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PerympoBanue joxkanu3anueil BOJHOBOM YHEPIrHH 110 TOJILIHHE
Nbe303J1eKTPHYECKOro BOJITHOBO/AA: 321242 ONITHMAJILHOI'O YIIPABJICHHS
TPEXKOMIIOHEHTHOIi 3JIEKTPOYNPYroii BOJTHOM

KiroueBble c10Ba: Nbe303/IEKTPUYECKUI BOJIHOBOJ, 3JIEKTPOYNpPYyras BOJIHA, DHEPIrus
BOJIHBI, aHM30TPOIUS MaTepHaia, 3JICKTPOMEXaHHYECKUE BO3/EHCTBUS, YIPaBISIEMOCTb,
HayaJIbHO-KpaeBas 3ajaqa.

Jlara ob6oOmaromas MocTaHOBKa MAaTeMaTHYECKOW HadadbHO-KPAeBOM 3aJaddl O pacHpOCTpaHCHUN
9IEKTPOYNPYroil TPEXKOMIIOHEHTHON BOJIHBI B CJIO€ MbE30JIEKTPHYECKOr0 BOJIHOBO/A, M3TOTOBJICH-
HOr0 M3 Marepuajla IpPOU3BOJILHOW aHm30Tponuu. HavanpHo-KpaeBass MaTeMaTHuecKas 3ajada
YIpaBICHUS PACIIPOCTPAHCHUEM IICKTPOYIIPYTON BOJIHBI IIOBEPXHOCTHBIMH 3JIEKTPOMEXaHUIECKUMHU
BO3JICHCTBHUSIMH CBOJMTCS K CXOJSIIIEHCS CHCTEME 3a/1au YIpPaBIeHHs COOCTBEHHBIMH (YHKLHAMH U
COOTBETCTBYIOIIMMH COOCTBEHHBIMU I'APMOHUKAMHU 3JIEKTPOMEXAHUYECKUX XapaKTEPUCTHK PaCIpo-
CTpaHsoNIelicst BOMHBL. JlafoTcst ompeeneHusl TOYHOH YIpaBIsieMOCTH TPEXKOMIIOHEHTHON AJIEKTPO-
YIPYroil BOJHBI, a TAaKKe ONpeeSeHHs] PEeryJHpOBKU JIOKAJIM3alUeld BOJHOBOW HEPIUH DICKTPO-
MEXaHWYECKUMHU TIOBEPXHOCTHBIMHM BO3JCHCTBHSAMHM KaK 3aJada ONTHMAJIBHOTO YIPaBICHUS
pacrpesieneHueM TPEXKOMIIOHEHTHON 3JIEKTPOYIPYTOH BOJHBI MO TOJIIHMHE MbE303JIEKTPHYECKOTO
BOJIHOBOJIA.

Ugdtunhywi L9, Ujknhyuh U.U.,
MhkgqnhEynpuub whpunwph hwunn pyudp wihpught Fukpghugh whinuyiugdui
Ywpqunpmdp. Gowpunuinphs Hjnpuwrwdquljub wihph ownpduy jurujupdwh pinhpp

Zhdwwpwnkp® whtgnhEjupulwl wihpwnwp, LEjunpuunwdquljut wihp, whph tubkpghw, Wyniph
wihqnuupnuhw, Jwibkpinipughtt  wqpbgnipjnititp, gonpénnmipnibubp,  jupwqupbihnipintl,
uljqphwuib-kqpuight juughp:

