ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

77, №2, 2024

Механика

УДК 539.3

DOI: 10.54503/0002-3051-2024.77.2-25

СВЕРХЗВУКОВОЙ ФЛАТТЕР ПАНЕЛИ УМЕРЕННЫХ РАЗМЕРОВ С ОДНИМ СВОБОДНЫМ КРАЕМ, ПЕРВОНАЧАЛЬНО НАГРУЖЕННОЙ ПО ДВУМ НАПРАВЛЕНИЯМ: СЖАТОЙ ПО ПОТОКУ ГАЗА И РАСТЯНУТОЙ В ПЕРПЕНДИКУЛЯРНОМ НАПРАВЛЕНИИ

Мартиросян С. Р.

Ключевые слова: прямоугольная пластинка, первоначальные сжимающие и растягивающие силы, аэроупругая устойчивость, сверхзвуковая дивергенция и флаттер, сосредоточенные инерционные массы и моменты, аналитическое решение

Martirosyan S.R.

Supersonic flutter of a moderate sized panel with a free edge, initially loaded in two directions: compressed along the gas flow and stretched in the perpendicular direction

Key words: rectangular plate, initial compressive and tensile forces, aeroelastic stability, supersonic flutter, supersonic divergence, concentrated inertial masses and moments, analytical solution method

By analyzing, as an example, a thin elastic plate of a moderate sized, initially loaded in two directions: compressed along supersonic the gas flow and stretched in the perpendicular direction, we study the influence of the initial stress state of the plate on the stability of the unperturbed equilibrium state of the dynamical system "plate – flow" under the assumption of presence of concentrated inertial masses and moments on its free edge. An analytical solution of the problem of stability is obtained. An accurate assessment of the influence of initially loading forces on the stability of the system is given.

Մարտիրոսյան Ս.Ռ.

Գազի հոսքի ուղղությամբ նախապես սեղմված և ուղղահայաց ուղղությամբ ձգված մեկ ազատ եզրով միջին չափերի ուղղանկյուն սալի գերձայնային ֆլատերի մասին

Հիմնաբառեր՝ ուղղանկյուն սալ, սեղմող և ձգող ուժեր, առաձգական կայունություն, գերձայնային ֆլատեր և դիվերգենցիա, իներցիոն զանգվածներ և մոմենտներ, անալիտիկ լուծման եղանակ

Ուսումնասիրված է գերձայնային գազի հոսքում շրջհոսման ուղղությամբ նախնական սեղմված և միաժամանակ ուղղահայաց ուղղությամբ ձգված մեկ ազատ եզրով առաձգական բարակ ուղղանկյուն սալի նախնական լարվածային վիճակի ազդեցությունը «սալ–հոսք» դինամիկ համակարգի չգոգրված հավասարակշռության վիճակի կայունության վրա։ Ենթադրվում է, որ սալի ազատ եզրին առկա են կենտրոնացված իներցիոն զանգվածներ և մոմենտներ։ Մտացված է կայունության խնդրի անալիտիկ լուծումը։ Գնահատված է նախնական ուժերի ազդեցությունը «սալ–հոսք» համակարգի կայունության վրա։

В статье, в линейной постановке, исследуется влияние первоначального напряжённого состояния тонкой упругой прямоугольной пластинки умеренных размеров, нагруженной по двум направлениям сжимающими и растягивающими силами, на устойчивость невозмущённого состояния равновесия системы "пластинка–поток" в предположении, что сверхзвуковой поток газа набегает на свободный край пластинки, на котором имеются сосредоточенные инерционные массы и моменты. Получено

аналитическое решение задачи устойчивости. Дана точная оценка влиянию первоначальных усилий на устойчивость системы.

Введение. Рассмотрение задач аэроупругой устойчивости при комбинированном нагружении имеет важное прикладное и теоретическое значение [1 - 4].

В предлагаемой статье исследуется влияние первоначального напряжённого состояния прямоугольной пластинки умеренных размеров с одним свободным и с тремя шарнирно закреплёнными краями на устойчивость невозмущённого состояния равновесия динамической системы «пластинка–поток» в предположении: прямоугольная пластинка первоначально нагружена сжимающими силами по потоку газа и растягивающими – в перпендикулярном направлении; сверхзвуковой поток газа набегает на её свободный край, на котором имеются сосредоточенные инерционные массы и моменты.

Получено аналитическое решение задачи устойчивости системы «пластинкапоток» с помощью алгоритма, подробно изложенного в [12, 14].

Показано, что невозмущённое состояние равновесия системы теряет как статическую устойчивость, так и динамическую, соответственно, в виде эйлеровой, а также, не эйлеровой дивергенции панели, и в виде панельного флаттера. Определены «опасные» и «безопасные» границы области устойчивости [11].

Дана точная оценка влиянию соотношения первоначальных сжимающих и растягивающих сил на порог устойчивости невозмущённого состояния равновесия системы, в зависимости от её «существенных» параметров и от относительной толщины пластинки.

Применённый метод аналитического исследования позволяет не только установить условия возникновения панельного флаттера, но и даёт возможность предсказать последующее развитие колебаний.

Результаты работы могут быть использованы при обработке данных экспериментальных исследований дивергенции и флаттера панелей обшивки сверхзвуковых летательных аппаратов на этапе проектирования и при эксплуатации.

Данная статья является обобщением работы [14] и продолжением [16].

1. Постановка задачи. Рассматривается тонкая упругая прямоугольная пластинка, занимающая в декартовой системе координат Oxyz область: $0 \le x \le a$, $0 \le y \le b$, $-h \le z \le h$, $ab^{-1} \in (0.193; 2.9)$. Декартова система координат Oxyz выбирается так, что оси Ox и Oy лежат в плоскости невозмущённой пластинки, а ось Ozперпендикулярна пластинке и направлена в сторону сверхзвукового потока газа, обтекающего пластинку с одной стороны в направлении оси Ox с невозмущённой скоростью V. Течение газа принимается плоским и потенциальным.

Пусть край x=0 пластинки свободен, а края x=a, y=0 и y=b – закреплены идеальными шарнирами. Вдоль свободного края x=0 пластинки приложены сосредоточенные инерционные массы m_c и моменты поворота I_c [2, 8].

Будем полагать, что первоначально, до обтекания, пластинка подвержена действию сжимающих $N_x = 2h\sigma_x$ и растягивающих $N_y = 2h\sigma_y$ сил, распределённых равномерно по кромкам пластинки x = 0, x = a и y = 0, y = b соответственно, являющимися результатом нагрева, или каких – либо других причин; усилия σ_x и σ_y предполагаются постоянными во всей срединной поверхности панели и неменяющимися с изменением прогиба w = w(x, y, t) [1, 2, 5].

Прогиб пластинки w = w(x, y, t) вызывает избыточное давление δp на верхнюю обтекаемую поверхность пластинки со стороны обтекающего потока газа, которое учитывается приближённой формулой «поршневой теории» $\delta p = -a_0 \rho_0 V \frac{\partial w}{\partial x}$, где a_0 – скорость звука в невозмущённой газовой среде, ρ_0 – плотность невозмущён-

ного потока газа [6, 7]. Будем полагать, что прогибы w = w(x, y, t) малы относительно толщины пластинки 2h [1, 5].

Выясним условия, при которых возможна потеря устойчивости состояния невозмущённого равновесия динамической системы «пластинка-поток» в случае, в котором изгиб прямоугольной пластинки обусловлен соответствующими аэродинамическими нагрузками δp , сжимающими усилиями σ_x и σ_y в срединной поверхности пластинки и сосредоточенными инерционными массами m_c и моментами I_c , приложенными вдоль её свободного края x = 0, в предположении, что усилия σ_x и σ_y малы по сравнению с критическими значениями $(\sigma_x)_{cr.}$ и $(\sigma_y)_{pr.}$, где $(\sigma_x)_{cr.}$ усилия, которые могут произвести «выпучивание» пластинки в отсутствии обтекания [1, 13, 14]; $(\sigma_y)_{pr.}$ – усилие, начиная с которого имеет место явление потери устойчивости цилиндрической формы пластинки [9].

Тогда, дифференциальное уравнение малых изгибных колебаний точек срединной поверхности прямоугольной пластинки около невозмущённой формы равновесия в рамках справедливости гипотезы Кирхгофа и «поршневой теории» в предположении малости интенсивности $m\partial^2 w/\partial t^2$ распределённой массы пластинки m в сравнении с интенсивностями $m_c \partial^2 w/\partial t^2$ и $I_c \partial^2 w/\partial t^2$, учитываемых в граничных условиях, будет описываться соотношением [1, 2, 6–8,16]:

$$D\Delta^2 w + N_x \frac{\partial^2 w}{\partial x^2} - N_y \frac{\partial^2 w}{\partial y^2} + a_0 \rho_0 V \frac{\partial w}{\partial x} = 0, \ w = w(x, y, t);$$
(1.1)

 $\Delta^2 w = \Delta(\Delta w), \Delta$ – дифференциальный оператор Лапласа; D – цилиндрическая жёсткость.

