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A generalizing formulation of the mathematical initial-boundary value problem on the propagation of 
an electroelastic three-component wave in a piezoelectric waveguide layer made of a material of 
arbitrary anisotropy is given. The initial-boundary-value mathematical problem of controlling the 
propagation of an electroelastic wave by surface electromechanical influences is reduced to a 
convergent system of problems of controlling the eigenfunctions and the corresponding eigen 
harmonics of the electromechanical characteristics of the propagating wave. Definitions of the precise 
controllability of a three-component electroelastic wave are given, as well as definitions of regulation 
by the localization of wave energy by electromechanical surface influences as a problem of optimal 
control of the distribution of a three-component electroelastic wave over the thickness of a 
piezoelectric waveguide.  
 
Introduction 

The propagation of electroacoustic waves in piezoelectric waveguides is a process of 
changing the state of coupled elastic and electromagnetic fields and is considered as a state 
of a driving medium (system) with distributed parameters. 

Developing a control theory for systems with distributed parameters is a much more 
complex task compared to a similar task for systems with lumped parameters. Moreover, 
the problems of optimality, controllability and observability for systems with distributed 
parameters are as complex as similar problems for systems with lumped masses [1].   

In limited solid piezoelectric waveguides, in accordance with the anisotropy of the 
material and the fulfillment of boundary conditions, different types of electroactive normal 
electroelastic waves propagate along their surface, each of which is a set of longitudinal 
and/or transverse elastic waves and accompanying electric field oscillations [2, 3, 4 ]. An 
electroactive elastic wave in a piezoelectric medium is a multi-parameter process and can 
be controlled (regulated) by various possible electromechanical influences [4,5]. 

An important feature in problems of controlling electroacoustic processes is also the 
possibility of contactless influence on the surface of a piezoelectric medium [4]. This is 
caused by the inverse piezoelectric effect, where temporary fluctuations in the electric field 
at the surface of the piezoelectric body (surface electromotive force) create a surface-
equivalent mechanical force. 

Controllability of hyperbolic systems of equations is achieved in principle in three 
different ways: i) when the characteristics of a propagating wave are related to each other 
by Holmgren's uniqueness theorem, ii) by harmonic analysis of wave characteristics in 
connection with Ingham's lemma and its extensions, iii) the method of integrating factors. 
Moreover, the harmonic analysis method of wave characteristics, when applicable, gives 
very good results [1]. In a recently published work [6], the author presents the formulation 
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and approaches to the study of problems of controllability and stabilization of the wave 
process under various types of influences on it. 

Using the Green's function method, work [7] studies the controllability of linear and 
nonlinear mathematical initial-boundary value problems arising in many applied fields of 
science.  

Without violating the generality of the approach to studying the controllability of the 
process and in order to avoid unnecessary mathematical difficulties, the article considers 
the issue of controllability of the mathematical initial-boundary value problem of 
electroelasticity for the case of a three-component electroacoustic quasi-static wave in a 
piezoelectric waveguide under various possible electromechanical surface influences [8]. 
 
1. Mathematical initial-boundary value problems for three-component electroelastic 
waves in piezoelectric waveguide under surface electromechanical 
influences.Equation Section (Next)  

Piezoelectrics are essentially anisotropic crystalline materials. In an arbitrarily chosen 
sagittal plane 0x x , with a choice of indices{ ,  ,  } {1,  2,  3} , the tensor of 
electromechanical characteristics of the medium allows us to formulate a two-dimensional 
problem about a three-component electroelastic pure shear wave of the type
{0,  0,  ( , , ),  ( , , ) ,  ( , , ) , 0}u x x t x x t x x x t x .  

For piezoelectric materials that allow an anti-plane deformable state, the material 
relations of non-zero characteristics of the electromechanical field can be represented in the 
form 

* * *
44 14 24

* * *
55 15 25
* *
15 14 11
* * *
25 24 22

( , , ) ( , , )0
( , , ) ( , , )0
( , , ) ( , , )0

0( , , ) ( , , )

x x t u x x t xc e e
x x t u x x t xc e e

D x x t x x t xe e
e eD x x t x x t x

 (1.1) 

Consequently, the quasistatic equations of electro elasticity will be different for the 
corresponding piezoelectrics, depending on the choice of anisotropy of the material and the 
crystallographic cross section in it [4, 5].  