PipJws E judwjulut  wihgnupnuyhw  nibkgnn  whbkqnbijupuuwt  wjhpwwnwp  okpund
bEjnpuwrwdquljut  Eowpwnunphy  wjhph  wwpwdnudp  Gjwpwugpny  dwpkdwnhuljub
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uljqpiwubi-kiqpuiyhtt juinph punhwipuwging dhwlkpynudp: Twlbpbnipughtt HEjunpudkwihlu-
Jub wqplgmpinibbpng LEjunpuwwpwdquijut wihph wwpwsnudp pijujupbnt  uqpiuljui
Eqpuyhtt dwpbdwnhljuljub junhpp 4ip £ wsynud ubthwlwt $niiljghwbkph b mwpwsynn wihph
hEyunpuwikwthjuljut  pumpwgpiph  hwdwywunwupwt ubkthwliwb  hwpdnihwibph
nEjujupdwb jpunhpubph Yniudbpghun hwdwlwpgh: Spdws o towpununphy fEjunpuwnwdquljui
wihph &2gphwnn  Jupwdupbjhnipjut, hswbu  twb  BEjupudbwthjuut  dwlbpbnipwht
wqntignipymbttph dhengny, wihpwyht tukpghugh nbnujiugdwi jupquynpiwh vwhdwindbbp’
npytu whtqniEjupuljwh whpuwnwph hwunnipjudp bpwpunungphy HEjunpuurwdqulijub wihph
Futpghuyh pughudwt oyyinpdwy nEjunjupdwt patighp:

A generalizing formulation of the mathematical initial-boundary value problem on the propagation of
an electroelastic three-component wave in a piezoelectric waveguide layer made of a material of
arbitrary anisotropy is given. The initial-boundary-value mathematical problem of controlling the
propagation of an electroelastic wave by surface electromechanical influences is reduced to a
convergent system of problems of controlling the eigenfunctions and the corresponding eigen
harmonics of the electromechanical characteristics of the propagating wave. Definitions of the precise
controllability of a three-component electroelastic wave are given, as well as definitions of regulation
by the localization of wave energy by electromechanical surface influences as a problem of optimal
control of the distribution of a three-component electroelastic wave over the thickness of a
piezoelectric waveguide.

Introduction

The propagation of electroacoustic waves in piezoelectric waveguides is a process of
changing the state of coupled elastic and electromagnetic fields and is considered as a state
of a driving medium (system) with distributed parameters.

Developing a control theory for systems with distributed parameters is a much more
complex task compared to a similar task for systems with lumped parameters. Moreover,
the problems of optimality, controllability and observability for systems with distributed
parameters are as complex as similar problems for systems with lumped masses [1].

In limited solid piezoelectric waveguides, in accordance with the anisotropy of the
material and the fulfillment of boundary conditions, different types of electroactive normal
electroelastic waves propagate along their surface, each of which is a set of longitudinal
and/or transverse elastic waves and accompanying electric field oscillations [2, 3, 4 ]. An
electroactive elastic wave in a piezoelectric medium is a multi-parameter process and can
be controlled (regulated) by various possible electromechanical influences [4,5].

An important feature in problems of controlling electroacoustic processes is also the
possibility of contactless influence on the surface of a piezoelectric medium [4]. This is
caused by the inverse piezoelectric effect, where temporary fluctuations in the electric field
at the surface of the piezoelectric body (surface electromotive force) create a surface-
equivalent mechanical force.

Controllability of hyperbolic systems of equations is achieved in principle in three
different ways: i) when the characteristics of a propagating wave are related to each other
by Holmgren's uniqueness theorem, ii) by harmonic analysis of wave characteristics in
connection with Ingham's lemma and its extensions, iii) the method of integrating factors.
Moreover, the harmonic analysis method of wave characteristics, when applicable, gives
very good results [1]. In a recently published work [6], the author presents the formulation
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and approaches to the study of problems of controllability and stabilization of the wave
process under various types of influences on it.

Using the Green's function method, work [7] studies the controllability of linear and
nonlinear mathematical initial-boundary value problems arising in many applied fields of
science.

Without violating the generality of the approach to studying the controllability of the
process and in order to avoid unnecessary mathematical difficulties, the article considers
the issue of controllability of the mathematical initial-boundary value problem of
electroelasticity for the case of a three-component electroacoustic quasi-static wave in a
piezoelectric waveguide under various possible electromechanical surface influences [8].

1. Mathematical initial-boundary value problems for three-component electroelastic
waves in  piezoelectric  waveguide under surface electromechanical
influences

Piezoelectrics are essentially anisotropic crystalline materials. In an arbitrarily chosen
sagittal plane x,0x,, with a choice of indices{a, B, v} 22 {l, 2, 3}, the tensor of
electromechanical characteristics of the medium allows us to formulate a two-dimensional
problem about a three-component electroelastic pure shear wave of the type
{0, 0, u,(x,,x,,0), 6(p(xa,xﬁ,t)/6xa, 8(p(xa,xﬁ,t)/8x , 0.