Граничные условия, в принятых предположениях относительно способа закрепления кромок пластинки, будут вида [1, 2, 8,16]:

$$D \cdot \left(\frac{\partial^2 w}{\partial x^2} + v \frac{\partial^2 w}{\partial y^2}\right) = I_c \frac{\partial^3 w}{\partial x \partial t^2},$$
(1.2)

$$D \cdot \frac{\partial}{\partial x} \left(\frac{\partial^2 w}{\partial x^2} + (2 - v) \frac{\partial^2 w}{\partial y^2} \right) + N_x \frac{\partial w}{\partial x} = -m_c \frac{\partial^2 w}{\partial t^2} \quad \text{при } x = 0;$$

$$w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0 \quad \text{при } x = a \quad \text{и} \quad w = 0, \quad \frac{\partial^2 w}{\partial y^2} = 0 \quad \text{при } y = 0 \quad \text{и} \quad y = b; \quad (1.3)$$

ν – коэффициент Пуассона.

Требуется найти критическую скорость V_{cr} – наименьшую скорость потока газа – в интервале сверхзвуковых и гиперзвуковых скоростей [1, 2]:

$$V \in (a_0 M_0, a_0 M_{2\cos m}), \ M_0 = \sqrt{2}, \ M_{2\cos m} \approx 33.85;$$
 (1.4)

приводящую к потере устойчивости невозмущённого состояния равновесия динамической системы «пластинка-поток» (1.1) – (1.3) в предположении:

$$\sigma_x < (\sigma_x)_{cr.}, \ \sigma_y < (\sigma_y)_{pr.}$$
(1.5)

Анализ устойчивости невозмущённого состояния равновесия системы (1.1) - (1.3) сводится к исследованию дифференциального уравнения (1.1) с соответствующими краевыми условиями (1.2) и (1.3) для прогиба w(x, y, t) в интервале (1.4) при условии (1.5). Задачу устойчивости (1.1) - (1.5) будем исследовать в случае прямоугольных пластинок умеренных размеров [1, 2, 12, 14]:

$$\gamma = ab^{-1} \in (0.193; 2.9), \tag{1.6}$$

 γ – отношение ширины пластинки *a* (сторона пластинки по потоку) к её длине *b*.

В работе [12] получено аналитическое решение задачи (1.1) – (1.3) для всех значений $\gamma \in [0, \infty]$ в отсутствии первоначальных усилий в срединной поверхности пластинки ($\sigma_x = \sigma_y = 0$). В работе [14] исследована исходная задача устойчивости, при условии $\sigma_x \neq 0$, $\sigma_y = 0$. Показано, что сжимающие усилия σ_x приводят к существенному понижению устойчивости системы. В работе [15] получено решение задачи (1.1) – (1.5) для всех $\gamma \in [0, \infty]$ в статической постановке ($m_c = 0, I_c = 0$) по методу Эйлера. Показано, что система «пластинка-поток» теряет статическую устойчивость в виде эйлеровой дивергенции панели и в виде локализованной дивергенции, в зависимости от её существенных параметров. Исследована граница перехода из области эйлеровой дивергенции панели в область локализованной дивергенции. Найдены критические скорости дивергенции панели и локализованной дивергенции. В работе [16] получено решение задачи (1.1) – (1.5) для $\gamma \leq 0.193$.

2. Общее решение задачи устойчивости (1.1) – (1.3). Для нахождения решения поставленной задачи устойчивости невозмущённого состояния равновесия динамической системы (1.1) – (1.3) сведем её к задаче на собственные значения λ для обыкновенного дифференциального уравнения. Общее решение уравнения (1.1), удовлетворяющее граничным условиям (1.2) и (1.3), будем искать в виде гармонических колебаний [1, 2, 12,16]:

$$w(x, y, t) = \sum_{n=1}^{\infty} C_n \exp(\mu_n r x + \lambda t) \cdot \sin(\mu_n y), \ \mu_n = \pi n b^{-1},$$
(2.1)

 C_n – произвольные постоянные; n – число полуволн вдоль стороны b пластинки.

Невозмущённое состояние равновесия системы (1.1) – (1.3) асимптотически устойчиво, если все собственные значения λ имеют отрицательные вещественные части ($\operatorname{Re}\lambda < 0$), и неустойчиво, если хотя бы одно собственное значение λ находится в правой части комплексной плоскости ($\operatorname{Re}\lambda > 0$) [10]. Критическая скорость потока газа V_{cr} , характеризующая переход от устойчивости к неустойчивости и нескольких собственных значений ($\operatorname{Re}\lambda = 0$) [1, 2, 10].

Подставляя выражение (2.1) в дифференциальное уравнение (1.1), получаем характеристическое уравнение системы «пластинка-поток» в виде [15, 16]:

$$r^{4} - 2 \cdot (1 - \beta_{x}^{2}) \cdot r^{2} + \alpha_{n}^{3} \cdot r + (1 + \beta_{y}^{2}) = 0, \qquad (2.2)$$

где α_n^3 – параметр, характеризующий неконсервативную составляющую нагрузки:

$$\alpha_n^3 = a_0 \rho_0 V D^{-1} \mu_n^{-3} \in (a_0^2 \rho_0 M_0 D^{-1} \mu_n^{-3}, a_0^2 \rho_0 M_{2\cos m} D^{-1} \mu_n^{-3});$$
(2.3)

 β_x^2 и β_y^2 – коэффициенты напряжений усилий σ_x и σ_y соответственно, характеризующие консервативную составляющую нагрузки:

$$\beta_{x}^{2} = \frac{1}{2} \cdot N_{x} D^{-1} \mu_{n}^{-2} = h \sigma_{x} D^{-1} \mu_{n}^{-2} < (\beta_{x}^{2})_{cr.}, \ (\beta_{x}^{2})_{cr.} = h(\sigma_{x})_{cr.} D^{-1} \mu_{n}^{-2};$$

$$\beta_{y}^{2} = N_{y} D^{-1} \mu_{n}^{-2} = 2h \sigma_{y} D^{-1} \mu_{n}^{-2} < (\beta_{y}^{2})_{pr.}, \ (\beta_{y}^{2})_{pr.} = 2h(\sigma_{y})_{pr.} D^{-1} \mu_{n}^{-2};$$
(2.4)

согласно условиям (1.4), (1.5) и обозначению (2.3).

В соответствии с известным решением Феррари, уравнение (2.2) можно представить в виде произведения двух квадратных трёхчленов или, соответственно,

$$\left(r^{2} + \sqrt{2(q+1-\beta_{x}^{2})} \cdot r + q - \sqrt{q^{2}-1-\beta_{y}^{2}}\right) = 0, \qquad (2.5)$$

$$\left(r^{2} - \sqrt{2(q+1-\beta_{x}^{2})} \cdot r + q + \sqrt{q^{2}-1-\beta_{y}^{2}}\right) = 0.$$
(2.6)

где $q \in R$ – единственный действительный корень кубического уравнения [15, 16]: $8 \cdot (q+1-\beta_x^2)(q^2-1-\beta_y^2) - \alpha_n^6 = 0.$ (2.7)

Согласно обозначению (2.3) ясно, что параметр q характеризует скорость потока газа V при фиксированных значениях остальных параметров системы [12–16]. В силу условия (1.4), имеем: $q \in (q(a_0M_0), q(a_0M_{2\cos m}))$.

С помощью графоаналитических методов исследования характеристического уравнения (2.2) можно показать, что [15, 16]

$$q = q(V) \in (q_0, q(a_0 M_{2\cos m})) \subseteq (q(a_0 M_0), q(a_0 M_{2\cos m})),$$

$$q_0 = (\beta_x^2 - 1) + 2\sqrt{(\beta_x^2 - 1)^2 + 3(1 + \beta_y^2)}) / 3, \ \beta_x^2 < (\beta_x^2)_{cr}, \ \beta_y^2 < (\beta_y^2)_{pr}.$$
(2.8)

В таблице 1 приведены критические значения коэффициента напряжения: $(\beta_x^2)_{cr} = (\beta_x^2)_{cr} (n, \gamma, \nu)$ – решения дисперсионного уравнения исходной задачи устойчивости в отсутствии обтекания (V = 0) для $\gamma \in (0.193; 2.9)$ при n = 1, $\beta_y^2 = 0$ и $m_c = 0, I_c = 0$, найденные с точностью до порядка 10^{-4} [13, 14]: $F_1(n, \gamma, \nu, \beta_x^2) = \sqrt{0.5\beta_x^2} (4 - 2\beta_x^2 - (1 + \nu)^2) sh(2\pi n\gamma \sqrt{1 - 0.5\beta_x^2}) - \sqrt{1 - 0.5\beta_x^2} (2\beta_x^2 - (1 - \nu)^2) sin(2\pi n\gamma \sqrt{0.5\beta_x^2}) = 0$, $\beta_x^2 \in (0, 2)$.