Representations of material connections of non-zero characteristics of the 
electromechanical field in a unified form (1.1) formally allow a unified representation of 
the mathematical initial-boundary value problem for piezoelectrics of all symmetry classes, 
in which the electroactive problem of antiplane deformation is possible.  

Without violating the generality of reasoning, in a piezoelectric waveguide connected to 
the coordinate system 0xyz  piezoelectric waveguide 0( , , ) {| | ;| | ;| | }x y z x y H z
, the system of quasi-static electro elasticity equations for three-component electroelastic 
waves (pure shear electroactive elastic waves) will be written in the form of an invariant 
matrix system of linear differential homogeneous equations 

2 2
1w 1

2w 2

[ ] [ ] [ ] w( , , )
0

[ ] [ ] ( , , )
t x y t

x y t
  (1.2) 
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* 2 2 * 2 2
1w 55 44

* 2 2 * 2 2 * * 2
2w 15 24 25 14

* 2 2 * 2 2 * * 2
1 15 24 25 14

* 2 2 * 2 2
2 11 22

[ ] [ ] [ ],

[ ] [ ] [ ] ( ) [ ],

[ ] [ ] [ ] ( ) [ ],

[ ] [ ] [ ].

c x c y

e x e y e e x y

e x e y e e x y

x y

,    (1.3) 

Linear operators (1.3) are introduced into the matrix system of equations (1.2). This also 
includes the shear displacement w( , , )x y t  and electric potential ( , , )x y t  of a three-
component electroelastic wave of antiplane strain in the piezoelectric layer. 

In the case of the unidirectional propagation along the waveguide of normal 
electroelastic waves ( , , ) ( , ) exp( )F x y t f y t ikx , the antiplane electroelastic state will be 
described with respect to the amplitude functions of the electromechanical characteristics
w( , )y t  and ( , )y t  in two-dimensional form 

2 2
1w 1

2w 2

[ ] [ ] [ ] w( , )
0

[ ] [ ] ( , )
t y t

y t
  (1.4) 

* 2 2 * 2
1w 44 55[ ] [ ]c y c k ,     * 2 2 * * * 2

2w 24 25 14 15[ ] [ ] ( ) [ ]e y ik e e y e k , 
* 2 2 * * * 2

1 24 25 14 15[ ] [ ] ( ) [ ]e y ik e e y e k ,  * 2 2 * 2
2 22 11[ ] [ ]y k . (1.5) 

On the surface of a piezoelectric waveguide 0y H , the conjugation conditions of the 
electric and mechanical fields are always satisfied. Mechanical boundary conditions impose 
restrictions on shear displacement w( , , )x y t , or shear stress ( , , )zx x y t  and/or ( , , )yz x y t . 
Electrical boundary conditions impose restrictions on the normal component of the 
electrical displacement ( , , )yD x y t , or on the tangential component of the electrical intensity

( , , ) ( , , )xE x y t x y t x .  
In the case of the unidirectional propagation along the waveguide of normal 

electroelastic waves, the inhomogeneous electromechanical boundary conditions are written 
in the form of different mathematical linear combinations of four physically independent, 
mechanical and/or electrical surface actions [2,3,4]   

0 0
w( , ) ( );                       ( , ) ( )

y H y H
y t t y t t ,  (1.6) 

0 0
w( , ) ( );                        ( , ) ( )

y H y H
y t t y t y t , (1.7) 

00
w( , ) ( );                ( , ) ( )

y Hy H
y t y t y t t ,  (1.8) 

0 0
w( , ) ( );                  ( , ) ( )

y H y H
y t y t y t y t , (1.9) 

Included in the inhomogeneous boundary conditions, the time functions
( );  ( );  ( );  ( )t t t t  are defined on the time axis 0t  and belong to the class 2[ ]   

of functions.  
In the general case of the dynamic formulation of the problem of electro elasticity, at 

the initial and final moments of the time interval 0[0; ]t T , four functions of the elastic and 
electrical characteristics of the wave field or four different combinations thereof, the 
conditions of the initial and final states is specified.  

