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Using the system of equations corresponding to the classical theory of orthotropic cylindrical shells, the
free vibrations of thin elastic orthotropic cylindrical panels with arbitrary fastening of the ends are
investigated. To calculate the natural frequencies and to identify the respective natural modes, the
generalized Kantorovich-Vlasov method of reduction to ordinary differential equations is used.
Dispersion equations for finding the natural frequencies of possible types of vibrations are derived. An
asymptotic relation between the dispersion equations of the problems at hand and the analogous problems
for a rectangular plate is established. An algorithm for separating possible vibrations is presented. As
examples, the values of dimensionless characteristics of natural frequencies are derived for orthotropic
cylindrical panels.

Ouypbpnud udwyuljub wipugdudp pupul] wrwdquiljub oppninpny gyubught
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huwjuwuwpnudibph hudwlwpghg, hbnwgnumnud | swypkpnud judwjuljub wadpugdudp puapul
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htwpuynp  wmhwh wwwwbnuiubph  wwpuwbgwnnud:  Oppnuipny  qubwyhtt Juhwbwljh
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wisunhnnuljui pumpwqphsukpp:

Crobojuble kKoneGaHus TOHKOH ynpyroi oproTponHoil LHaHHAPpHYeCKoi
IMAHEH ¢ II]')OI‘BH{)JII:H]:IM ZiaKpCIIJICH HEM 'I'()leOB
I'yarasapsau I'.P. Tyarasapsn JLT.

Kiouesbie ciasa: Cpoboanbie Konehanus, UIMIHHAPHUCCKAs NaHENb, KECTKO 3alleMICHHBIE, IIAPHHPHO-

3aKPEIICHHBIC TOPLEL.

HMcnonesys cucremy ypaBHEHHH COOTBETCTBYIOWICH KnaccHYecKkoil TEOpHH OPTOTPONHBIX LHIHHAPHYECKHX
obonouek, Hceneayores ceolojiHble KoledaHus OPTOTPONHON TOHKOH ynpyroi WHIHHAPHYECKOil naHenn c
NPOH3BONILHBIM 3aKperuiennemM Topuos. Jlna pacyera coOCTBEHHBIX YACTOT M HAEHTH(HKALIMH COOTBETCTBYIONIMX
CODCTBEHHBIX MO MCHONb3yeTcsi 000OUIEHHBIT METON CBeAeHHA K OOBIKHOBEHHBIM audiepeHIHanbHbIM
ypaBHenuamM Kantoposuua-Bnacosa. Ilomydensl JMCEPCHOHHBIE YPABHEHMS JUIA HAXOMIEHHA CODCTBEHHBIX
YACTOT BO3MOKHBIX THIOB KosieDaHuil. YcraHoBjeHAa AcCHMNTOTHYECKAas CBA3L MEHKIY JHCIECPCHOHHBIMM
YPaBHEHHAMH paccCMaTpPHBAEMOM 3a/1a4yH W aHAIOrHYHOI 3a1aud UIA OPTOTPONHON NPAMOYTONLHOH IUIACTHHEIL.
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[IpuBoaUTCA MEXAHH3M, € MOMOIIBIO KOTOPOTO PACUICHAIOTCA BO3MOKHBIC THIIBI KpacBbIX KoseDanmii. Ha
NpHMEpax OPTOTPONHON LHIHHAPHYECKOH MaHeNH NOoJyYeHbl NpHOIMAKCHHBIE 3HAYeHHs OespasMepHOil
XapaKTePHCTHKH cOOCTBEHHBIX 4acTOT Koebanuil.

Introduction. It is known that, at the free edge of an orthotropic plate planar and flexural
vibrations can occur independently of each other [1-6]. When the plate is bent these
vibrations become coupled and giving raise to two new types of vibrations localized at the
free edge: predominantly tangential and predominantly bending vibrations. The
transformation of the one type of vibration into the other occurs at the free edge of a thin
cylindrical elastic panel. For these vibrations a complex distribution of frequencies of
natural vibrations occurs depending on the geometrical and mechanical parameters of finite
and infinite cylindrical panels [4]-[10]. With the increase of the number of free edges of a
cylindrical panel the distribution becomes increasingly complex [7]-[10], [19-21].
Therefore, the investigation of the edge resonance of cylindrical panels with arbitrary
fastening of the ends, when other edges are free, is one of the most difficult problems in the
theory of vibrations of plates [4]. These difficulties are resolved by using a combination of
analytical and asymptotic theories, as well as by numerical methods.

In the present work, for the first time, free vibrations of rectangular plates with arbitrary
fastening of the opposite sides and cylindrical panels with arbitrary fastening of the ends
are investigated. Such elements are important components of modern structures and
constructions. Therefore, the question of free vibrations of these elements is of vital
importance and it requires special attention. It is proved that these problems prevent
separation of variables for given boundary conditions (except for the hinged ends). It can be
proved that such problems for cylindrical panels of orthotropic materials with simple
boundary conditions are self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method can be applied to them [11]-[15]. As the basic functions the
following eigenfunctions of the problems are used: a) for cylindrical panel with rigid-
clamped ends:

wl =0%w; w) =w'(0)=0w)=w'(D)=0;0<a<l. (1)
b) for cylindrical panel with rigid-clamped and hinged end:

w =0%w; w) =w' () =0,w(D)=w"(D=0;0<a<l 2)
¢) for cylindrical panel with hinged ends:

wl =0%w; w0) =w"(0)=0,wD)=w"(D=0;0<ac<l (3)

Note that the function w(ca) characterizes the deflection of the beam axis from the
equilibrium position [3].