					Таблица 1
ν	0.125	0.25	0.3	0.375	0.5
γ					
0.2	0.9392	0.8108	0.7589	0.6804	0.540
0.3	1.0178	0.8839	0.8293	0.7459	0.6040
0.5	1.2447	1.0869	1.0215	0.6391	0.5122
0.8	1.4541	1.2744	1.1993	1.0835	0.8828
1.0	1.4039	1.2497	1.1829	1.0774	0.8887
2.0	1.3681	1.2189	1.1550	1.0547	0.8749
≥ 2.9	1.3672	1.2188	1.1550	1.0547	0.8750

При значениях (2.8) характеристическое уравнение (2.2) имеет два отрицательных корня $r_1 < 0$, $r_2 < 0$ и пару комплексно сопряжённых корней $r_{3,4} \in W$ с положительной вещественной частью, являющихся решением квадратных уравнений (2.5) и (2.6) соответственно:

$$r_{1,2} = -0.5\sqrt{2(q+1-\beta_x^2)} \pm \sqrt{\sqrt{q^2-1-\beta_y^2}} - 0.5(q-1+\beta_x^2), \quad r_1 < 0, \quad r_2 < 0; \quad (2.9)$$

$$r_{3,4} = 0.5\sqrt{2(q+1-\beta_x^2)} \pm i\sqrt{\sqrt{q^2-1-\beta_y^2}} + 0.5(q-1+\beta_x^2).$$
(2.10)

Тогда, в соответствии с выражениями (2.9) и (2.10), общее решение (2.1) уравнения (1.1) запишется в виде двойного ряда:

$$w(x, y, t) = \sum_{n=1}^{\infty} \sum_{k=1}^{4} C_{nk} \cdot \exp(\mu_n r_k x + \lambda t) \cdot \sin(\mu_n y) .$$
(2.11)

Подставляя выражение (2.3) в кубическое уравнение (2.7), после простых преобразований получаем формулу зависимости скорости потока газа V от «существенных» параметров системы «пластинка–поток»:

$$V(q) = 2\sqrt{2(q+1-\beta_x^2)(q^2-1-\beta_y^2)} \cdot \pi^3 n^3 \gamma^3 D(a_0 \rho_0 a^3)^{-1}, \gamma \in (0, 0.193].$$
(2.12)

позволяющую по известному значению параметра $q = q(n, \gamma, \beta_x^2, \beta_y^2, \nu)$ определить приведённую скорость потока газа $V(q) \cdot D^{-1}(a_0 \rho_0 a^3)$.

Учитывая условия (1.4), из выражения (2.12) согласно формуле цилиндрической жёсткости $D = E \cdot (2h)^3 / (12(1-v^2))$ следует [14–16]: $V(q)D^{-1}(a_0\rho_0a^3) \in (V(q_0)D^{-1}(a_0\rho_0a^3), a_0M_{2\cos m}\Psi) \subseteq (a_0M_0, a_0M_{2\cos m})\Psi$, когда $V(q_0) \ge a_0\rho_0$; $V(q)D^{-1}(a_0\rho_0a^3) \in (a_0M_0, a_0M_{2\cos m})\Psi$, когда $V(q_0) < a_0\rho_0$; $\Psi = 12(1-v^2)a_0\rho_0E^{-1}(2ha^{-1})^{-3}, M_0 = \sqrt{2}, M_{2\cos m} \approx 33.85.$ (2.13)

Подставляя значения относительной толщины пластинки $2ha^{-1} \in [0.006, 0.015]$ в выражения (2.13) получаем интервалы $d(2ha^{-1}, v) = (a_0M_0, a_0M_{2\cos m})\Psi$ допустимых значений приведённой скорости $VD^{-1}(a_0\rho_0a^3)$, применительно к интервалу сверхзвуковых скоростей (1.4) для стальных пластинок (табл. 2) [14].

			Таблица 2.
V	0.125	0.3	0.5
2ha ⁻¹			
0,006	(54.81, 1311.78)	(50.52, 1208.98)	(41.63, 996.35)
0,007	(34.45, 811.07)	(32.00, 753.37)	(26.15, 615.52)
0,008	(23.12, 544.34)	(21.48, 505.62)	(17,55, 413.10)
0,009	(16.22, 381.76)	(15.06, 354.59)	(12.31, 289.71)
0.010	(11.84, 283.45)	(10.91, 261.25)	(8.99, 215.32)
0.011	(8.89, 209.40)	(8.09, 190.36)	(6.75, 158.91)
0.012	(6.85, 164.01)	(6.32, 151.20)	(5.20, 124.60)
0,013	(5,39, 126.87)	(5.01, 117.84)	(4.09, 96.28)
0,014	(4.31, 101.46)	(4.00, 94.24)	(3.27, 76.99)
0.015	(3.51, 84.04)	(3.23, 77.33)	(2.67, 63.81)

3. Достаточные признаки потери устойчивости невозмущённого состояния равновесия динамической системы (1.1) – (1.4) для γ ∈ (0.193, 2.9).

Подставляя общее решение (2.11) дифференциального уравнения (1.1), в котором корни r_k характеристического уравнения (2.2) определяются выражениями (2.9) и (2.10), в граничные условия (1.2) и (1.3), получаем однородную систему алгебраических уравнений четвёртого порядка относительно произвольных постоянных C_{nk} . Приравненный нулю определитель этой системы уравнений – характеристический определитель, описывается биквадратным уравнением относительно собственного значения λ [16]:

$$\chi_{n} \delta_{n} A_{0} \lambda^{4} + (\chi_{n} A_{1} + \delta_{n} A_{2}) \lambda^{2} + A_{3} = 0 , \qquad (3.1)$$

$$\delta_n = m_c D^{-1} b^3 (\pi n)^{-3}, \ \chi_n = I_c D^{-1} b (\pi n)^{-1}, \ \delta_n > 0, \ \chi_n > 0,$$
(3.2)

 δ_n и γ_n – приведённые значения сосредоточенных инерционных масс m_c и моментов поворота I_c , приложенных вдоль свободного края x = 0 пластинки;

$$\begin{split} &A_{0} = A_{0}(q,n,\gamma,\beta_{x}^{2},\beta_{y}^{2}) = (3.3) \\ &= \sqrt{2(q+1-\beta_{x}^{2})} \left(1 - \exp(-2\sqrt{2(q+1-\beta_{x}^{2})} \cdot \pi n\gamma) B_{1}B_{2} - \\ &-2B_{2}\left(q+1-\beta_{x}^{2} + \sqrt{q^{2}-1-\beta_{y}^{2}}\right) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma) \operatorname{sh}(\pi n\gamma B_{1}) \cos(\pi n\gamma B_{2}) - \\ &-2B_{1}\left(q+1-\beta_{x}^{2} - \sqrt{q^{2}-1-\beta_{y}^{2}}\right) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma) \operatorname{ch}(\pi n\gamma B_{1}) \sin(\pi n\gamma B_{2}); \\ &A_{1} = A_{1}(q,n,\gamma,\beta_{x}^{2},\beta_{y}^{2}) = (3.4) \\ &= 2(q+1-\beta_{x}^{2}) \left[\left(q - \sqrt{q^{2}-1-\beta_{y}^{2}}\right) + \left(q + \sqrt{q^{2}-1-\beta_{y}^{2}}\right) \exp\left(-2\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma\right)\right] \right] \\ &\cdot B_{1}B_{2} + 2B_{2} \left[\sqrt{2(q+1-\beta_{x}^{2})(q^{2}-1-\beta_{y}^{2})} + \left(q + \sqrt{q^{2}-1-\beta_{y}^{2}}\right) \exp\left(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma\right) \right] \\ &+ 2B_{1}((2q-1)(q+1) - \beta_{y}^{2} - q\beta_{x}^{2}) \operatorname{ch}(\pi n\gamma B_{1}) \right] \cos(\pi n\gamma B_{2}) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma) + \\ &+ 2\left[B_{1}\sqrt{2(q+1-\beta_{x}^{2})(q^{2}-1-\beta_{y}^{2})} \left(q+1-\beta_{x}^{2} - \sqrt{q^{2}-1-\beta_{y}^{2}}\right) \operatorname{ch}(\pi n\gamma B_{1}) + \\ &+ \left(q+1-\beta_{x}^{2}\right)(q-1-\beta_{y}^{2} - q\beta_{x}^{2}) \operatorname{sh}(\pi n\gamma B_{1}) \right] \sin(\pi n\gamma B_{2}) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma); \\ &A_{2} = A_{2}(q,n,\gamma,\beta_{x}^{2},\beta_{y}^{2}) = (3.5) \\ &= 2(q+1-\beta_{x}^{2}) \left(1 + \exp(-2\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma)\right) B_{1}B_{2} - \\ &-4(q+1-\beta_{x}^{2})B_{1}B_{2} \operatorname{ch}(\pi n\gamma B_{1}) \cos(\pi n\gamma B_{2}) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma) + \\ &+ 2(3(q^{2}-1) + 2\beta_{x}^{2} - \beta_{x}^{4} - 2\beta_{y}^{2}) \operatorname{sh}(\pi n\gamma B_{1}) \sin(\pi n\gamma B_{2}) \exp(-\sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma) ; \\ &A_{3} = A_{3}(q,n,\gamma,\nu,\beta_{x}^{2},\beta_{y}^{2}) = (3.6) \\ &= \sqrt{2(q+1-\beta_{x}^{2})} \left\{ \left(q+1-\sqrt{q^{2}-1-\beta_{y}^{2}}\right)^{2} - 2(q+1)\nu - (1-\nu)^{2} - \\ &-2\beta_{x}^{2} \left(q-\sqrt{q^{2}-1-\beta_{y}^{2}}\right) \right\} B_{1}B_{2} - \sqrt{2(q+1-\beta_{x}^{2})} \pi n\gamma + \\ &-2(q+1)\nu - \left(1-\nu\right)^{2} - 2\beta_{x}^{2} \left(q+\sqrt{q^{2}-1-\beta_{y}^{2}}\right) \right\} B_{1}B_{2} \exp(-2\sqrt{2(q+1-\beta_{y}^{2})} \pi n\gamma + \\ &-2(q+1)\nu - \left(1-\nu\right)^{2} - 2\beta_{x}^{2} \left(q+\sqrt{q^{2}-1-\beta_{y}^{2}}\right) \right\} B_{1}B_{2} \exp(-2\sqrt{2(q+1-\beta_{y}^{2})} \pi n\gamma + \\ &-2(q+1)\nu - \left(1-\nu\right)^{2} - 2\beta_{x}^{2} \left(q+\sqrt{q^{2}-1-\beta_{y}^{2}}\right) \right\} B_{1}B_{2} \exp(-2\sqrt{2(q+1-\beta_{y}^{2})} \pi n\gamma + \\ &-2(q+1)\nu - \left(1-\nu\right)^{2} - 2\beta_{x}^{2} \left(q+\sqrt{q^{2}-1-\beta_{y}^{2}}\right) \right\} B_{1}B_{2} \exp(-2\sqrt{2(q+1-\beta_{y}^{2})} \pi n\gamma + \\ &-2(q+1)\nu + \left(1-\sqrt{q^{2}-1-\beta_$$