In the quasi-static formulation of electroacoustic problems, the propagation of an elastic 
wave with accompanying oscillations of the electric field is considered. Then the 



11 

electroelastic state is determined by two known functions of the initial and two other known 
functions of the final states, or by two different combinations of these four existing 
characteristics of the electroelastic field w( , , )x y t , ( , , )x y t , w( , , )x y t  and ( , , )x y t , 
which are interconnected by two equations (1.2).  

In the case of the unidirectional propagation along the waveguide of normal 
electroelastic waves, the electroelastic state during the propagation of normal electroelastic 
waves, in the waveguide layer is determined by two known functions of the initial state  
w( ,0) ( );                    w( ,0) ( )y y y y ,  (1.10) 
or  

0 0( ,0 ) ( );                  ( ,0 ) ( )y y y y ,  (1.11) 
and two known functions of the final state 

0 0w( , ) ( );                  w( , ) ( )y T y y T y ,  (1.12) 
or  

0 0( , ) ( );                  ( , ) ( )y T y y T y   (1.13) 
for an electroelastic wave.  

The system of homogeneous second-order differential equations (1.4), with the notation 
of linear operators (1.5), together with surface influences of the type (1.6) - (1.9) and 
representations of the initial and final states (1.10) ÷ (1.13), constitute a complete 
mathematical initial-boundary problem for studying the control of wave formation and 
propagation of a three-component electroacoustic wave in a piezoelectric waveguide.  

In problems of this type, surface control of waves comes down to studying the 
controllability of wave formation of their own waveforms and changing the corresponding 
harmonics. Therefore, research on wave control can be carried out by harmonic analysis of 
wave characteristics, since it is applicable and gives very good results [1].  

For this purpose, surface electromechanical influences acting on the propagation of 
electroacoustic waves are reduced to the corresponding volumetric influences. Then the 
boundary value problem with inhomogeneous boundary conditions (1.4) - (1.9) is written in 
the form of inhomogeneous equations with volumetric influences  

2 2
w1v 1

2v 2

( , )[ ] [ ] [ ] v( , )
( , )[ ] [ ] ( , )

f y tt y t
f y ty t

  (1.14) 

and with the corresponding (1.6) - (1.9), homogeneous surface conditions in each case  

0 0
v( , ) 0;                       ( , ) 0

y H y H
y t y t ,  (1.15) 

0 0
v( , ) 0;                        ( , ) 0

y H y H
y t y t y , (1.16) 

00
v( , ) 0;                ( , ) 0

y Hy H
y t y y t ,  (1.17) 

0 0
v( , ) 0;                  ( , ) 0

y H y H
y t y y t y , (1.18) 

Linear operators in the matrix equations (1.14) is already transformed to  
1v 1w[ ] [ ] ,   2v 2w[ ] [ ] ,   1 1[ ] [ ] ,  2 2[ ] [ ] . (1.19) 

For various types of surface influences (1.6) - (1.9) the transformation functions can be 
formally written in a uniform  

W ( , ) W ( , )v( , ) w( , )
( , ) ( , ) ( , ) ( , )

y t y ty t y t
y t y t y t y t

 (1.20) 
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In which the terms of the transformation are predetermined by the nature of surface 
influences (1.6) – (1.9)  

2
0 0 0 0W ( , ) [( ) 2 ] ( );  [( ) 4 ] ( )y t H y H t y H H t  (1.21) 

2
0 0 0 0( , ) [( ) 2 ] ( );  [( ) 4 ] ( )y t H y H t y H H t  (1.22) 

In equations (1.14), volumetric influences of the type w ( , )f y t  and ( , )f y t  are represented 
by transformation terms W( , ) W ( , ) W ( , )y t y t y t  and ( , ) ( , ) ( , )y t y t y t  as  

2 2
w 1v 1( , ) [ ] [ ] W( , ) [ ] ( , )f y t t y t y t  (1.23) 

2v 2( , ) [ ] W( , ) [ ] ( , )f y t y t y t  (1.24) 
By introducing transformation functions (1.20), descriptions of the initial and final 

states (1.10) - (1.13) acquire a new entry  
v( ,0) ( ) W ( ,0) W ( ,0) ;      v( ,0) ( ) W ( ,0) W ( ,0)y y y y y y y y  (1.25) 

or  
( ,0) ( ) ( ,0) ( ,0) ;       ( ,0) ( ) ( ,0) ( ,0)y y y y y y y y  (1.26) 

and two known functions of the final state 

0 0 0 0 0 0v( , ) ( ) W ( , ) W ( , ) ;   v( , ) ( ) W ( , ) W ( , )y T y y T y T y T y y T y T  (1.27) 

or  

0 0 0 0 0 0( , ) ( ) ( , ) ( , ) ;  ( , ) ( ) ( , ) ( , )y T y y T y T y T y y T y T  (1.28) 
for an electroelastic wave.  

