presented when tension is O =0or O =40.

(For interpretation of the references to color in the figure’s legend, the reader is referred to
the web version of this article.)
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Figl. Maps of the first bandgaps of M beams
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As follows from the plots of Fig.1 in the case of M beams the increase of attached mass
sufficiently widens the first gap widths (approximately two times) shifting the gap to the
low frequency band. The increase of tensile force also expands the first gap widths but
dislocating it to the high frequency band.

In the cases of MH and MS beams the increase of the attached mass slightly widens the
first gap widths. Increasing the tensile force expands the first gap width shifting it to the
high frequency band.

20
= MH, p=0.3,0=0 [ = MH, y=0.3,Q=40

~ 15
g — MH, p=0.2,0=0 B — MH, p=0.2,0=40
=15 =
E 7 MH,4=0,Q=0 E MH, 4=0,0=40
= g
2 ko)
e S 10
o I3 t
8 1.0 8
§ §
s s
S S
0.5+
§ o5 3
< <
0.0 - . R R . 0.0
10 20 30 40 50 30 35 40 45 50 55 60
Dimensiomless frequency Q Dimensiomless frequency Q

Fig2. Maps of the first bandgaps of MH beams
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Fig.4 Maps of the first bandgaps of M,MH, MS beams

On the Fig.4 for comparison the maps of first bandgaps of M, MH and MS beams are
presented when tensions are 9 =0and O =40. On Fig.5 maps of the first, second and
third bandgaps of M,MH, MS beams are presented.
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Fig.5 Maps of the first, second and third multiple bandgaps of M,MH, MS beams

Obviously as follows from Fig.5 the results obtained for first bandgap are valid for all
multiple subsequent gaps of M, MS, MH beams

Conclusions

The analysis of the band gaps structures of the meta beams based on the plots of Fig. 1-5
can be summarized as follows:

o In M beams increasing the attached mass sufficiently widening the gap bandwidth
and shifting the vibration band gaps to low-frequency regions.

o Increasing tensile force magnitude slightly increases the bandwidth of M, MH and
MS beams shifting the vibration band gaps to high-frequency regions.

o The bandwidth of the MS beams can be wider than the bandwidth of the MH
beams depending of tensile force magnitude.

o All gaps of the M beams are located within the gaps of the MH and MS beams

o Widening the resonant bandwidths of a meta beam harvester with phononic band
gaps generated by internal hinges and external supports is more significant than
widening of the resonant bandwidths due to increase of the attached masses
values.

o The impact of the masses on the gap formation is insignificant in this meta
structure with internal hinges and support.

o All results obtained for first bandgap are valid for all subsequent bandgaps of M,

MS and MH beams
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