+ 2B₂ exp(
$$-\sqrt{2(q+1-\beta_x^2)}\pi n\gamma$$
) {[$(4q^2+2q-1)\sqrt{q^2-1-\beta_y^2} - (2q^2-4q+1)(q+1) - (2q^2+4q-1+2q\sqrt{q^2-1-\beta_y^2} - \beta_y^2-2q\beta_x^2)\cdot\beta_x^2 + (q-1-\sqrt{q^2-1-\beta_y^2})\beta_y^2 - 2((2q-1)(q+1) - q\sqrt{q^2-1-\beta_y^2} - \beta_y^2 - q\beta_x^2)v + (q+1-\beta_x^2+\sqrt{q^2-1-\beta_y^2})v^2$] sh $(\pi n\gamma B_1) + (2\sqrt{2(q+1-\beta_x^2)^3(q^2-1-\beta_y^2)}B_1 \operatorname{ch}(\pi n\gamma B_1)$ } · cos $(\pi n\gamma B_2) + (2q^2-4q+1)(q+1) + (2q^2+4q-1-2q\sqrt{q^2-1-\beta_y^2} - \beta_y^2-2q\beta_x^2)\cdot\beta_x^2 - (q-1+\sqrt{q^2-1-\beta_y^2})\beta_y^2 + 2((2q-1)(q+1) + q\sqrt{q^2-1-\beta_y^2} - \beta_y^2 - 2q\beta_x^2)\cdot\beta_x^2 - (q+1-\beta_x^2-\sqrt{q^2-1-\beta_y^2})v^2$] ch $(\pi n\gamma B_1) - \sqrt{2(q+1-\beta_x^2)(q^2-1-\beta_y^2)}\cdot(3(q^2-1)+2\beta_x^2-\beta_x^4-2\beta_y^2)\cdot \operatorname{sh}(\pi n\gamma B_1) - \sqrt{2(q+1-\beta_x^2)(q^2-1-\beta_y^2)}\cdot(3(q^2-1)+2\beta_x^2-\beta_x^4-2\beta_y^2)\cdot \operatorname{sh}(\pi n\gamma B_1)$ } sin $(\pi n\gamma B_2)$;
B₁ = $\sqrt{\sqrt{q^2-1-\beta_y^2}} - 0.5(q-1+\beta_x^2), B_2 = \sqrt{\sqrt{q^2-1-\beta_y^2}} + 0.5(q-1+\beta_x^2).$ (3.7) Здесь, так же, как и в [16], при всех допустимых значениях параметра $q = q(V)$

(2.8) и коэффициентов напряжений $\beta_x^2 < (\beta_x^2)_{cr.}$ (табл. 1) и $\beta_y^2 < (\beta_y^2)_{pr.}$

$$B_{1} = B_{1}(q,\beta_{x}^{2},\beta_{y}^{2}) > 0, \ B_{2} = B_{2}(q,\beta_{x}^{2},\beta_{y}^{2}) > 0,$$
(3.8)

откуда следует справедливость неравенств $A_0 = A_0(q, n, \gamma, \beta_x^2, \beta_y^2) > 0, A_2 = A_2(q, n, \gamma, \beta_x^2, \beta_y^2) > 0, \gamma \in (0.193, 2.9).$ (3.9) Вводя обозначение

$$k_{n} = \chi_{n} \cdot \delta_{n}^{-1} = I_{c} (\pi n \gamma)^{2} \cdot (m_{c} a^{2})^{-1}, \qquad (3.10)$$

характеристический определитель (3.1), в соответствии с условиями (3.2) и (3.9), перепишется в виде [16]

$$\lambda^{4} + (k_{n}A_{1} + A_{2})\chi_{n}^{-1}A_{0}^{-1}\lambda^{2} + \chi_{n}^{-1}\delta_{n}^{-1}A_{0}^{-1}A_{3} = 0, \ \delta_{n} > 0, \ \chi_{n} > 0, \ k_{n} > 0.$$
(3.11)
Будем полагать, что при всех *n*

$$k_n < 20. \tag{3.12}$$

Заметим, что непосредственной подстановкой $\beta_x^2 = \beta_y^2 = 0$ в уравнение (3.11) можно убедиться в его тождественности уравнению, полученному в работе [12].

Анализ устойчивости невозмущённого состояния равновесия динамической системы «пластинка-поток» (1.1) – (1.3) при ограничениях (1.4) и (1.5) сводится к исследованию поведения корней λ_k характеристического определителя (3.11), определяющего собственные движения системы "пластинка–поток" в пространстве её

«существенных» параметров $\Im = \{q(V), n, \gamma, \nu, \beta_x^2, \beta_y^2, k_n\}$ – параметров, оказывающих наиболее значимое влияние на динамическую систему «пластинка–поток». Значения остальных параметров системы принимаются фиксированными.

4. Разбиение пространства параметров системы «пластинка-поток» на области устойчивости и неустойчивости. Как и в работах [12,14,16], введём в рассмотрение в пространстве параметров \mathfrak{T} системы «пластинка-поток» область устойчивости $\mathfrak{T}_0(k_nA_1 + A_2 > 0, A_3 > 0, \Delta > 0)$ и области неустойчивости: $\mathfrak{T}_1(A_3 < 0, \Delta > 0), \ \mathfrak{T}_2(k_nA_1 + A_2 < 0, A_3 > 0, \Delta > 0)$ и $\mathfrak{T}_3(A_3 > 0, \Delta < 0);$ Δ – дискриминант биквадратного уравнения (3.11): $\Delta = \Delta(n, \gamma, \nu, \beta_x^2, \beta_y^2, k_n) = (k_nA_1 + A_2)^2 - 4k_nA_0A_3.$ (4.1)

В области устойчивости \mathfrak{T}_0 уравнение (3.11) имеет две пары чисто мнимых корней $\lambda_{1,2} = \pm i\omega_1$, $\lambda_{3,4} = \pm i\omega_2$: прямоугольная пластинка совершает гармонические колебания около невозмущённого состояния равновесия; в области \mathfrak{T}_1 – имеет два действительных корня $\lambda_1 < 0$, $\lambda_2 > 0$ и два чисто мнимых корней $\lambda_{3,4} = \pm i\omega$, что характеризует эйлерову дивергенцию панели; в области \mathfrak{T}_2 – имеет два отрицательных ($\lambda_1 < 0$, $\lambda_2 < 0$) и два положительных ($\lambda_3 > 0$, $\lambda_4 > 0$) корня, характеризующее более ярко выраженную дивергенцию панели – не эйлерову дивергенцию; а в области \mathfrak{T}_3 , по крайней мере, два корня уравнения (3.11) являются комплексно сопряжёнными числами с положительной вещественной частью: имеет место панельный флаттер: пластинка совершает флаттерные колебания – колебания по нарастающей амплитуде [14, 16].