For piezoelectric materials that allow an anti-plane deformable state, the material

relations of non-zero characteristics of the electromechanical field can be represented in the
form

Gp, (X, 5 X551) 0 ¢, e € ou,(x,,%y,) [ 0x,
Gya(xasxﬁ7l) _ C; 0 61*5 e;s y 6“«/(xaaxﬁ7t)/axﬁ (1 1)

D, (x,,Xy,1) e e, —-g, O o0(x, ,x,,1) /Ox,
Dy (x5 %5,1) &5 €, &y 0 a(p(xa,xﬁ,t)/axﬁ

Consequently, the quasistatic equations of electro elasticity will be different for the
corresponding piezoelectrics, depending on the choice of anisotropy of the material and the
crystallographic cross section in it [4, 5].

Representations of material connections of non-zero characteristics of the
electromechanical field in a unified form (1.1) formally allow a unified representation of
the mathematical initial-boundary value problem for piezoelectrics of all symmetry classes,
in which the electroactive problem of antiplane deformation is possible.

Without violating the generality of reasoning, in a piezoelectric waveguide connected to
the coordinate system Oxyz piezoelectric waveguide Q,(x,y,z)={|x |<oo;| y |<H ;| z |<oo}
, the system of quasi-static electro elasticity equations for three-component electroelastic

waves (pure shear electroactive elastic waves) will be written in the form of an invariant
matrix system of linear differential homogeneous equations

[A]w[*]—p[az/aﬂ] A](,,[*]Jx[wu,y,r)j

=0 (1.2)
Ay [#] Ay l#1) \o(x,p,0)



A ¥ = e [0° /o ]+, [0° /oy,

Ay [¥]= s [0° /] + €, [0 [0y° 1+ (e +€1,) - [0 [ oxay],
A [*] =€ [0°[ox* ]+ €, [8° [y ]+ (e +e,)-[0° /oxdy],
A [¥] = —g;,[0° [ox* ] —€5, [07 &y*].

Linear operators (1.3) are introduced into the matrix system of equations (1.2). This also
includes the shear displacementw(x,y,#) and electric potential p(x, y,#) of a three-

(1.3)

component electroelastic wave of antiplane strain in the piezoelectric layer.
In the case of the unidirectional propagation along the waveguide of normal

electroelastic waves F(x, b)) = f(y, t)-exp(£ikx), the antiplane electroelastic state will be

described with respect to the amplitude functions of the electromechanical characteristics
w(y,t) and @(y,?) in two-dimensional form

A [¥=pl07 /o] Ay l¥] X[w(mj
Ay [¥] Agol¥]) \0(3,1)
A [x]= c:4 '[82/8)’2] - C;5k2 . Ayl = e;t '[62 /ay2]+ ik(e; + 61*4) : [a/ﬁy] - el*skz >
A ¥l =6, [07 [0y’ 1+ ik(ess + e, {0] V] —eisk”, A, [¥]=—e), [0° [y 1+e,k> . (1.5)
On the surface of a piezoelectric waveguide y = £/, the conjugation conditions of the

=0 (1.4)

electric and mechanical fields are always satisfied. Mechanical boundary conditions impose
restrictions on shear displacement w(x, y,?), or shear stress o_ (x,y,t) and/orc _(x,y,?).

Electrical boundary conditions impose restrictions on the normal component of the
electrical displacement D, (x, y,?) , or on the tangential component of the electrical intensity

E (x,y,1) = =0¢(x, y,1)[Ox .

In the case of the unidirectional propagation along the waveguide of normal
electroelastic waves, the inhomogeneous electromechanical boundary conditions are written
in the form of different mathematical linear combinations of four physically independent,
mechanical and/or electrical surface actions [2,3,4]

wo| L, =m0 o0 ., =40, (1.6)
w0, =1 (0 [do(r.0/ey] ., =8.(0), (1.7
[ow(r.0foy] ., =70 o0, =000, (1.8)
[w(r.0/oy] ,, =70 [e(r.0/3y], ., =8.0), (1.9)

Included in the inhomogeneous boundary conditions, the time functions
p, (); ¢.(t); t.(¢); 6.(¢) are defined on the time axisz >0 and belong to the class C,[*]
of functions.