The problems (1)-(3) are self-conjugate and have nonnegative simple discrete spectrums
with a limit point at the infinity. The eigenfunctions corresponding to the eigenvalues 85,
m=1, o of the problems (1)-(3) have the forms, respectively:

wh(0ka) = sh (%) (ch(6ta) — cos(BLa)) — ch (%) (sh(6La) —
sin(64,a)),0 < a < [, m=1, 0. (4)
w2 (024a) = sh(04D)(ch(62a) — cos(82a)) — ch(82D) (sh(64a) —
sin(63a)), 0 <a <[, m=1,c. (5)
w3 (03a) = sin(03a), 0 < a <[, m=1, 0. (6)

49



These eigenfunctions with their first and second derivatives define an orthogonal basis in
the Hilbert space L,[0,!] [15]. Here 9 Fs 1=1,2,3; m=1,00 are positive zeros of the
equations:

ch(01l) cos(6l) = 1. (7)
tanh(61) = tan(61). (8)
sin(@l) = 0. )
Denote

f;(wf,;(e,ﬂga))zda i fé(wf,;’(ﬂ,ﬂga))zda

o
ﬁm_

— , = s 1=1,2,3. (10)
a(whOha)) aa’ ™ Y wh(oha) aa

Notice that, the derivatives in formulas (10) are taken with respect to 8,.,a and

B LB > latm > ooi=12; f3 =157 =1,m=T,c.

1. The Statement of Problems and Basic Equations.
It is assumed that the generatrixes of the
cylindrical panels are orthogonal to the A
ends of the panels. The curvilinear v
coordinates (@, f) are defined on the
median surface of the panels where
a(0<a<l) and B(O< B <s) are

the lengths of the generatrix and the B
directing circumference, respectively; [ —

is the length of the panels; and s — is the
length of the directing circumferences.

As the initial equations describing
vibrations of the panels, we will use the O
equations corresponding to the classical
theory of orthotropic cylindrical shells
written in the selected curvilinear
coordinates « and § (Fig. 1):

—B1y ?3;21 66 6;?21 (B12 + Bee) aaa:; B: ‘?;;3 Auy,

_(B;zu+ Bes) 32:; — Bgg 1;2 — By, a;: + B;Z ?;;3 (4866 o uz +

Ba2 3322) (822 ap3 >+ (812 + 4866) aBaa? ) = jvuz ) (1.1)
0*us 0*u, 0*us\  pt 3u,

[ (311 30t >+ 2(By, + 2366) 3a20 52 + By, 334) (Bzz FYE +

(By2 + 4Bes) ;;:Z) —%%—%Z—?+% = Auz
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Here, U, U, and U, are projections of the displacement vector on the directions a and
and on the normal to the median surface of the panel, respectively; R is the radius of the
4 _

. . . . h? . .
directing circumference of the median surface; u ' (h is the thickness of the panels);

A= wzp, where w is the angular frequency, p is the density of the material; B;; are the
elasticity coefficients. The boundary conditions have the form [16]:

61{3

Uy lg=0 = Uz|g=0 = Usla=0 = 3 =0; (1.2)
) a=0
— — — Ous -0
Utla=t = Uala=t = Usla=1 = 55| = 0; (1.3)
a=l
6u1 Bi2 (6u2 ug)
U|gep =0, —+—|——— =0
2la=o 2 T Biy\9f  R/l,_q
_ 62u3 BIZ 62113 16‘LE2 _ {1'4)
Uslamo = 0,502+ 5, Gme ~=a8 )1,y = ©
1 a=0
s aul Blz (6”2 u:;)
Us|lyey = 0,—+—=|——— =0
2la=t da By \dB R/,
\ (1.5)
62u3 312 62u3 1 auZ
u3|a=l=01 2+_( 2___) =0;
\ da B11 6,8 R 618 a=l
(Bipdus | Uy 3 Bip O%us | Ous | 10up ~0
Bz 0~ 9B Rlpg_g; "Byz da®  9p% R OBlp_q ’
33?.13 312+4866 631\'.3 lazuz 4366 1 32u2 _ 0
\ 983 B 0o’ | ROB? | By Roatlggg (1.6)
Ouz | Owy =0
L da 9B lg_g ’

Relations (1.2), (1.3) are the conditions of rigid-clamped ends at @ = 0, [, respectively. The
relations (1,2), (1.5) are the conditions of rigid-clamped and hinged ends at @ = 0,1,
relations (1.4), (1.5) are the conditions of hinged ends at @ = 0, [, while conditions (1.6)
indicate that the edge generators f = 0, s are free.

2. The Derivation and Analysis of the Characteristic Equations.

Let’s formally replace the spectral parameter A by A;,A, and A; in the first, second, and
third equations of the system (1.1), respectively. In the future, for all three tasks: (1.1)-
(1.3), and (1.6); (1.1), (1.2), (1.4) and (1.6); (1.1), (1.4), (1.5), and (1.6) superscripts 1,2,3
in expressions (4)-(6) and (10) will be skipped. The solutions of system (1.1) for the
problems are searched in the form

(g, Uz, u3) = (U Wiy (6,,@), Vi Wiy (0, @), Wiy, (O, @) }exp (6, X B), m = 1,00 . (2.1)
Here, W,,(0,,),m =1,0 are determined from (4)-(6).1uy,, Vy and X are unknown
constants. For the three problems, the conditions (1.2) - (1.5) are obeyed automatically. Let

us insert Eq. (2.1) into Eq. (1.1). The obtained equations are multiplied by the vector
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functions {w}, (6, @), Wy, (0,,@), Wy, (8,,@)} in a scalar way and then integrated in the
limits from 0 to . From the first two equations we get
2 2 — Bz2(B12+Bss) 2 402 4 Ba2B1z 2
(cm + Ema“gmdm)um = Eniam + X2, + 222 e2a?d,(, (2.2)
BnBﬁﬁ B11366