Границами области устойчивости \mathfrak{I}_0 системы в пространстве её параметров \mathfrak{I} при условии $k_n A_1 + A_2 > 0$ являются гиперповерхности $A_3 = 0$ и $\Delta = 0$ – определяющие условия апериодической и колебательной неустойчивости соответственно [10, 11]: характеристическое уравнение (3.11) на гиперповерхности $A_3 = 0$ в предположении (3.12) имеет один нулевой корень $\lambda_0 = 0$ кратности 2, а на гиперповерхности $\Delta = 0$ – пару чисто мнимых корней $\lambda_{1,2} = \pm i\omega$. Переходы ($\mathfrak{I}_0 \to \mathfrak{I}_3$) и ($\mathfrak{I}_2 \to \mathfrak{I}_3$) определяют «опасные границы» областей \mathfrak{I}_0 и \mathfrak{I}_2 [11].

На границе $A_3 = 0$ области устойчивости \mathfrak{T}_0 при условий $k_n A_1 + A_2 > 0$ и $\Delta > 0$ система «пластинка-поток» при скоростях потока газа $V \ge V_{cr.div.}$ теряет статическую устойчивость в виде эйлеровой дивергенции панели. Критические скорости $\{V_{cr.div}\}$, определяемые подстановкой первого и третьего корней уравнения $A_3 = 0$ в формулу (2.12), разграничивают области \mathfrak{T}_0 и \mathfrak{T}_1 . При скоростях $V \ge V_{cr.div.}$ потока газа происходит «мягкий» переход через точку $\lambda_0 = 0$ в правую

часть комплексной плоскости собственных значений λ_k , вызывающий плавное изменение характера возмущённого движения системы от устойчивости к эйлеровой дивергенции панели. Это приводит к возникновению дополнительных напряжений, приводящих к изменению плоской формы равновесия: пластинка «выпучивается» с ограниченной скоростью «выпучивания».

Критические скорости не эйлеровой дивергенции $\{V_{1,2}\}$ разграничивают области \mathfrak{T}_1 и \mathfrak{T}_2 . При скоростях потока газа $V \ge V_{1,2}$ происходит «мягкий» переход из области \mathfrak{T}_1 в область \mathfrak{T}_2 . Критические скорости $V_{1,2}$ определяются подстановкой второго корня уравнения $A_3 = 0$ при условии $k_n A_1 + A_2 < 0$ и $\Delta > 0$ в формулу (2.12).

На границе $\Delta = 0$ области устойчивости \mathfrak{T}_0 при условии $k_n A_1 + A_2 > 0$, $A_3 > 0$, либо области \mathfrak{T}_2 при условии $k_n A_1 + A_2 < 0$, $A_3 > 0$, система при скоростях потока газа $V \ge V_{cr,fl}$ теряет, соответственно, устойчивость в виде колебательной неустойчивости: имеет место панельный флаттер. Критические скорости панельного флаттера $\{V_{cr,fl.}\}$, определяемые подстановкой первого корня уравнения $\Delta = 0$ в формулу (2.12), разграничивают области \mathfrak{T}_0 и \mathfrak{T}_3 при условии $k_n A_1 + A_2 > 0$, либо области \mathfrak{T}_2 и \mathfrak{T}_3 при условии $k_n A_1 + A_2 < 0$, в зависимости от значений параметров системы $n, \gamma, \nu, \beta_x^2, \beta_y^2, k_n$. В обоих случаях при $V \ge V_{cr,fl.}$ происходит «мягкий» (плавный) переход к флаттерным колебаниям. Однако в первом случае начинает совершать флаттерные колебания относительно равновесного состояния плоская по форме пластинка, а во втором случае изогнутая по форме пластинка – «выпученная». Переходы ($\mathfrak{T}_0 \to \mathfrak{T}_3$) и ($\mathfrak{T}_2 \to \mathfrak{T}_3$) определяют «опасные границы» областей \mathfrak{T}_0 и \mathfrak{T}_2 [11].

Критические скорости $V_{cr.div.}$, $V_{1,2}$ и $V_{cr.fl.}$ определяются с достаточной точностью подстановкой искомых значений параметра $q \in (q_0, q(a_0M_{2\cos m}))$ в формулу (2.12).

Заметим, что в случае больших значений k_n , примерно $k_n \ge 20$, при скоростях $V \ge V_{cr.div.}$ переход из левой части комплексной плоскости собственных значений λ_k системы в правую часть происходит через точку $\lambda_{\infty} = \pm \infty$, вызывающий «жёсткое» изменение характера возмущённого движения системы от устойчивости к неустойчивости: имеет место апериодическая неустойчивость [1, 2].

5. Численные результаты. В данной работе с помощью методов графоаналитического и численного анализа строились семейства кривых $\{q(n, \gamma, \nu, \beta_x^2, \beta_y^2, k_n)\} \in \mathfrak{T}$ для $\gamma \in (0.193, 2.9)$, параметризованных надлежащим образом. В таблицах 3 – 12 проиллюстрированы численные результаты наиболее представительных из этого семейства кривых.

Численные расчеты показали, что при фиксированных значениях остальных параметров системы критические скорости дивергенции и флаттера являются монотонно возрастающими функциями от числа полуволн n: их наименьшему значению соответствует n = 1.

Несмотря на зависимость качественных и количественных характеристик поведения невозмущённого состояния равновесия системы от параметра γ , тем не менее можно выделить интервалы $\gamma \in (0.193, 0.33) \cup [0.33, 0.74) \cup [0.74, 2.9)$, в которых качественные характеристики системы, примерно, одинаковы, в отличие от количественных характеристик, существенно зависящих от γ .

Заметим, что указанные интервалы параметра γ такие же, как и в [14]. Тем самым, силы растяжения N_y не оказывают существенного влияния на качественные характеристики системы.

Для наглядной иллюстрации динамики системы для каждого интервала параметра γ составим цепочки переходов из области $\mathfrak{I}_l \subset \mathfrak{I}$ в область $\mathfrak{I}_k \subset \mathfrak{I}$, применительно к интервалу сверхзвуковых скоростей (1.5). Формы представления этих цепочек существенно зависят от относительной толщины $2ha^{-1}$ и материала пластинок [14, 16].

5.1. Из сопоставления численных результатов с данными таблицы 2 следует, что для стальных пластинок относительной толщины $2ha^{-1} \in [0.006, 0.015]$ в интервале $\gamma \in (0.193, 0.33)$ невозмущённое состояние равновесия системы вблизи $a_0\sqrt{2}$ – начала интервала сверхзвуковых скоростей (1.5) устойчиво только для $2ha^{-1} > 0.013$ при всех v, когда $\beta_x^2 < 0.4$, $\beta_y^2 \ge 3$ (табл. 3).

Цепочки переходов состояний системы будут вида:

$$\begin{aligned} & \left(\mathfrak{T}_{0}\right) \to \mathfrak{T}_{1} \xrightarrow{V_{0}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1} \quad \text{при } k_{1} \in \left(0, 0.07\right); \\ & \mathfrak{T}_{1} \xrightarrow{V_{0}} \mathfrak{T}_{0} \xrightarrow{V_{cr,di}} \mathfrak{T}_{3} \xrightarrow{V_{0}^{*}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1} \quad \text{при } k_{1} \in \left[0.07, 0.5\right); \\ & \mathfrak{T}_{1} \xrightarrow{V_{1,2}} \mathfrak{T}_{2} \xrightarrow{V_{cr,di}} \mathfrak{T}_{3} \xrightarrow{V_{0}^{*}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1} \quad \text{при } k_{1} \ge 0.5. \end{aligned}$$

$$\end{aligned}$$

Здесь, в соответствии с обозначением (3.10), $k_1 = I_c \pi^2 \gamma^2 (m_c a^2)^{-1}$. Справедливо равенство: $V_0 = V_{1,2}$ – приведённые скорости $V_0 D^{-1} (a_0 \rho_0 a^3)$ и Таблица 3. Значения $V_{crdiv}^{(1)} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.3$ и $\nu = 0,3$.

β_{x}^{2} β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
3	4.736	4.326	3.960	3.534	3.149	-
5	5.831	5.430	5.024	4.612	_	_

Таблица 4. Значения $V_0 D^{-1} (a_0 \rho_0 a^3)$ и $V_{1,2} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.3$ и $\nu = 0, 3$.

β_{x}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	90.441	89.288	88.138	86.991	85.847	84.735
1	90.420	89.264	88.123	86.976	85.829	84.714
3	90.402	89.242	88.092	86.954	85.801	84.697
5	90.376	89.218	88.064	86.928	85.776	84.671

Таблица 5. Значения $V_0^* D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.3$, $\nu = 0,3$ и $k_1 = 0.1;1;10$.