In the general case of the dynamic formulation of the problem of electro elasticity, at
the initial and final moments of the time intervalz € [0;7; ], four functions of the elastic and
electrical characteristics of the wave field or four different combinations thereof, the
conditions of the initial and final states is specified.

In the quasi-static formulation of electroacoustic problems, the propagation of an elastic
wave with accompanying oscillations of the electric field is considered. Then the
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electroelastic state is determined by two known functions of the initial and two other known
functions of the final states, or by two different combinations of these four existing
characteristics of the electroelastic fieldw(x,y,t), o(x,y,t), w(x,y,t) and@(x,y,t),

which are interconnected by two equations (1.2).

In the case of the unidirectional propagation along the waveguide of normal
electroelastic waves, the electroelastic state during the propagation of normal electroelastic
waves, in the waveguide layer is determined by two known functions of the initial state

w(y,0)=&(»); w(y,0)=C(y), (1.10)
or

o(¥,0,) =n(»); 0(r,00) =v(»), (1.11)
and two known functions of the final state

w(,Ty) =&(»); w(,T,) =C(»), (1.12)
or

o, 1)) =1(»); o, Ty)=7(») (1.13)

for an electroelastic wave.

The system of homogeneous second-order differential equations (1.4), with the notation
of linear operators (1.5), together with surface influences of the type (1.6) - (1.9) and
representations of the initial and final states (1.10) + (1.13), constitute a complete
mathematical initial-boundary problem for studying the control of wave formation and
propagation of a three-component electroacoustic wave in a piezoelectric waveguide.

In problems of this type, surface control of waves comes down to studying the
controllability of wave formation of their own waveforms and changing the corresponding
harmonics. Therefore, research on wave control can be carried out by harmonic analysis of
wave characteristics, since it is applicable and gives very good results [1].

For this purpose, surface electromechanical influences acting on the propagation of
electroacoustic waves are reduced to the corresponding volumetric influences. Then the
boundary value problem with inhomogeneous boundary conditions (1.4) - (1.9) is written in
the form of inhomogeneous equations with volumetric influences

A ¥-ple*far] A, 1#] X[v(y, ) J (S (114)
AZV[*] AZ\U[*] \V(yst) ﬁp(yst) '
and with the corresponding (1.6) - (1.9), homogeneous surface conditions in each case
V0L, =0 v ., =0, (115)
v,y =05 [owir.n/ay] ,, =0. (1.16)
[ovnfoy] _,, =0; v, =0, (1.17)
[Vo.o/oy] . =0 [w.n/oy] ,, =0, (1.18)
Linear operators in the matrix equations (1.14) is already transformed to

A2 AL A2 AL A2 AL A T2 A, [+ (1.19)

For various types of surface influences (1.6) - (1.9) the transformation functions can be
formally written in a uniform

{V(y,t) } _ {W(W)}_{W (r.0+W. (y,t)} (1.20)
v et | |9, () +D_(y.0) '
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In which the terms of the transformation are predetermined by the nature of surface
influences (1.6) — (1.9)

W, (3,0) € {[(H, +3)/2H, - 0. (0); [(v+H,)* [4H,]-7. (1)} (1.21)

., (y.0) € {[(H, £ )/2H,1- 0,0 [(v+H,)* [4H,]-5.(1)) (122)
In equations (1.14), volumetric influences of the type f,,(»,¢) and f,(y,?) are represented
by transformation terms W(y,#)=W_(»,1)+ W_(y,?) and ®(y,1)=D_ (y,£)+D_(y,t) as

S0 =[ A [¥=pl0 [0 1| [W(,0)]+ Ay, [¥]X[ (3, 1)] (1.23)

LoD = Ay X[ W0+ Ay, [¥] X [@(y.0)] (1.24)
By introducing transformation functions (1.20), descriptions of the initial and final
states (1.10) - (1.13) acquire a new entry