By introducing transformation functions (1.20), the initial-boundary value mathematical 
problem with a system of inhomogeneous equations (1.14) and homogeneous surface 
conditions (1.15) - (1.18), together with descriptions of the initial and final states (1.25) - 
(1.28) constitute the initial-boundary value problem control of a three-component 
electroelastic wave in a coordinate rectangle 0 0 0[ ] [0 ]TQ H y H t T .  
 
2. Three-component electroelastic wave formation and propagation in a piezoelectric 
waveguide. Equation Section (Next) 

In a homogeneous mathematical boundary value problem formed from homogeneous 
equations of the corresponding system (1.14), when w ( , ) 0f y t , ( , ) 0f y t  and the 
homogeneous boundary conditions of the type (1.15) ÷ (1.18), separation of variables is 
possible. Then the solutions to this homogeneous mathematical boundary value problem are 
represented as a function  

0

V ( )v( , ) V( )
( ) ( )

( , ) ( ) ( )

n
n

n
n n

yy t y
t t

y t y y
,  (2.1) 

expanded in Fourier series 
0

V( ) V ( )
n

n
n

y y , 
0

( ) ( )
n

n
n

t t . 

It is important to pay attention to the fact that in the expansions of both sought functions 
the time regime will be the same w( ) ( ) ( )t t t . This follows from the homogeneity 
of the second equation of the matrix system (1.4) and is a consequence of the quasi-static 



13 

formulation of the problem, in which the harmonics of the accompanying electric field 
coincide with the harmonics of elastic vibrations.  

The difference in surface conditions (1.15) ÷ (1.18) in the formulation of the boundary 
value problem leads to different possible formations of the proper forms and structure of 
the overall electroelastic wave along the thickness of the waveguide.  

The matrix system of homogeneous equations is then written in the form 
1w 1 2

2w 2

[ ] [ ] V( ) ( )
[ ] [ ] ( ) ( )

y t
y t

.  (2.2) 

In accordance with the boundary conditions of the first kind (1.15) and the second kind 
(1.18), in piezoelectric waveguides made from materials of the classes 6mm of hexagonal 
symmetry, 4mm of tetrogonal symmetry, mm2 of rhombic symmetry the resulting signals 
can be represented by their own shapes corresponding to different oscillation frequencies  

w 1 w 1

0 15 11 w 1 w 1

cos[ ( , ) ] sin[ ( , ) ]
( ) cos[ ( , ) ] sin[ ( ,

)
]

V(
( ) )

m m m m m m

m m m m m m m

A k kh y B k kh y
e A

y
k khy y B k kh y

 (2.3) 

Here 2 2 2
1 1 0( , ) 1 2m m m t mkh k C m k H  are the eigenvalues of the accompanying 

electroelastic oscillations corresponding to the oscillation frequencies the eigenmodes
2

1 01 2m m t mk C m k H , 1 44tC c  shear volumetric wave velocity. 
In cases of mixed boundary conditions like (1.16) and (1.17) in the same piezoelectric 

waveguides, no proper forms are formed.  
Conversely, in accordance with mixed boundary conditions of type (1.16) and (1.17) in 

piezoelectric waveguides made of materials of classes 43m/23 cubic symmetry, 222  
rhombic symmetry, 622 of hexagonal symmetry, 42m  tetragonal symmetry, the resulting 
signals can be represented by their own shapes corresponding different vibration 
frequencies 

w 2 w 2

14
0 w 2 w 2

11

cos[ ( , ) ] sin[ ( , ) ]
V( )

cos[ ( , ) ] sin[ ( , ) ]( )

m m m m m m

m m m m m m m

A k kh y B k kh y
y

ikm e B k kh y A k kh yy
h

 (2.4) 

Here 2 2 2 2
2 2 * 0( , ) 2m m m t mkh k C m k H  are the eigenvalues of the accompanying 

electroelastic oscillations corresponding to the oscillation frequencies the eigenmodes
22

2 * 02m t mkC m k H  and 2
* 55 44c c  is a shear anisotropy coefficient,

2 1 55t tC C c  shear volumetric wave velocity in a waveguide of a different 
anisotropy.  