β_{x}^{2}	0.0	0.1	0.2	0.3	0.4	0.5
0	236.900	236.957	237.893	238.264	238.634	239.002
5	230.233	230.855	231.476	232.014	232.469	232.921

β_{x}^{2}	0.0	0.1	0.2	0.3	0.4	0.5
0	267.531	266.118	264.620	263.124	261.713	260.219
5	262.667	261.262	259.857	258.368	256.965	255.564

β_{y}^{2}	0.0	0.1	0.2	0.3	0.4	0.5
0	202.500	201.137	199.853	198.570	197.288	195.961
5	198.133	196.856	195.580	194.305	193.077	191.835

Таблица 6. Значения $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 0.3$, $\nu = 0,3$ и $k_1 = 0.1;1;10$.

β_x^2 β_y^2	0.0	0.1	0.2	0.3	0.4	0.5
0	110.414	108.351	106.235	104.132	102.104	100.088
5	115.434	113.065	110.840	108.499	106.428	104.241

β_x^2 β_y^2	0.0	0.1	0.2	0.3	0.4	0.5
0	104.448	103.425	102.403	101.506	100.611	99.716
5	101.076	100.199	99.309	98.421	97.533	96.646

β_{y}^{2}	0.0	0.1	0.2	0.3	0.4	0.5
0	144.337	143.332	142.398	141.324	140.321	139.388
5	140.169	139.172	138.247	137.232	136.327	135.361

 $V_{1,2}D^{-1}(a_0\rho_0a^3)$ исчисляются подстановкой второго корня уравнения $A_3 = 0$ в формулу (2.12). При этом при малых $k_1 \in [0.07, 0.5)$ имеет место переход от покоя к автоколебаниям, а при умеренных $k_1 \in [0.5, 20)$ – начинает совершать автоколебания «изогнутая» пластинка.

В таблицах 3 – 7 приведены численные результаты для $\gamma = 0.3$ при $\nu = 0.3$. Критические скорости $V_{crdiv}^{(1)}D^{-1}(a_0\rho_0a^3)$, $V_{crdiv}^{(2)}D^{-1}(a_0\rho_0a^3)$ и $V_0^*D^{-1}(a_0\rho_0a^3)$ меньше в пластинках из материалов с большим коэффициентом Пуассона ν , в отличие от $V_0D^{-1}(a_0\rho_0a^3)$, $V_{1.2}D^{-1}(a_0\rho_0a^3)$ и $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$, которые возрастают, примерно, на 6% и 4.2– 6.5% в пластинах из материалов с большим ν соответственно.

				0) 1		,
β_{y}^{2}	0.0	0.1	0.2	0.3	0.4	0.5
0	477.213	475.639	474.081	472.512	470.938	469.376
1	477.190	475.621	474.053	472.481	470.910	469.338
3	477.159	475.593	474.031	472.452	470.882	469.308
5	477.113	475.548	473.986	472.406	470.833	469.252

Таблица 7. Значения $V_{crdiv}^{(2)} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.3$ и $\nu = 0, 3$.

Критическая скорость флаттера $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ является медленно убывающей функцией от β_y^2 : убывает на 3%; а от k_1 – возрастающей функцией: на промежутке $k_1 \in [0.5, 10]$ возрастает на 30–40%. Тем самым, вибрации, соответствующие умеренным значениям k_1 , приводят к повышению устойчивости системы [17].

Из сопоставления данных таблиц 3–7 с данными таблицы 2 следует, что менее устойчивыми являются невозмущённое состояние равновесия систем с пластинками относительной толщины $2ha^{-1} < 0.009$.

В целом, силы растяжения N_y в интервале $\gamma \in (0.193, 0.33)$ оказывают на устойчивость системы незначительное влияние, в отличие от параметра k_1 .

5.2. Невозмущённое состояние равновесия системы в интервале $\gamma \in [0.33, 0.74)$ будучи неустойчивым вблизи $a_0\sqrt{2}$ при всех $\beta_x^2 < 0.6$ и $\beta_y^2 < 3$ (эйлерова дивергенция панели), когда $2ha^{-1} \le 0.012$, с ростом $\beta_y^2 \in [0,5]$ становится устойчивым. В частности, когда $\beta_y^2 \ge 3$, невозмущённое состояние равновесия системы с пластинками относительной толщины $2ha^{-1} \ge 0.009$ становится устойчивым вблизи $a_0\sqrt{2}$ при всех $\beta_x^2 < 0.6$. Цепочки переходов из одной области пространства параметров в другую при $\beta_x^2 < 0.6$ и $\beta_y^2 \le 5$ будут вида:

$$(\mathfrak{T}_{0}) \xrightarrow{V_{cr,div}^{(1)}} \mathfrak{T}_{1} \xrightarrow{V_{0}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1}, k_{1} \in (0, 0.37);$$

$$(\mathfrak{T}_{0}) \xrightarrow{V_{cr,div}^{(1)}} \mathfrak{T}_{1} \xrightarrow{V_{0}} \mathfrak{T}_{0} \xrightarrow{V_{cr,fl}} \mathfrak{T}_{3} \xrightarrow{V_{0}^{*}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1}, k_{1} \in [0.37, 1.0];$$

$$(\mathfrak{T}_{0}) \xrightarrow{V_{cr,div}^{(1)}} \mathfrak{T}_{1} \xrightarrow{V_{1,2}} \mathfrak{T}_{2} \xrightarrow{V_{cr,fl}} \mathfrak{T}_{3} \xrightarrow{V_{0}^{*}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1}, k_{1} \in [0.37, 1.0];$$

$$(\mathfrak{T}_{0}) \xrightarrow{V_{cr,div}^{(1)}} \mathfrak{T}_{1} \xrightarrow{V_{1,2}} \mathfrak{T}_{2} \xrightarrow{V_{cr,fl}} \mathfrak{T}_{3} \xrightarrow{V_{0}^{*}} \mathfrak{T}_{0} \xrightarrow{V_{cr,div}^{(2)}} \mathfrak{T}_{1}, k_{1} \in (1, 20).$$

аблица 8. Значения	$V_{crdiv}^{(1)}D^{-1}$	$(a_0\rho_0a^3)$) при ү =	= 0.5, v = 0	1.3

β_x^2 β_y^2	0	0.1	0.2	0.3	0,4	0.5
0	11.707	10.460	9.235	8.027	6.843	5.689
1	16.539	15.151	13.793	12.461	11.152	9.862
3	27.100	25.413	23.767	22.118	20.504	18.913
5	39.486	37.442	35.273	33.103	31.146	29.188

Таблица 9.3начения $V_0 D^{-1} (a_0 \rho_0 a^3)$ и $V_{1,2} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5$, $\nu = 0.3$.

β_x^2 β_y^2	0	0.1	0.2	0.3	0.4	0.5
0	120.296	116.867	113.442	110.027	107.339	104.179
1	119.728	116.471	113.215	109.967	106.726	103.872
3	117.566	114.713	111.873	108.990	106.158	103.303
5	113.440	111.074	108.795	106.443	104.098	101.760

Таблица 10. Значения $V_0^* D^{-1} \left(a_0 \rho_0 a^3 \right)$ при $\gamma = 0.5$, $\nu = 0,3$ и $k_1 = 0.5;1;10$.

β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	245.569	246.482	247.384	247.806	247.859	247.912
3	-	-	190.809	201.516	206.025	210.090

β_x^2 β_y^2	0	0.1	0.2	0.3	0.4	0.5
0	276.090	274.388	272.605	270.720	268.761	266.724
5	204.625	207.242	208.837	209.821	210.332	210.552

β_x^2 β_y^2	0	0.1	0.2	0.3	0.4	0.5
0	233.761	230.492	227.094	223.656	220.360	216.891
5	167.291	166.690	165.384	163.962	162.456	160.884

Здесь, по аналогии с предыдущим случаем (разд. 5.1), когда $k_1 < 0.37$, флаттер отсутствует: имеет место потеря устойчивости только в виде эйлеровой дивергенции панели при скоростях $V \ge V_{crdiv}^{(1)}$ и $V \ge V_{crdiv}^{(2)}$ соответственно. При малых $k_1 \in [0.37, 1.0]$ система переходит от покоя к автоколебаниям, в отличие от умеренных $k_1 \in (1, 20)$.

Таблица 11.3начения $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 0.5$, $\nu = 0,3$ и $k_1 = 0.5;1;10$.