V(,0) = E0) = [W. (1,00 + W (5, 0)];  ¥(3,0)=C() - W.(3,0+ W (50| (125
or
v(3,0) =n() =[O, (10+D (10)]; (1.0 =y() [, (10)+D (0]  (1.26)

and two known functions of the final state

VO T) = E0) = [W, (0 T+ W0, )]s ¥ 1) =E0) [ W L)+ W (T ] (1.27)
or

Y. 1) =R0) - [@, (1) + @ (1. T W ) =70 [, (1 ) +d_(n.7,)]  (128)
for an electroelastic wave.

By introducing transformation functions (1.20), the initial-boundary value mathematical
problem with a system of inhomogeneous equations (1.14) and homogeneous surface
conditions (1.15) - (1.18), together with descriptions of the initial and final states (1.25) -
(1.28) constitute the initial-boundary value problem control of a three-component
electroelastic wave in a coordinate rectangle O, =[-H, <y < H |x[0<t<T].

2. Three-component electroelastic wave formation and propagation in a piezoelectric
waveguide

In a homogeneous mathematical boundary value problem formed from homogeneous
equations of the corresponding system (1.14), when £, (y,)=0, f,(»,/)=0 and the
homogeneous boundary conditions of the type (1.15) + (1.18), separation of variables is
possible. Then the solutions to this homogeneous mathematical boundary value problem are
represented as a function

{v(y,t)J:(V(y)j.e(t):"Z“(Vn(y)].e”(,), @.1)

w(y,1) w(y) o\, ()

expanded in Fourier series V(y) = Z V.(»), 6@ = Z 0,().
n=0 n=0

It is important to pay attention to the fact that in the expansions of both sought functions
the time regime will be the same 0, (¢) =60, (#) = 6(?) . This follows from the homogeneity

of the second equation of the matrix system (1.4) and is a consequence of the quasi-static
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formulation of the problem, in which the harmonics of the accompanying electric field
coincide with the harmonics of elastic vibrations.

The difference in surface conditions (1.15) + (1.18) in the formulation of the boundary
value problem leads to different possible formations of the proper forms and structure of
the overall electroelastic wave along the thickness of the waveguide.

The matrix system of homogeneous equations is then written in the form

A 5] A (% v .
Wb AT VO _p80) s 2.2)
Ay ¥ Ay l¥1) \w(»)) 60
In accordance with the boundary conditions of the first kind (1.15) and the second kind
(1.18), in piezoelectric waveguides made from materials of the classes 6mm of hexagonal

symmetry, 4#mm of tetrogonal symmetry, mm2 of thombic symmetry the resulting signals
can be represented by their own shapes corresponding to different oscillation frequencies

Vi & A, cos[k, o, (okh)-y]+ B, sin[k, o, (o,kh)-y]
{ } (es/e))- [Awm cos[k, o, (®,kh)- y]+ B, sin[k, o, (o, kh)- J’]]

Here o, (o,kh)=yoy, [k.C} —1=mn/2k, H, are the eigenvalues of the accompanying
electroelastic oscillations corresponding to the oscillation frequencies the eigenmodes

23
w(») 23)

m=0

®, =k, C,, 1+ (mn/2k,H, )2 , C, =+/c,,/p shear volumetric wave velocity.

In cases of mixed boundary conditions like (1.16) and (1.17) in the same piezoelectric
waveguides, no proper forms are formed.

Conversely, in accordance with mixed boundary conditions of type (1.16) and (1.17) in
piezoelectric waveguides made of materials of classes 43m/23 cubic symmetry, 222
rhombic symmetry, 622 of hexagonal symmetry, 42m tetragonal symmetry, the resulting
signals can be represented by their own shapes corresponding different vibration
frequencies

A, cos[k, a,, (o,kh)-y]+B,, sin[k, o, (o,kh)-y]

V| _<),
{\V(y)} - z m : [me Cos[kma’Zm ((0’ kh) : y] - Awm Sin[km(x’Zm ((‘D’ kh) : y]]

m=0
he,,

24

Here o, (0,kh)=1/o;,, / k.C; —97 =mm/2k, H, are the eigenvalues of the accompanying

electroelastic oscillations corresponding to the oscillation frequencies the eigenmodes

©y, =kC2,-\/S)f+(mrc/2ka0)2 and 97 =c,/c,, is a shear anisotropy coefficient,
C, :C“x/g =./¢s;/p shear volumetric wave velocity in a waveguide of a different

anisotropy.