(cm + ‘Ema 9m dn)Vm = emX{bp — a? 9m lm}- (2.3)
From the third equation, by considering the relations (2.2) and (2.3), the characteristic
equations are obtained

RpmCm + €2, {cm — b X%+ B”‘

Bmam +a?[R mm9mdm + 2lmbmxz] +

_ Bz

eha’dy, (b 5m) —atguli X} =0m="T. 2.4)

= = (2202 = 22 (0 — Bi) | bm = 22 (X% + M) — B
Bll Bll Bll

4866

dm = 5mf
_ Baz 5y 2 322 355 2 ' 2 " 355
Cm =5 XT = BX* + mm —nzm X%+ (B — M3m) ( Bm mm
B _ B11B22Bim—Bi2Bm—B12BesPm B _ B11B23Bm—Bi2Pm—2B12BeeBm. (2.5)
1= 311366 2= B11Bse ’ ; ’
_ Baz 4.2 Baz By, — 2 _ 312+4366 i .
m = B_ux Bee m + —'hm; Im =X Bm ’ ”hm - Bee02, i=1,3;
2 4 2(312*‘2355) 2 4 311 366 2
Rmm =a (x Baz Bmx ﬁmﬁ 3ma
h? 1
2 2
a®=—=0p; &q = —.
12 ™ T Re,

Let Xj,j = 1,4, be pairwise different roots of Eq.(2.4) with non-positive real parts and

Xjya = —X;,j =1,4. Let (u?),ugj),ug")) j = 1,8, be nontrivial solutions of type

(2.1) of the system (1.1) at X = Xj,j = 1,8, respectively. The solutions of the problems are

searched in the form

u; = f,' lumw} Ji=1,3. (2.6)

Let us insert Eq. (2.6) into the boundary conditions (1.6). Each of the obtained equation is
multiplied by w,, (6,,&) or by w,,(6,,a) respectively, and then integrated in the limits from
0 to l. As a result, we obtain the systems of equations

M(m) wj
8. } ‘:_
Zj=1 Dy zazgDad
=1, (2.7)
(m) s . m r E] .
M: exp(emxj) j .
S Do) =58
n'fl +s$nazgﬂfl dn{l
(m) _ y2,0G) _ Bz _(J) () 27() 425, () 2 ,240) () _B
MU _x}bm _B_:zamﬁ;n_cm _aimx‘jbm —&ma dm (bm lzﬁm)
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M(?‘:“l) =JC-{ 0] +b(})+a E(J) (312322x2 322 m_Bzz 1m)+ 12 228 a d())}

) Beg B11Bge
_B 4 By,B
M(m) ( By Bm) 0))] + Em (x-zb(” + a2 (312):6 Qg)(ﬁm) ), 2.8)
M(m) = X; (I(J) ) 4 Smb(J)d(J)) M‘E-Tf.)j _ M(m) =14 .

The superscript j in parentheses means that the correspondmg function is taken at X = .X}
For the set of systems (2.7) has a nontrivial solution, it is necessary and sufficient that

A= exp(— X3, z;)Det||T; ||2 =0,m=1,00, (2.9)
Ty, = ||M(’”)|| Tip = || (-1 M exp(zj)lr 2 = O X;s,
Ty = | M exp(z}-)”i’zs_j Ty = || (=) 1M(m)||l e (2.10)

It is shown numerically that the left side of equality (2.9) becomes small when any two
roots of Eq. (2.4) become close to each other. This highly complicates calculations and can
lead to false solutions. It turns out that from the left side of Eq. (2.9) a multiplier that tends
to zero can be separated when the roots approach each other. Let us introduce the following
notations:

[27)] = Oms(exp(z;) — exp(z;)) [nz2] = 0ms([zizj] - [ztzk])

(2 - (%=2)

_ 9m5([z12223] [212224])
[21222524] = (Za-72)

01 = 0101, X, Xa, ) = Xy + X5 + X + X,

a; = Uzcxl,xZ,X3,X4) = xle + x1x3 + X1X4 + XZX3 + xZX4 + X3X4 s

03 = 03(X1, X2, X3, Xs) = X1 X3 X3 + X100, X4 + X X34 + X X3Xy,

04 = 04(X1, Xz, X3, X4) = X3 X5 X3Xy .

e = 0, (X1, Xy, X, 0), 5 = 0 (X1, X, 0,0), k=T, . @.11)

3

In this case, G, = 6, = 03 = 0. Let f,,n = 1,6, be a symmetric polynomial of nth
order in variables X, X5, X3, X,. It is known that it can be uniquely expressed in terms of
elementary symmetric polynomials. By introducing the notations

fo=rn (Jl’ 02’ 0—3! 04) f_':'l fn(glr 03,03, O)Jﬁl = fn( Elr EZJ 0,0),n = 1,6

fi =01; fz 02 f3 = 0f — 2010, +03;
fa= 301 crz + 02 + 20103 — Oy; (2.12)
fs = G,° — 46,30, + 36,0,% + 36,03 — 20,03 ;
ff) - 516 - 50-1 0-2 + 60-120'22 - 0-23, (213}
and performing elementary operations with columns of determinant (2.9), we obtain
2 8 I
— 2 —
Det||TU-||£_J,=1 =K Det”mU"U:l,m =T, o, (2.14)

K= (X — X)X — X3) (X — X)) (0 — X3) (X, — X)) (X3 — Xy). (2.15)