β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	140.256	134.283	128.577	123.121	117.938	112.808
1	149.945	143.186	136.127	130.333	124.496	118.960
3	-	_	173.388	155.259	147.470	139.390

β_{x}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	121.884	118.032	114.211	110.603	107.022	102.338
1	123.972	120.177	116.261	112.414	108.710	104.999
3	134.044	129.769	125.331	120.932	116.843	112.826
5	162.079	154.278	147.422	141.482	136.017	130.769

β_{x}^{2} β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	144.577	141.665	138.958	136.258	133.563	130.875
1	136.979	134.305	131.834	129.367	126.712	124.064
3	120.703	118.314	115.932	113.555	111.165	108.819
5	122.567	118.926	115.512	112.230	109.062	105.905

Соответственно, при скоростях $V \ge V_{crfl}$, когда $k_1 \in [0.37, 1.0]$, начинает совершать автоколебания «плоская» пластинка, а при $k_1 \in (1, 20)$ – «изогнутая» пластинка. При этом, также, $V_0 = V_{1,2}$ при всех $\beta_x^2 < 0.6$ и $\beta_y^2 \le 5$. В таблицах 8 – 12 приведены значения критических скоростей для $\gamma = 0,5$ при $\nu = 0.3$. При этом, начиная с $k_1 = 0.37$, при скоростях $V \ge V_{cr.fl.}$ система теряет динамическую устойчивость в виде флаттера для $2ha^{-1} \le 0.012$ при всех β_x^2 , когда $\beta_y^2 < 1$. При $\beta_y^2 > 3$, когда $2ha^{-1} > 0.012$, флаттер отсутствует.

Критические скорости $V_{cr.div}^{(1)} D^{-1}(a_0 \rho_0 a^3)$ и $V_{cr.div}^{(2)} D^{-1}(a_0 \rho_0 a^3)$ – монотонно убывающие функции от β_x^2 и ν : на промежутке $\beta_x^2 \in [0, 0.5]$ убывают в 1.35 – 2 раза и на 4 – 5% соответственно; а в пластинах из материалов с большим коэффициентом Пуассона ν – в 1.8–2.5 раз и в 1.07 – 1.2 раза соответственно.

Таблица 12. Значения $V_{crdiv}^{(2)} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.5$ и $\nu = 0.3$.

β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	458.565	455.073	451.564	448.037	444.493	440.936
1	458.117	454.552	450.970	447.375	443.764	440.141
3	457.331	453.608	449.853	446.059	442.324	438.618
5	456.674	452.876	448.908	445.000	441.095	437.192

При этом, в отличие от $V_{cr.div}^{(1)}D^{-1}(a_0\rho_0a^3)$, которая является возрастающей функцией от параметра $\beta_y^2 \in [0,5]$ – возрастает примерно 3.37-5.13 раз, $V_{cr.div}^{(2)}D^{-1}(a_0\rho_0a^3)$ является медленно убывающей функцией от β_y^2 : с ростом β_y^2 убывает на 0.4–0.9 %.

Критическая скорость флаттера $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ является монотонно убывающей функцией от параметра β_x^2 и возрастающей функцией от коэффициента Пуассона v: при всех $k_1 \ge 0.37$ на промежутке $\beta_x^2 \in [0, 0.5]$ убывает примерно в 1.12 – 1.3 раза, а в пластинах из материалов с большим коэффициентом Пуассона v возрастает в 1.2 раза. При значениях $k_1 \in [0.37, 1]$ и $\beta_y^2 \in [0, 3]$ критическая скорость флаттера является возрастающей функцией от β_y^2 – возрастает в 1.27–1.32 раза; а при $k_1 > 1$ – убывает с ростом $\beta_y^2 \in [0, 5]$ примерно на 6.5–10.5%. При этом, в интервале $k_1 \in (1, 10]$ $V_{cr.fl.}D^{-1}(a_0\rho_0a^3)$ возрастает на 9–10%.

Из сравнения данных соответствующих таблиц подразделов 5.1 и 5.2 следует, что с увеличением параметра γ силы растяжения N_y , направленные перпендикулярно потоку газа, существенно повышают устойчивость системы, вопреки наличию сжимающих сил N_x , направленных по потоку, приводящих, соответственно, к понижению устойчивости [14]. Однако, при этом, влияние параметра k_1 на повышение устойчивости системы уменьшается в 3–4 раза, в сравнении с системой с удлинёнными пластинками (подразд. 5.1).

5.3. Поскольку $k_n A_1 + A_2 > 0$ и $\Delta > 0$ в интервале $\gamma \in [0.74, 2.9)$ при всех допустимых значениях остальных параметров системы «пластинка-поток», то её невозмущённое состояние равновесия теряет устойчивость только в виде эйлеровой дивергенции: неэйлерова дивергенция и панельный флаттер отсутствуют [14, 15]. Однако, в этом случае, гиперповерхность $\gamma_{gr} = \gamma_{gr} \left(\beta_x^2, \beta_y^2, \nu\right)$ разграничивает область эйлеровой дивергенции \mathfrak{I}_1 на подобласти: $\mathfrak{I}_1 = \mathfrak{I}_{11} \cup \mathfrak{I}_{12}$ – дивергенции панели $\mathfrak{I}_{11} \left(\gamma \in [0.74, \gamma_{gr}]\right)$ и локализованной дивергенции $\mathfrak{I}_{12} \left(\gamma \ge \gamma_{gr}\right)$.

Результаты численных исследований показали, что функция $\gamma_{gr} = \gamma_{gr} \left(\beta_x^2, \beta_y^2, \nu \right)$ (табл. 13) зависит от параметра β_y^2 и коэффициента Пуассона ν исчезающе мало.

				гаолица 15.
β_x^2	0	0.1	0.2	≥0.3
γ_{gr}	1.96	2.4	2.8	2.9

Из данных таблицы 13 следует, что с ростом коэффициента напряжения $\beta_x^2 < (\beta_x^2)_{cr}$ значение γ_{gr} увеличивается примерно в 1.48 раз: граница γ_{gr} смещается в направлении больших γ , приводя к расширению подобласти \mathfrak{T}_{11} и, соответственно, к сужению подобласти \mathfrak{T}_{12} – к понижению устойчивости системы, в отличие от сил растяжения N_x , при которых граница γ_{gr} смещается в направлении малых γ [18].

Так как, начиная с $\gamma = 0.84$ дисперсионное уравнение $A_3 = 0$ имеет не более, чем один корень, то будем исследовать область \Im_{11} в интервалах $\gamma = [0.74, 0.84)$ и $\gamma = [0.84, \gamma_{gr.}]$. В интервале $\gamma \in [0.74, 0.84)$ цепочки переходов будут вида: $\Im_0 \xrightarrow{V_{cr.div}^{(1)}} \Im_1 \xrightarrow{V_0} \Im_0 \xrightarrow{V_{cr.div}^{(2)}} \Im_1$; (5.3) $\beta_y^2 < 1.5; v \le 0.3; 0.007 < 2ha^{-1} \le 0.009;$ $\Im_0 \xrightarrow{V_{cr.div}^{(1)}} \Im_1; \beta_y^2 \in [1.5,3]; v > 0.3$ и $\Im_0, \beta_y^2 \ge 3; v > 0.3; 2ha^{-1} > 0.009;$

$$\begin{aligned} \mathfrak{T}_{1} & \xrightarrow{V_{0}} \mathfrak{T}_{0} & \xrightarrow{V_{cr,dv}^{(2)}} \mathfrak{T}_{1}; \beta_{y}^{2} < 1.5; v \leq 0.3; \ 2ha^{-1} \in [0.006, 0.007]; \\ \mathfrak{T}_{1}; \beta_{y}^{2} \geq 1, 5; v > 0.3; \ 2ha^{-1} \in [0.006, 0.007]. \end{aligned}$$

Таблица 14. Значения $V_{crdiv}^{(1)} D^{-1} \left(a_0 \rho_0 a^3 \right)$ при $\gamma = 0.8$ и $\nu = 0, 3$.

$ \beta_x^2 \\ \beta_y^2 $	0	0.1	0.2	0.3	0.4	0.5
0	54.093	49.004	43.921	39.197	34.584	29.856
1	107.257	97.775	88.990	80.242	72.161	63.807
3	375.314	361.089	345.497	329.917	312.752	293.925
5	417.171	399.736	380.073	360.619	339.815	308.461

А в интервале
$$\gamma = \left[0.84, \gamma_{gr.} \right] - \mathfrak{I}_{0} \xrightarrow{V_{cr.div}} \mathfrak{I}_{1}, \ 2ha^{-1} \le 0.009$$
и $\mathfrak{I}_{0}, \ 2ha^{-1} \ge 0.009.$ (5.4)

Таблица 15. Значения $V_0 D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.8$ и $\nu = 0, 3$.								
β_x^2 β_y^2	$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
0	250.777	234.723	221.343	216.872	210.537	204.618		
1	219.366	214.192	208.806	203.210	197.462	191.580		

В таблицах 14 – 17 приведены значения критических скоростей для $\gamma = 0.8$ при v = 0.3 и для $\gamma = 1$ при v = 0.125; 0.3; 0.5 соответственно.

Таблица 16. Значения $V_{cr.div}^{(2)} D^{-1} (a_0 \rho_0 a^3)$ при $\gamma = 0.8$ и $\nu = 0, 3$.							
β_x^2 β_y^2	0	0.1	0.2	0.3	0.4	0.5	
0	343.647	345.431	345.546	344.529	342.665	340.129	
1	344.892	339.837	334.680	329.465	324.149	318.729	

Критическая скорость $V^{(1)}_{crdiv} D^{-1} (a_0
ho_0 a^3)$ является убывающей функцией от u : убывает примерно в 2.3 раза.