In cases of the boundary conditions of the first kind (1.15) and the second kind (1.18), 
in the same piezoelectric waveguides, no proper forms are formed. 

The function of the harmonics of the accompanying electric field coincides with the 
function of the harmonics of the propagating elastic vibrations and is represented as 

0 0
sin( ) c( ) os )) (( m m m m

m m
mt t A t B t . (2.5) 

From (2.3) it follows that in the case of transversal anisotropy of the piezoelectric, 
changes in the shapes of the distribution of amplitudes of accompanying electrical 
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vibrations are consistent with changes in the shapes of the distribution of elastic shear 
amplitudes. 

From (2.4) it follows that in the case of a different anisotropy of the material, changes in 
the distribution of the mth form of amplitudes of accompanying electrical vibrations lag 
behind the change in the corresponding form of distribution of elastic shear amplitudes by

0 (2 1) 2m m .  
Having found the eigenforms V ( );  ( )m my y  and their corresponding harmonics
( )m y , by expanding the inhomogeneous initial-boundary value problem (1.14), (1.15), 

and (1.20)÷(1.25) into a Fourier series in the coordinate rectangle
0 0 0[ ] [0 ]TQ H y H t T , in a generalized form we obtain the control equation for 

the eigenforms of the electroelastic waves 
2 2 2

1 1

2 2 2
1 1

( ) (1 ) ( ) ( ) (1 ) ( )

(1 ) ( ) ( )

m t m m t m

t m m m m

t c t t c t

c t t
 (2.6) 

With expansion coefficients in Fourier series in eigenforms 
0

0
1 0

0

V ( )1 d
H

m yH yy
H

, 

0
* 2 * *

1 15 0 2
0 0

5 14 V ( )1 ( ) d
H

me k H y ik
H

e e y y    (2.7) 

0
* 2 * *

2 15 0 2
0 0

5 14 V ( )1 ( ) d
H

me k H y ik
H

e e y y ,    

0
* 2

2 22 0
0 0

V ( d1 )
H

mk H y y
H

y ,     2 2( ) ( )t t  (2.8) 

The general solution to the control equation (2.6) for the mth true harmonic
2

1( ) ( ) (1 ) ( )m m t mm m mg t t c t , is obtained by the method of variation of 
parameters for the eigenforms harmonics of the electroelastic waves and forced elastic 
vibrations  

0

0

2 2

1 2

1

( )

( )

sin( ) cos( )

sin[ ( )] cos[ (

( )

)]

sin[ ( )] cos[ ( )]

m mg m mg m

t

m

m

m m
g m mg m

t

mg m m

m

m m

t

g

A t B t

A t B t d

A t B t

g t

t
c

t d

  (2.9) 

In which harmonics of the reduced eigenforms and the harmonics of surface actions are 
represented respectively, as  

2
1( ) ( ) (1 ) ( )m m t mm m mg t t c t ,  (2.10) 

sin( ) cos( )n n n n nt A t B t ,  (2.11) 

sin( ) cos( )n n n n nt A t B t .  (2.12) 
Taking into account the representation of solutions (2.1) with expansions (2.3) or (2.4), 

as well as descriptions of the initial and final states (1.8), (1.9) and surface influences (1.5), 
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they have the form of an infinite system of four algebraic equations regarding the 
amplitudes of true harmonics of electroelastic vibrations waves and harmonics of surface 
control actions   

2 2 2
1 1

2 2 2
1 1

2 2 2
0 1 0 1 0

2 2 2
0 1

g (0) (1 ) (0) (0)

g (0) (1 ) (0) (0)

g ( ) (1 ) ( ) ( )

v( , ) (1 )

m t m m m m m

m t m m m m m

m mm t m m m m m

t m

m

m

c

c

T Tc T

y T c 0 1 0( ) ( )m mm m mT T

 (2.13) 

The period 0T  during which surface influences t  and t  lead the wave 
process from the initial state to the final state is determined from the conditions for the 
existence of nontrivial solutions of systems of type (2.13) 