Expressions for m; are given in the Appendix. Equations (2.9) are equivalent to equations
8 -
J’Jet||*mu||i’j=1 =0,m=1,0. (2.16)
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By considering the possible relations between A;,4, and A; we conclude that equations
(2.16) determine frequencies of the corresponding types of vibrations. For 4; = 4, = 4; =
A, equations (2.4) become the characteristic equations of system (1.1), and equations (2.16)

become the dispersion equations of problems (1.1)- (1.6), respectively.
. . . . 1
In Section 5, the asymptotes of the dispersion equations (2.16) for &, = VI 0
m
(transition to a rectangular plates with arbitrary fastening of the opposite sides or to
vibrations localized at the free edges of the cylindrical panels with arbitrary fastening of
the ends) and for 6,,s = oo (transition to a wide enough cylindrical panels with arbitrary
fastening of the ends or to vibrations localized at the free edges of the cylindrical panels
with arbitrary fastening of the ends) are investigated. For checking the reliability of the
asymptotic relations found in Section 5, the free planar and bending vibrations of
rectangular plates with arbitrary fastening of the opposite sides are investigated in the next

two sections.

3. Planar vibrations of an orthotropic rectangular plate with arbitrary fastening of the
opposite sides.

Let an orthotropic rectangular
plate is defined in a three-
orthogonal system of
rectilinear coordinates (a, 8,¥)

with the origin on the free face
plane such that the coordinate
plane af coincides with the 7
median plane of the plate and

the principal axes of symmetry

of the material are aligned with

the coordinate lines (Fig. 2).

Let s, and [ be the width and O |
the length of the plate,
respectively. The problems of
existence of free planar vibrations of rectangular plates with arbitrary fastening of the
opposite sides are investigated. As the initial equations consider the equations of low-
amplitude planar vibrations of the classical theory of orthotropic plates [16]

V' 3 2h

92uy a%u, 9%u,
B3 ~ Bes 55 — (B2 + Bes) a5 = M
a%u, a%u, %u,
—(By2 + Bgs) 9adp Beg Y By, p Au, . (3.1)

Here a(0 < @ <1) and $(0 < B < s) are the orthogonal rectilinear coordinates of a
point on the middle plane;u, and u, are the displacements in @ and [ directions,
respectively; By, k = 1,2,6 are the coefficients of elasticity; A = @w?p, where @ is the
natural frequency; p is the density of material. The boundary conditions have the form [16]

Ut lg=0 = Uzla=0 = 0, (3.2)
Uylg= = usz = 0,a (3.3)
Uplgeo = 0,22 4 2120%2) (3.4)
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a By, d
Wolem = 05242252 =0, (3.5)

' da By, O a=l

Bz2 0a  9flp_g da 9 lp=gs,
Relations (3.2), (3.3) are the conditions of rigid-clamped sides at a = 0,[, respectively.
Relations (3.2), (3.5) are the conditions of rigid-clamped and hinged sides at @ = 0, 1.
Relations (3.4), (3.5) are the conditions of hinged sides at « = 0, [, while conditions (3.6)
indicate that the sides § = 0, s are free.

The problems (3.1)-(3.3), (3.6); (3.1), (3.2), (3.5), (3.6) does not allow separation of
variables. The differential operators corresponding to these problems and the problem (3.1),
(3.4)-(3.6) are self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method of the reduction to ordinary differential equations can be used
to find vibration eigenfrequencies and eigenmodes [11-15].

In the future, for all three problems, superscripts 1, 2, 3 in expressions (4)-(6), (10) will be
skipped. The solutions of system (3.1) for problems are searched in the form

(U1, uz) = (U Win (01 @), Vi, Wi (B @) }exp (6, yB), m = 1, 00. 3.7
Here,w, (0,a), m=1,00 ,0, are determined from (4)-(6).u;,, vy and y are unknown

constants. For the three problems, the boundary conditions (3.2)-(3.5) are satisfied
automatically. Let us insert (3.7) into Eq. (3.1). Then, the obtained equations are multiplied
by vector function {wy, (6,,a), Wy, (6,,a)} in a scalar way and integrated in the limits from
0to /. As a result, the following systems of equations are obtained

1 Bes s 2 2 B12+Bge _
m O +nm) |um — YUy =0,
By By

=0. (3.6)

’

By2+B B, T oo
L B Yt (yz ~ 2 (B~ nfn)) Um = 0,m=Te. (33)
22 22

A . . . .
where 2, = CX) 0., and Sy, By are determined in equations (7)-(10), respectively.

By equating the determinant of system (3.8) to zero, the following characteristic equations
of the system of equations (3.1) are found:

B Byz +B, B
Cm =52y = Boy? + ==y + (B — n%;)( Jé—g—jjnfn)=0.
m=1,00. (3.9)
Let y; and y, be various roots of Eq. (3.9) with non-positive real parts and y,,; = —y;,

j=1,2. As the solutions of systems (3.8) for = y;,j = 1,4 , we take

U) = J’; 562 (Bm — nm) V(” 812 e =By Yir ] =14;m=1,00. (3.10)
The solutions of the problems (3.1) -(3. 6) can be presented in the form
(1{1, uz) -
{ jf U (J)Wm(t?ma') exp(ﬁ'my} )W},ZJ =1 v(")w(Qma') exp(ﬁlmyjﬁ) wj,} (3.11)
Let us insert (3.11) into the boundary conditions (3.6). Each of the obtained equation is

multiplied by w(8,,a) or by wy, (8,,@), and then integrated in the limits from 0 to [. As a
result, the following systems of equations are obtained
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}LIR(’?’”)WJ' =0,X7.1 R(”f‘) exp(zj)w; =0,
Yio R;T")w} =0,2%, R(m) exp(z;)w; =0,
Ri;-n) = yj i:i (B — nm) R(m) =Y (y_; += iz l‘gm +%n$n) Zj = UmYjSo o= 14. (3.13)