In cases of the boundary conditions of the first kind (1.15) and the second kind (1.18),
in the same piezoelectric waveguides, no proper forms are formed.

The function of the harmonics of the accompanying electric field coincides with the
function of the harmonics of the propagating elastic vibrations and is represented as

0(r) = iem )= i[/lem sin(w,, )+ By, cos(wemt)] . (2.5)

m=0
From (2.3) it follows that in the case of transversal anisotropy of the piezoelectric,
changes in the shapes of the distribution of amplitudes of accompanying electrical
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vibrations are consistent with changes in the shapes of the distribution of elastic shear
amplitudes.

From (2.4) it follows that in the case of a different anisotropy of the material, changes in
the distribution of the m™ form of amplitudes of accompanying electrical vibrations lag
behind the change in the corresponding form of distribution of elastic shear amplitudes by
o, =C2m+1)n/2.

Having found the eigenforms {Vm ;s v, (y)} and their corresponding harmonics

6, (»), by expanding the inhomogeneous initial-boundary value problem (1.14), (1.15),

and (1.20)=(1.25) into a Fourier series in the coordinate rectangle
O, =[-H,<y<H,]x[0<t<T,], in a generalized form we obtain the control equation for

the eigenforms of the electroelastic waves

[6,(0=Ay, (/&) i, () ]+ 0}, -[00)= Ay, (1/E)- 1, (1) ] =

(2.6)
= A, (1/E)(0}, — 0}, ) Map ()T -0, (1)
With expansion coefficients in Fourier series in eigenforms
1
Alut = F J. |:(H0 iJ’)Vm(J’)]dy H
00
H,
- j [(eisk® (Hy £9)F ik(ess +€i) -V, () [y @.7)
H,
[k (1, 5) kel )V, )
O 0
1
F2¢t = H J.[gzzkz (HoiY)'Vm(J’)]dJ’a ”’i(t):[r%i /A2u1j|.¢i(t) (2.8)

00
The general solution to the control equation (2.6) for the mf true harmonic
8, (0,1) =0, (0, 1) — Ay, (1/E2)-u,, (®,,1), is obtained by the method of variation of
parameters for the eigenforms harmonics of the electroelastic waves and forced elastic
vibrations
gm (O‘)Gmt) = Amg .Sin(o‘)ﬁmt) + Bmg 'COS(O)emt) +

2 2
+A Mj (0] 4, -sinfw,, (= 0]+ B, -cos[w,, (1~ 1] |-dT+ 2.9)
Iy, 52 Mim mg Om mg Om :
*t 0

+T,, - jq)im (0):[ 4, -sin[w,, (t=1)]+ B, -cos[w,, (t—1)]]-d=

In which harmonics of the reduced eigenforms and the harmonics of surface actions are
represented respectively, as

En (memt) = em (O)emt) - Alu (1/5*2[) : ”‘im ((*)emt) ’ (2 10)
w,, (1) =4, -sin(w, )+ B,, -cos(®,,1) , (2.11)
d., (1) = 4, -sin(w,,1) + me -COS(,, 1) . (2.12)

Taking into account the representation of solutions (2.1) with expansions (2.3) or (2.4),
as well as descriptions of the initial and final states (1.8), (1.9) and surface influences (1.5),
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they have the form of an infinite system of four algebraic equations regarding the
amplitudes of true harmonics of electroelastic vibrations waves and harmonics of surface
control actions

g, (0)+A,, (/E)(f, —l, )1, (0)+T,, -¢.,(0) =y,

&,0)+A,, (1/&)(wf, —l, )i, (0)+T,, -4.,0)=3,

2, (00, + Ay, (1)) (0, =), ) 1, (0, 1)+ Ty 0., (0,T,) =7,
V0 L)+ A, (1/E) (05, — o, ), (@, 5)+ T 0., (0,T) =3,

The period7 >0 during which surface influences p, (7) and ¢, () lead the wave

(2.13)

process from the initial state to the final state is determined from the conditions for the
existence of nontrivial solutions of systems of type (2.13)
T, =min{T,, > 0}. (2.14)

meN"
3. The Exact controllability problem for three-component electroelastic wave.