β_{x}^{2} β_{y}^{2}	0	0.1	0.2	0.3	0.4	0.5
0	522.740	506.388	490.124	469.102	455.466	439.495
	128.462	115.774	104.280	92.384	80.251	69.202
	72.910	65.077	56.517	47.653	39.661	—
1	592.488	566.764	541.048	515.368	489.685	463.364
	295.612	269.217	241.762	213.717	186.062	159.697
	143.619	129.548	115.928	102.414	88.967	75.842
3	754.524	715.579	676.257	638.897	600.608	561.452
	473.813	442.934	412.397	381.082	348.720	315.159
	281.094	257.906	235.600	212.291	190.330	168.057
5	959.343	903.029	849.086	797.455	746.531	696.314
	606.834	572.723	536.490	501.202	464.420	428.245
	395.191	369.591	341.487	313.694	286.144	259.080

Таблица 17. Значения $V_{cr.div}D^{-1}(a_0\rho_0a^3)$ при $\gamma = 1$ и $\nu = 0.125; 0, 3; 0.5$.

Критические скорости дивергенции панели являются, в основном, монотонно убывающими функциями от коэффициента напряжения β_x^2 , а также, от коэффициента Пуассона V.

Из данных таблиц 14 – 17 и из представлений (5.3) и (5.4) следует, что менее устойчивы системы с большим коэффициентом Пуассона ν и с меньшей $2ha^{-1}$. При меньших β_x^2 и больших β_y^2 с ростом γ устойчивость системы повышается.

При определённом соотношении сжимающих N_x и растягивающих N_y сил, имеет место эффект их «взаимной компенсации», наиболее ярко проявленный в случае пластинок, у которых $\gamma \ge 0.33$ (табл. 18).

Таблица 18.

γ	0.4	0.5	0.8	1.0	$\geq \gamma_{gr.}$
$\left(\beta_{xc}^{2};\beta_{yc}^{2}\right)$	(0.1; 0.079)	(0.1; 0.060)	(0.1; 0.050)	(0.1; 0.051)	(0.1; 0.063)
$\left(\beta_{xc}^{2};\beta_{yc}^{2}\right)$	(0.5; 0.360)	(0.5; 0.286)	(0.5; 0.248)	(0.5; 0.300)	(0.5; 0.380)

При $\beta_x^2 \leq \beta_{xc}^2$ и $\beta_y^2 > \beta_{yc}^2$ существенное влияние оказывают силы растяжения N_y : с ростом N_y устойчивость системы повышается; а при $\beta_x^2 > \beta_{xc}^2$ и $\beta_y^2 \leq \beta_{yc}^2$ – сжимающие силы N_x , с ростом которых устойчивость системы понижается.

Следует отметить, что на структуру разбиения параметрического пространства системы на области устойчивости и неустойчивости влияют силы, направленные по потоку газа, в отличие от сил, направленных перпендикулярно к потоку, которые влияют лишь на значения критической скорости. В данной постановке – это первоначальные сжимающие силы N_x и растягивающие силы N_y соответственно.

6. Основные результаты и заключение. В статье получено аналитическое решение задачи динамической устойчивости невозмущённого состояния равновесия упругой прямоугольной пластинки с одним свободным краем, обтекаемой сверхзвуковым потоком газа, первоначально нагруженной по двум направлениям: сжимающими силами по потоку газа и силами растяжения, перпендикулярными к потоку, в предположении, что сверхзвуковой поток газа набегает на свободный край, при наличии на нём сосредоточенных инерционных масс и моментов поворота.

Произведено разбиение пространства «существенных» параметров системы «пластинка–поток» на область устойчивости и на области неустойчивости: эйлеровой и не эйлеровой дивергенции панели, панельного флаттера и локализованной дивергенции.

Получена формула зависимости скорости потока газа от «существенных» параметров системы «пластинка–поток», позволяющая найти критические скорости дивергенции панели и панельного флаттера.

Исследована граница области устойчивости, а также граница между областями неустойчивости. Найдены «безопасные» и «опасные» границы области устойчивости.

Установлено, что при малых значениях отношения интенсивностей приложенных инерционных моментов поворота и масс потеря устойчивости наступает при меньшей скорости потока газа, но это не эйлерова потеря устойчивости, а переход системы от покоя к движению – к автоколебаниям. А при умеренных значениях отношения – имеем переход из области неэйлеровой дивергенции в область флаттерных колебаний, при котором начинает колебаться «изогнутая» пластинка.

Найдено соотношение первоначально приложенных сжимающих и растягивающих сил, при котором происходит взаимная компенсация их влияния на устойчивость системы.

В целом, можно утверждать, что в отличие от достаточно удлинённых пластинок, в случае пластинок умеренных размеров влияние первоначальных сил растяжения, приложенных наряду с сжимающими силами, на устойчивость невозмущённого состояния равновесия системы значимо: растягивающие силы приводят к существенному повышению устойчивости.

Применённый метод аналитического исследования позволяет не только установить условия возникновения панельного флаттера, но и даёт возможность предсказать последующее развитие колебаний.

ЛИТЕРАТУРА

- 1. Вольмир А.С. Устойчивость упругих систем. М.: Физматгиз. 1963. 880 с.
- Болотин В.В. Неконсервативные задачи теории упругой устойчивости. М.: Наука. 1961. 329 с.
- 3. Алгазин С.Д., Кийко И.А. Флаттер пластин и оболочек. М.: Наука. 2006. 247 с.
- 4. Новичков Ю.Н. Флаттер пластин и оболочек // Итоги науки и технологии. Механика деформируемых твердых тел. М: Наука. 1978. Т. 11. С. 67–122.
- Прочность. Устойчивость. Колебания. Справочник в 3 т. // Под ред. И.А.Биргера и Я.Г. Пановко. – М.: Машиностроение. 1968.

- 6. Ильюшин А.А. Закон плоских сечений при больших сверхзвуковых скоростях // ПММ. 1956. Т. 20. № 6. С. 733–755.
- 7. Ashley G.H., Zartarian G. Piston theory a new aerodynamic tool for the aeroelastician//J. Aeronaut. Sci. 1956. Vol. 23. N 12. P. 1109–1118.
- 8. Ржаницын А.Р. Консольный упругий стержень, нагруженный следящей силой // Изв. НАН Армении, Механика. 1985. Т.38. № 5. С. 33–44.
- 9. Надаи А. Пластичность и разрушение твердых тел. М.: ИЛ. 1954. 647 с.
- 10. Ляпунов А.М. Общая задача об устойчивости движения. М.-Л.: Гостехиздат. 1950. 471 с.
- 11. Баутин Н.Н. Поведение динамических систем вблизи границ области устойчивости. М.: Наука. 1984. 176 с.
- 12. Белубекян М.В., Мартиросян С.Р. О флаттере упругой прямоугольной пластинки, обтекаемой сверхзвуковым потоком газа, набегающим на её свободный край // Изв. НАН Армении, Механика. 2014, т. 67, № 2, с. 12 42.
- Белубекян М.В., Мартиросян С.Р. О сверхзвуковой дивергенции панели, сжатой по направлению потока газа, набегающим на её свободный край // Изв. НАН Армении, Механика. 2018, т.71, № 4, с.44–68.
- Мартиросян С.Р. Сверхзвуковой флаттер прямоугольной пластинки умеренных размеров со свободным краем, сжатой по потоку газа // Изв. НАН Армении, Механика. 2023. Т.76 (3), с.47 – 63. DOI: 10.54503/0002-3051-2023.76.3-47.
- 15. Мартиросян С.Р. Сверхзвуковая дивергенция панели с одним свободным краем, первоначально нагруженной по двум направлениям: сжатой по потоку газа и растянутой в направлении, перпендикулярном скорости потока газа // Труды VIII международной научной конференции "Актуальные проблемы механики сплошной среды"; 1-5 октября, Цахкадзор–2023 (Армения), с. 176–180.
- 16. Мартиросян С.Р. Сверхзвуковой флаттер удлинённой панели со свободным краем, первоначально нагруженной по двум направлениям: сжатой по потоку газа и растянутой в перпендикулярном направлении // Изв. НАН Армении, Механика. 2024. Т.77 (1), с. 40-55.
- 17. Челомей В.Н. О возможности повышения устойчивости упругих систем при помощи вибраций // ДАН СССР. 1956. Т.110 (3).
- Мартиросян С.Р. Сверхзвуковой флаттер прямоугольной пластинки с одним свободным краем, растянутой по потоку газа, при наличии сосредоточенных инерционных масс и моментов // Изв. НАН Армении, Механика. 2022. Т.75 (4), с. 52–73.

Сведения об авторе:

Мартиросян Стелла Размиковна – кандидат физ.-мат. наук, старший научный сотрудник Института механики НАН Армении, Ереван, Армения (+374 10) 524890 E-mail: mechinsstella@mail.ru

Поступила в редакцию 2 40 мая 2024г.