By equating the determinant A(e )of the system (3.12) to zero and performing elementary
operations with columns of the determinant the following dispersion equations are obtained

m=1,00, (3.12)

4 I
AT = exp(—2, — 2,) (5 — y1)?Det||l; il =0m=To. (3.14)
liy = Rgn:flz =yt }’26113 =l ez?(p( 71), lia =) li2 exp(z3) + l11[z12,];
_ plm) _ B11B22Bm—Bi2Bm—B12BssPm) _ . 2
la1 =Ry, L =1y + BasBos) M
Lz = =l exp(21), lpa = =l exp(22) — 1x1[2125]; 131 = L3, l32 = Lya,
l33 = i1, l34 = lig lag = =13, lap = —laa, laz = —lp1, lag = — 133, (3.15)
__ Omso(exp(zz)—exp(z;))
[212,] =

(z2-21)
The equations (3.14) are equivalent to the equations

2
Detllty; _, = = (PE22)" k2, (r) (1 + exp(2( + 2)) ) -

8ly1li1lialzaexp(zy + 23) + (Lislazi lizl1)*(exp(22;) + exp(22,)) + (3.16)

4yl (L laas iz la1) (exp(2;) — exg(zﬂ)[zﬂz] + 45%1@1 [2122]2 =0,m=1,c0

Ko (%) = (B — i) (22220208 2 ) 3y, (3.17)
22066

If y, and y, are the roots of Eq. (3.9) with negative real parts, then, for 8,,s, — oo, the
roots of Eq. (3.16) are approximated by the roots of the equations

By Boo B! —B2, B!
Kin %) = (B — %) (P222m200n — g2 ) 21y, = 0,m = T,o0. (3.18)
The equations (3.18) are the analogue of the Rayleigh equations for a long enough
orthotropic rectangular plate with arbitrary fastening of the opposite sides. Thus, the
eigenfrequencies of the problems (3.1)-(3.6) can be found from (3.16).

4. Bending vibrations of an orthotropic rectangular plate with arbitrary fastening of
the opposite sides.
Consider an orthotropic rectangular plate with thickness /4, width sy, and length [ (Fig. 2).

Consider now the problems of the existence of free bending vibrations of a rectangular
plate with arbitrary fastening of the opposite sides. Let us start with the equation of low
amplitude bending vibrations of the classical theory of orthotropic plates [16]

a*tu a*u a*u
ﬂ (Bll —3 + 2(812 + 2866) 23:32 + 522 Wj) = Au3, (41)
where a(0 5 a<l)and BOLP 5 so) are the orthogonal rectilinear coordinates of a

point of the median plane of the plate; u; is the normal component of the displacement
2

. . .. . h
vector of a point of the median plane; By, k = 1,2,6 are the elasticity coefficients; u* = >

A= wz,o, where w is the natural frequency; p is the density of material.
The boundary conditions are given as follows:

ou
Usla=o = 55| =0; (42)
a=

56



25 =0 3)

Uzlg=y = e z
a=

62u3 Blz 32u3
Uslgeo = 0,2 4 B1z =0; 44
3|C! 0 da? By, 6,82 =0 s ( }
32u3 Blz 32u3
u3|a=£ - O’ da? '8_11‘ aﬁz - 0 E] (45)

Bip 0%us | 9%us =0, 6 u3 812+4B(,5 33us

By da? 8 B=0,5 ap3 By, dfdat B=0,50
Relations (4.2), (4.3) are the conditions of rigid-clamped sides at a = 0, [, respectively.
Relations (4.2), (4.5) are the conditions of rigid-clamped and hinged sides at @ = 0, L.
Relations (4.4), (4.5) are the conditions of hinged sides at a = 0, [, while conditions (4.6)
indicate that the sides f = 0, s, are free.

The problems (4.1)-(4.3), (4.6); (4.1), (4.2), (4.5), (4.6) does not allow separation of
variables. The differential operators corresponding to these problems and the problem (4.1),
(4.4)-(4.6) are self-conjugate and nonnegative definite. Therefore, the generalized
Kantorovich-Vlasov method of the reduction to ordinary differential equations can be used
to find the vibration eigenfrequencies and eigenmodes [11-15].

In the future, for all three problems, superscripts 1, 2, 3 in expressions (4)-(6), (10) will be

= 0. (4.6)

skipped.
The solution of the equation (4.1) is searched in the form
Uz = Wm(ema)exp(gmyﬁ)rm =1,00, 4.7)

where wy, (6,,@) are defined in (4)-(6) and y are unknown constant. For three problems, the
boundary conditions (4.2)-(4.5) are satisfied automatically. Substitute (4.7) into Eq. (4.1).
After multiplying the resulting equation by w;, (6,,@) and integrating it in the limits from 0
to [ the characteristic equations are obtained

2(B 2B, B B, P
Rmm = az (}’4 ¢ 12+ s0) ﬁm - ﬁmﬁ ) = fn =0m=1,00, (4.8)
2 _ 2 2 _ 1
a® = 565, wh = BedZ.” 49)

where 6, and B}, , B are defined in Eq. (7)-(10), respectively. Let y; and y, be various
roots of Eq. (4.8) with non-positive real parts, y,,; = —y;,j = 3,4. Solutions of the
problems (4.1)-(4.6) are searched in the form