Let us present the initial boundary value problem of controlling a three-component
electroactive wave process in a piezoelectric waveguide layer in the following form

(A H-ple* /o] vy, = f,(nt) i Oy =(=H, <y <H,)x(0<t<T,)
[ovn/ov] . =0; in I=Tx(0<t<T)
v(1,0) = &) ~[W, (#,0)+ W_(»,0)]
V0,0 =) -[ W, (1, 00+ W (0,0)]  in Q=(-H,<y<H,)
Under adequate conditions of regularity and compatibility of the initial data
{V( 1,0), v( y,O)} and the reduced influence f, (y,?), system (3.1) admits a unique solution
v(y,t) , in the energy functional space C ([O,T];H(‘, (Q)) NnC' ([O,T];L2 (Q)) .

Then, the wave energy for the process corresponding to the system of mathematical
initial-boundary value problem (3.1) represented by the functional

1 . . 2, 2
E0)=5] [ Cu TV 0/ 07" 1= k(.| +[v(0)| ]dy (32)
Q
The task of precise controllability is to bring the wave state to equilibrium in a uniform
time, regardless of the initial data, by external influence or control, which in the case under

consideration is a reduced force f, (,?).

3.1)

More precisely, the problem of exact controllability will be formulated as: the existence
of a time7, >0 such that for each pair of initial data{v( 1,0), v( y,O)} there is a control

/., (»,t) such that the solution v(y,#) of equation (3.1) satisfies the relations
v(y, 1) =0, V(3. T,) =0. (33)
This formulated as follows: For arbitrary T,>0, for each pair of input data

{V(y,O), \'/(y,O)} e H)(Q)xL*(Q) there is a control f, (y,t) e(C([O.TO]; H? (Q)) such
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that the solution of the mathematical initial-boundary value problem (3.1) satisfies
relations (3.3).

4. Optimal control for three-component electroelastic wave. Localization of wave
energy along the thickness of the waveguide.

In the problem of propagation of a three-component electroelastic wave, the flow of
electroelastic energy through the thickness y e[-H;H,] of a piezoelectric waveguide
determined by the expression

folo ,Z(y,t)'S ,Z(y,l‘)‘i‘(?”(y,l‘)'Szx(y,t)-i-
P ’ ' -d (34
+Ex(y=t)'Dx(yst)-’_Ey(y’t)'Dy(yat)

Solutions of the mathematical initial-boundary value problem (1.4)-(1.6), (1.10) and
(1.12), taking into account relations (1.20)-(1.22), amplitude distributions (2.3) and (2.4), as
well as solutions to the harmonic equation (2.9), represented in the form
{w(m} _ (V (10, (t)j . {[(HO +9)[2H, 1, (O +[(H, = y)[2H, ] 1 (t)} .

o(y,1) v,(0):0,(0))  ([(Hy+y)/2H,1-0. () +[(H, = y)/2H,]-$_(¢)

Considering the obtained solutions of the mathematical initial-boundary value problem,
as well as the material relations of the piezoelectric medium, we obtain expressions for the
energy integral depending on the surface influences: U, (w( »,0), n.(t), ¢, (t)) .

—H,

n=0

Localization of wave energy in a thin strip along the thickness of the waveguide is the
problem of optimal control of wave energy along the selected thin strip.

This strip can be near surface y e[H, -2\ H,]U[-H;—H, +2)].

—Hy+2)\
Uy (w01 0,0.0) = [ (0,78, +0,, -6, +E,-D,+E,-D,)-dy
_HO
i, (3.6)
+ [ (0.6, +0, €, +E D,+E,-D,)-dy=09-Uy,
Hy =23,

The localized energy in the inner thin strip y < |2}\.| along the thickness of the waveguide

represented as the functional
2%

Uem (W(yit)ﬂ l’l'i (t)ﬁ (I)i (t)) = J‘ (Gyz .gyz +sz 'gzx +EX .DX +Ey .Dy)dy:O'gUSm (37)
=20

In relations (4.3) and (4.4), A < H,, is the wavelength.
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