0 0min 0m
m

T T .  (2.14) 

 
3. The Exact controllability problem for three-component electroelastic wave. 
Equation Section (Next)  

Let us present the initial boundary value problem of controlling a three-component 
electroactive wave process in a piezoelectric waveguide layer in the following form  

0

2 2
1v w 0 0 0

0

[ ] [ ] v( , ) ( , )       in      0

v( , ) 0;                                  in     = 0

v( ,0) ( ) W ( ,0) W ( ,0)

v( ,0) ( ) W ( ,0) W ( ,0)       

T

y H

t y t f y t Q H y H t T

y t y t T

y y y y

y y y y 0 0 in     H y H

 (3.1) 

Under adequate conditions of regularity and compatibility of the initial data
v( ,0),  v( ,0)y y  and the reduced influence w ( , )f y t , system (3.1) admits a unique solution

v( , )y t , in the energy functional space 1 1 2
0[0, ]; ( ) [0, ]; ( )T H T L . 

Then, the wave energy for the process corresponding to the system of mathematical 
initial-boundary value problem (3.1) represented by the functional  

2 2* 2 2 * 2
44 55

1( ) [ v( , ) ] v( , ) v( , )
2

E t c y t y c k y t y t dy  (3.2) 

The task of precise controllability is to bring the wave state to equilibrium in a uniform 
time, regardless of the initial data, by external influence or control, which in the case under 
consideration is a reduced force w ( , )f y t .  

More precisely, the problem of exact controllability will be formulated as: the existence 
of a time 0 0T  such that for each pair of initial data v( ,0),  v( ,0)y y  there is a control

w ( , )f y t  such that the solution v( , )y t  of equation (3.1) satisfies the relations  

0v( , ) 0y T ,           0v( , ) 0y T .  (3.3) 
This formulated as follows: For arbitrary 0 0T , for each pair of input data

1 2
0v( ,0),  v( ,0) ( ) ( )y y H L  there is a control 2

w 0( , ) [0. ];  H ( )f y t T  such 
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that the solution of the mathematical initial-boundary value problem (3.1) satisfies 
relations (3.3). 
 
4. Optimal control for three-component electroelastic wave. Localization of wave 
energy along the thickness of the waveguide.  

In the problem of propagation of a three-component electroelastic wave, the flow of 
electroelastic energy through the thickness 0 0[ ; ]y H H  of a piezoelectric waveguide 
determined by the expression  

0

0

0
( , ) ( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

H
yz yz zx zx

em
x x y yH

y t y t y t y t
U dy

E y t D y t E y t D y t
 (3.4) 

Solutions of the mathematical initial-boundary value problem (1.4)-(1.6), (1.10) and 
(1.12), taking into account relations (1.20)-(1.22), amplitude distributions (2.3) and (2.4), as 
well as solutions to the harmonic equation (2.9), represented in the form 

0 0 0 0

0 0 0 0 0

V ( ) ( ) [( ) 2 ] ( ) [( ) 2 ] ( )w( , )
( , ) ( ) ( ) [( ) 2 ] ( ) [( ) 2 ] ( )

n
n n

n n n

y t H y H t H y H ty t
y t y t H y H t H y H t

 (3.5) 

Considering the obtained solutions of the mathematical initial-boundary value problem, 
as well as the material relations of the piezoelectric medium, we obtain expressions for the 
energy integral depending on the surface influences: w( , ),  ( ),  ( )emU y t t t .  

Localization of wave energy in a thin strip along the thickness of the waveguide is the 
problem of optimal control of wave energy along the selected thin strip.  

This strip can be near surface 0 0 0 0[ 2 ; ] [ ; 2 ]y H H H H .  
0

0

0

0

2

0

2

w( , ), ( ), ( )

                            + 0.9

em

H

yz yz zx zx x x y y
H

H

yz yz zx zx x x y y em
H

U y t t t E D E D dy

E D E D dy U
 (3.6) 

The localized energy in the inner thin strip 2y  along the thickness of the waveguide 
represented as the functional  

2
0

2

w( , ), ( ), ( ) 0.9em emyz yz zx zx x x y yU y t t t dy UE D E D  (3.7) 

In relations (4.3) and (4.4), 0H  is the wavelength.  
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