Uz = Y523 Win (B @) exp (6,3 By )W; ,m = 1, 00, (4.10)
By inserting Eq. (4.10) into the boundary conditions (4.6) and after multiplying the
resulting equations by Wy, (6,,@), and integrating them in the limits from 0 to [, the
systems of equations are obtained

6 m) = _ 6 (m) = _
j=3Raj w; = 0,Xj-3Ry;"w; =0,

m=1,00. 4.11)
6 (m) _ 6 (m)
_3 Ry exp(z)w; = 0,25 s Ry exp(z;)w; = 0,
Bia p1 B +43 —
jo‘l) = ;’2 - 2B, z(:;l) = y; ——8 ———BmYj 1 Zj = OmYjSo.Jj = 3,6. (4.12)

By equating the determinants Agm) of systems (4.9) to zero and performing elementary
operations on the columns of the determinant, the dispersion equations are obtained

4 _
AyV= exp(=z3 = 2) (s = y3)*Det|by ||, _, = 0.m =T . (4.13)
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bl]_ = ;21), b12 = y3 + y4,, b13 = bll exp( 23) .

biy = b1z exp(24) + b11(2324]; by = R43 ) byy = y3Y4 + B B_:i’

b,z = —byy exp( z3), by = —byy exp(z4) — 131[2324];

b3y = by3, b3 = by4, b3z = byy,b3q = b3, 041 = —by3,bsy = —bas,, (4.14)

Omso(exp(zs)—exp(z3))
bys = —byq, bys = —byy, [2324] = - > (24:23) =,
The equations (4.13) are equivalent to the equations
4 _ 2 (2
Det||b,;j||l,”f=1 = —K{,(m5) (1 + exp(2(23 + 24))) —
8b11b1,b21bazexp(zy + 23) + (by1bazybizbyy)? X (4.15)
(exp(2z3) + exp(2z4)) + 4b11by1(by1byz4b12by1)(exp(zs) — exp(z3))[2z324] +
4b}1b31[232,]* = 0,m = 1, 0.

Kim@%) = y3yE + 452 -~ Bm y3ys = (B”) (Brm)?. (4.16)

If y; and y, are the roots of' Eq. (4.8) with negative real parts, then, at 8,5, = oo, the roots
of Eq. (4.15) are approximated by the roots of the equations

2
Byz 2 _ — T
Kim(13) = ¥4 + 452 B ysys = (32) B =0m=Too.  @17)
The equations (4.17) are the analogues of the Konenkov equations for a long enough
orthotropic rectangular plate with arbitrary fastening of the opposite sides (compare with
[7-10, 19-20]). Thus, eigenfrequencies of the problems (4.1)-(4.6) can be found from
(4.15).

5. Asymptotics of the dispersion equations (2.16) in the limit g, - 0.
Using the previous formulas, we assume that 73, = N2m = N3m = Nm. Then, as &, = 0
Egs. (2.4) transform into

Bao
Cm = —2y* By+22 ENmy? +
Byq

Bin =2 (Bin %nm) =0,m=To; 5.1)
2(B12+2Bgg) B
Rypm = a? (3’4 - 1;22 - Bry? + = ﬁmﬁ )
—Zep2 = 0,m=1,00. (5.2)
B3,

Here the limiting process &, — 0 is understood in the sense that by fixing the radius R and
b = sy — the distance between the boundary generatrixes of the cylindrical panel, a
1 Em
=250
nfmR n

transition to a cylindrical panel of radius R’ = nR and to the limit &, =

forn — oo is performed.

The equations (5.1) and (5.2) are the characteristic equations of the equations of planar and
bending vibrations of orthotropic plates with arbitrary fastening of the opposite sides,
respectively. The roots of Egs. (5.1) and (5.2) with non-positive real parts, as in Sections 3
and 4, are denoted by y,,y, and y3,y,, respectively. In the same way as in [18], it is
proved that for

Em LKLy #Fy,l#], (5.3)
the roots X of Egs. (2.4) can be presented as
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X? =yt +aed + BMek + i = T4, m=T,o. (5:4)
Under the condltlon (5 3), considering the relations (2.8), (2.14) and (5.4) and the fact that

M = M{Y = 0(e3),j = 1,2 (5.5)
Eq. (2.16) can be reduced to the form

8
Def"mij”i,j:l =
Nz(nfn)KBZm(’ﬁn)Deﬂuu||zj=1Def||bif||zj=1 +0(eh) =0,m=1,00 (56)
where Det|ly|; _, and Detllby;,_, arc determined by (3.16) and (4.15),

respectively, and

NmR) = 03 +y1) 3+, )(y4+y1 YVatys),
B B, B B
Ksm ) = (B = 1) (522 P = 522 1) (B_ +a? (Gemh +

2

Bf,+3By; Bge+4BEs B! ) + (3113113:12‘55218;11—2312 BssBm _ Baz +Bes nz ) x
B11Bse m B32B66 Bz m
B3z 2 312"'3312 Bgs+4BZs
(B_ ta (B M + By1B Bm) ) %
11 11 11Bs6
Baa 2 (Bes 2 B12 +38Bg¢ +3365
(Bn N3 — By +a? (Fem3, — By ) (m, + 2520 ﬁm)) (5.7)

2
Baz 2 _ (566 rr)( 2 4 B12+3Bgs 51 ) ( Bz )2
(Bu m = By +a T = in + Bgg Pm (Biz +Bes B/

From Eq. (5.6), it follows that in the limit &,, — 0, Egs. (2.16) decompose into the totality

of equations
4 — 4 —
Det”li}v"i’j:l 0,m= ,oo;Det”bU””  =0m=Tow;

K3m(3) = 0,m =1, 0. (5.8)

Here, the first two equations are the dispersion equations of the planar and bending
vibrations, respectively, as in the similar problems of an orthotropic rectangular plate with
arbitrary fastening of the opposite sides.

