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The problem of localisation of stress waves is considered in homogeneous fixed string in tension with interfaces of 
imperfect elastic contact caused by scatterers periodically oriented along string length. It is shown that in this 
periodic structure due to scatterers the localisation of stress wave is occur. 
 

Introduction 
 

In the paper based on the propagator matrix formalism in conjunction of Sylvester’s 
matrix theorem localized vibration of a fixed string in tension is studied. The string contains 
finite number non equidistant located scaterrers (micro inhomogeneities, point masses, 
beads) periodically oriented along string length. At points where scatterers are located the 
stress traction discontinuity is taken to be linearly related to the continuous displacement.  
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The dynamics of elastic, electro-elastic waves in one dimensional periodic structures is 
a well-studied classic topic [1-3]. Gap bands, localisation, attenuation, reflection, refraction, 
resonance and other effects in finite, semi-infinite and infinite structures have been 
investigated by many researchers, particularly in [4-8]. The vibration of periodic strings and 
rod with scatterers, local resonators are studied in [9-13]. In elastic and electro- elastic 
structures models of an imperfectly bonded interfaces and problems based on these models 
are proposed and studied in [14-22]. 
 
Statement and solution of the problem 
 

Consider a string under tension 0T  with finite number of scatterers (micro 
inhomogeneities, point masses, beads) periodically oriented along length of string at points 

1( 1) , ,x n d d x nd 1 21,2.. ,n N d d d  . (Fig.1) 
 

 
Fig.1 String under tension with periodically oriented scatterers 

 
We have the following equation of a string transverse vibration 
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where 0T is the tension , is the mass density per unit length of string . 
Considering a harmonic vibration (  is the frequency)  
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Here ( ) ( ),j j
n nA B  are constants, n  is the number of the unit cell, the indexes 1, 2j  

stand for the sub-sells, 1( 1) , ( 1)x n d n d d , 1( 1) ,x n d d nd ,

1 2d d d  respectively .  
 

Propagator matrix approach 
 

Based on the procedure of propagator matrix approach [23] considering any two 
neighbouring points 1 2,x x  of sub-cells we can construct the transfer matrix T  in such 
way that 
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Using (5 ) the following relations can be obtained  
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At points 1 ( 1) ,d d nx x nd were scatterers are located we take the 

following imperfect contact conditions, 0,f  [11]  
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In matrix form these conditions can be written as 
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where  
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Taking into account (8 -10) we can obtain the following relation 
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Here  
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is the unimodal propagator matrix, elements of which can be cast as 
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In (12) p qd , 0d T  is the non-dimensional frequency, 1
0dfT  is 

the dimensionless “scattering” parameter and 2d d  is the relative distance parameter.  

Since the vectors ndU  are continuous at the interface points of the neighbouring 

cells repeating relations (11 ) the n-th times the matrix nM  can be found .  

The matrix nM  for any 1,2,..n N  links the values of field vectors at 0x  and 
x nd  points of the string 

0 0n
nnd MU U    (13) 
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According to Sylvester's matrix theorem [24] for 2 2  matrix the elements of the n -th 
power of the matrix nM  can be cast as 
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n M M
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and can be simplified using the following matrix identities  
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where nS  are the Chebyshev polynomials of second kind  
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Note that function  defines the band gaps structure in infinite string [7 ] 

cos( )kd    (16) 

where k is the Bloch wave number. 

The relation establishing a link between values of the vectors 1 0NNd MU F U  
will enable to consider the boundary value problem of a string free vibration with fixed 
ends.  
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From (13) and (17) it follows that 
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Here 0 (0), ( )N Nd  are stresses arising at the string fixed ends. 

Taking into account that 
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from matrix equation (18) one can obtain  
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22 1 2 0( ) 0N N NNd m S S    (20) 

Equation (19), (0) 0  gives two alternative families of normal and localised 
vibrational modes [6] 

12 ( ) 0m    (21) 

1 0NS    (22) 
Equation (21) defines the countable set solutions of localised wave frequencies  

, 1, 2,....i i  . 

At frequencies i , 22 11( ) ( ) 1i im m  and therefore  
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Using the recurrence formula for Chebyshev polynomials the following relation can be 
obtained [6 ]  
 

0 0 , 1,2....n
n nd n N    (24) 

From (24) it follows that if ( ) 1j  the stress wave localisation occur at 0x , in 

the case of ( ) 1j  the stress wave localisation occur at x L . 

Another possible case is the equation (21). This equation has 1N roots in the interval 
1,1 ,  which are given by  

1
0 cos , 1,2... 1m m N m N    (25) 

Taking into account that 2 0 ( 1)m
N mS one can write  

0 0( 1) 0 , 1,2....mnd n N    (26) 

This means that 1N  normal modes exist where waves are uniformly distributed 
along the string length. 

 

Analysis and results 

It follows from (16) that the condition 1 defines band gaps in an infinite 

string. Since the imaginary parts of Bloch vector Im kd  operate inside the gaps, the 
analysis of ban gap structure caused by scatterers will be carry out by considering the 
attenuation function Im kd within band gaps. 

The influence of the scattering on formation of band gaps is illustrated on Fig. 2 where 
the imaginary parts (attenuation curves) of the Bloch wave vectors are plotted as a function 



36 

of non-dimensional frequency , the lowest contours of the attenuation curves where 
Im 0kd  define the map of band gap frequencies. The maps correspond to the first 

and second gaps. The curves are plotted at 0.3 .  
Hereafter the blue curves correspond to scattering coefficient 10  , the black curves to 

5 , the red curves to 2  (See online version for colors). Analysis shows that band 
gap structure slightly depends from  which means that gaps may open also in the case of 
uniformly (equidistant) oriented scaterrers. 

 

 
 

Figure 2. Map of first and second gaps 

 

As it follows from Figure 2. scattering essentially increase the widths of the gaps and 
the attenuation function within gaps. 

The eigen frequencies i versus relative distance  shown in Figure 3., where i are 

the solutions of the equation (21 ). Note that 1i i  
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 Figure3. The frequencies curves versus relative distance  

As it follows from Figure 3. scattering increase the frequency of localised wave and is 
more increasing the maximal value of the low frequencies than the maximal value of high 
frequencies. 

On the Figures 4a,b the plots of localisation coefficients versus relative distance are 

presented. Note that 
1

( , ) (1 )i i .  

 
Figure 4a. Graphs of localisation coefficients versus relative distance 

 
Figure 4b. Graphs of localisation coefficients versus relative distance 

As it follows from Figure 4. the scattering sufficiently increases the localisation 
parameter for low frequencies. From analysis of the graphs of Fig .4 it follows that due to 
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scattering the very strong localisation of the stress wave in the string occur even for 2  
and 10N .  

When 3 32, max ( ) 1.62, min ( ) 0.61  0( ) (0) 0.0082N Nd  . 
Note that the localisation effect is stronger at the first frequency. 

Conclusions  
Based on the transfer matrix procedure in conjunction of Sylvester’s matrix theorem the 

problem of localized wave is studied in a string in tension with interfaces of imperfect 
elastic contact caused by periodically non equidistant oriented scatterers. It is shown that in 
this periodic structure the localisation of stress wave occur. The localised stress wave 
frequencies and wave localisation amplitude depending both scattering factor and relative 
distance between scaterrers are determined analytically and illustrated by plots. It is shown 
also that in the infinite string the periodic oriented scatterers can open band gaps. 
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