The roots of the third equation correspond to planar vibrations of a cylindrical panel. The
third equation appears as the result of using the equation of the corresponding classical
theory of orthotropic cylindrical shells.

If y;, ¥, and y3,y, are the roots of the Egs. (5.1) and (5.2), respectively, with negative real
parts, then, for 8,,5 — oo, Eqs. (2.16) and (5.6) will be transformed into the equations

2
Detllmy|; _, = (BL2)" N2 (g K (030 K (030 K () +
0(ex) +Xj-10(exp(z)) =0, m =1, 0. (5.9)

From Egs. (5.9), it follows that for &, —= 0 and 6,,5 = oo the roots of dispersion
equations (2.16) are approximated by the roots of the equations

KimM%) =0,=1,0,K,,,(n3) = 0,=1,0,K3,,(n%) = 0,=1,00. (5.10)
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The first two equations of (5.10) are the dispersion equations of bending and planar
vibrations of wide enough orthotropic rectangular plate with arbitrary fastening of the
opposite sides (see Egs. (4.15) and (3.16)). Hence, for small &, and large 8,,S, the
approximate values of roots of Egs. (2.16) correspond to the roots of Egs. (5.8) and (5.10).

6. Numerical Results.

In the Table 1 some dimensionless characteristics of eigenvalues 1, for predominantly
bending, predominantly planar and nonsymmetrical vibrations of an orthotropic cylindrical
boron plastic panel for problem (1.1)-(1.3), (1.6), are given with mechanical properties:

k N 100N
p= 2.103—9; E, = 2.646. 1011@ ; E5 = 1.323.

M3 M2
G =9.604.—; g, = 0.2; 0, = 0.012;
M

10°N
and geometrical parameters: R = 40,1l = 4,s = 5.00326,s = 15.0893.
In Tables 2 and 3 some dimensionless characteristics of the eigenvalues mn,, for
predominantly bending, predominantly planar and nonsymmetrical vibrations of the
orthotropic cylindrical boron plastic panels for problems (1.1), (1.2), (1.4), (1.6); (1.1),
(1.4), (1.5), (1.6) with the same mechanical and geometrical parameters are given.
Comment: the eigenvalues 1, which corresponds to roots of equations Ks,,(12,) =

(6.1)

0,m = 1, o have other values of the order 108, which are not given.

Table 1. Characteristics of eigenfrequencies for predominantly bending,
predominantly planar and nonsymmetrical vibrations of a cylindrical boron plastic
panel with rigid-clamped ends,

when [ =4,s5s = 5.00326,s = 15.0893.

m Om Nim = M2m=0s  M3m = | Num = M2m™ N> M3m = | M1m = N2m™N3m =
1 M- 0. Mm-S = 5.00326;
/11 s =5.00326; s =5.00326; s=15.0893.
s=15.0893. s=15.0893.

1 | 1.18251 | 0.03727b, 0.03767 b; 0.03716 b, 0.03754b;
0.96565 | 0.04437 b, 0.04670 b 0.04433 b, 0.04667b,
0.96499 4.99154 n 4.99154 n

2 | 1.96330 | 0.06145b, 0.06175 b; 0.06140 b, 0.06199 b;
0.74537 | 0.06701 b, 0.06869 b 0.06723 b, 0.06889 b,
1.34161 597373 n 597373 n

3 [ 274890 | 0.08411b, 0.08521 b; 0.08410 b, 0.08521 b;
0.99993 | 0.08431 b, 0.08456 b 0.08431 b, 0.08456 b,
0.99993 5.08194 n 5.08194 n

4 | 353429 | 0.10921b,0.11051 b; 0.10809 b, 0.10904 b;
0.61849 | 0.10794 b, 0.10815 b 0.10761 b, 0.10770 b,
1.61684 6.59674 n 6.59674 n

5 | 431969 | 0.13187 b, 0.13206 b; 0.13118 b, 0.13137 b,
I - o
1. 0.13159 b, 0.13182 b 0.13142 b, 0.13159 b,

0.98692 ¢, 0.98693 ¢ 0.98692 ¢, 0.98692 ¢
5.08340 n 508340 n

16 | 129591 | 0.40715 b, 0.40962 b: 0.40715 b, 0.40962 b,
1. 0.98735¢e,0.98735 ¢; 0.98735 e, 0.98735 ¢;
1. 0.40054 b, 0.40109 b 0.40053 b, 0.40108 b,
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0.98696 ¢, 0.98696 ¢
5.09503 n

0.98735¢,0.98735¢
5.09503 n

13.7445
1.
1.

0.41757 b, 0.41808 b;

0.41789 b, 0.41808 b

0.98695 e, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.10100 n

0.41757 b, 0.41808 b,
0.98696 ¢, 0.98696 ¢;
0.41790 b, 0.41808 b,
0.98696 ¢, 0.98696 ¢
5.10304 n

14.5299
1.
1.

0.44136 b, 0.44184 b;

0.44076 b, 0.44151b

0.98695 e, 0.98696 ¢;

0.998696 ¢, 0.98696 ¢
5.10304 n

0.44136 b, 0.44184 b,
0.98696 e, 0.98696 ¢;
0.44083 b, 0.44151 b,
0.98696 e, 0.98696 ¢
5.10304 n

15.3153
1.
1.

0.46458 b, 0.46561 b;

0.46459 b, 0.46462 b

0.98696 e, 0.98696 ¢;

0.98696 e, 0.98696 ¢
5.10515n

0.46458 b, 0.46561 b,
0.98696 e, 0.98696 e;
0.46459 b, 0.46462 b,
0.98696 e, 0.98696 ¢
5.10515 n

20

15.1007
1.
1.

0.48938 b, 0.48994 b;

0.48841 b, 0.48842 b

0.98696 e, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.10730 n

0.48938 b, 0.48994 b,
0.98696 e, 0.98696 ¢;
0.48844 b, 0.48852 b,
0.98696 e, 0.98696 ¢
5.10730 n

100

78.9325

2.39446 b, 2.39893 b;

2.39446 b,2.39520 b

0.98696 e, 0.98696 ¢;

0.98696 e, 0.98696 e
5.22238 n

2.39501 b, 2.39520 b,
0.98696 e, 0.98696 ¢;
2.39444 b, 2.39449 b,
0.98696 e, 0.98696 ¢
5.22238 n

110

86.7865

2.63266 b, 2.63594 b;

2.63266 b, 2.63267 b

0.98696 ¢, 0.98696 ¢;

0.98696 e, 0.98696 ¢
5.22705 n

2.63265 b, 2.63265 b,
0.98696 ¢, 0.98696 ¢;
2.63265b, 2.63265 b,
0.98696 ¢, 0.98696 ¢
5.22705 n

120

287116 b, 2.87141 b;

2.87090 b, 2.87090 b

0.98696 ¢, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.23081 n

2.87090 b 2.87090 b,
0.98696 ¢, 0.98696 ¢;
2.87098 b, 2.87098 b,
0.98696 ¢, 0.98696 ¢
5.23081 n

125

98.5675
1.
1.

3.02361 b, 3.02867 b;

3.02015 b, 3.02015 b

0.98693 ¢, 0.98698 e;

0.98696 ¢, 0.98696 ¢
5.23241n

3.02015 b, 3.02015 b,
0.98696 e, 0.98696 ¢;
3.02015 b, 3.02015 b,
0.98696 ¢, 0.98696 ¢
5.23241n

130

102.494
1.
1.

3.14253 1b,3.14747 b;

3.14220 b, 3.14220 b

0.98696 e, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.23386n

3.14020 b, 3.14020 b,
0.98696 e, 0.98696 ¢;
3.14220 b, 3.14220 b,
0.98696 e, 0.98696 ¢
5.23386 n
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Table 2. Characteristics of eigenfrequencies for predominantly bending,
predominantly planar and nonsymmetrical vibrations of a cylindrical boron plastic

panel with rigid-clamped and hinged ends,
whenl=4,5 =5.00326,s = 15.0893.

m 0% Nim = M2m=0s  M3m = | Mim = N2m=Nms M3m = | Mim = N2m=N3m = Mm-
72 N 0. s = 5.00326;
112 s = 5.00326; s = 5.00326; s=15.0893.
s=15.0893. s=15.0893.

I | 0.98165 | 0.03344 b, 0.03395 b; 0.03227 b, 0.03281 b;
0.74668 | 0.03252 b, 0.03252 b. 0.03252 b, 0.03252 b,
1.33930 5.96781 n 5.96781 n

2 | 176715 | 0.05562 b, 0.05563 b; 0.05561 b, 0.05563 b;
0.85854 | 0.05495 b, 0.05499 b. 0.05413 b, 0.05413 b,
1.16477 5.53245n 5.53245n

3 | 2.55255 | 0.07831 b, 0.07865 b; 0.07681 b, 0.07682 b;
0.90206 | 0.07810 b, 0.07810 b. 0.07681 b, 0.07681 b,
1.10857 5.38395 5.38395 n

4 333795 | 0.10172b, 0.10288 b; 0.09985 b, 0.09986 b;
0.92511 | 0.10160 b, 0.10160 b. 0.09985 b, 0.09985 b,
1.08095 5.30954 n 5.30954 n

5 [ 4.12335 | 0.12537b, 0.12569 b; 0.12293 b, 0.12294 b;
0.93937 - -
1.06454 | 0.12524 b, 0.12524 b. 0.12293 b, 0.12293 b,

0.95910 ¢, 0.95913 ¢. 0.95835 e, 0.95842 e.

5.26510 n 5.26510 n
16 | 12.7627 | 0.38716 b, 0.38722 b; 0.38725 b, 0.38725 b,
1. 0.98695 ¢, 0.98695 ¢; 0.98696 ¢, 0.98696 ¢;
1. 0.38559 b, 0.38559 b. 0.38724 b, 0.38724 b,
0.98695¢, 0.998695 ¢. | 0.98696 ¢, 0.98696 e.

5.09854 n 5.09854 n
17 | 13.5481 | 0.41098 b, 0.41104 b; 041171 b, 041171 b,
I, 0.98696 ¢, 0.98696 ¢; 0.98696 ¢, 0.98696 ¢;
1. 0.40918 b, 0.40918 b. 0.41152 b, 0.41152 b,
0.98696 ¢, 0.98696 ¢. 0.98696 ¢, 0.98696 ¢.

5.10050 n 5.10050 n
18 | 14.3335 | 0.43480 b, 0.43486 b; 0.43602 b, 0.43602 b,
1. 0.98696 ¢, 0.98696 ¢: 0.98696 ¢, 0.98696 ¢:
1. 0.43272 b, 0.43272 b. 0.43481 b, 0.43484 b,
0.98696 ¢, 0.98696 ¢. 0.98696 ¢, 0.98696 ¢.

5.10462 n 5.10462 n
19 | 15.1189 | 0.45863 b, 0.45868 b; 0.45976 b, 0.45976 b,
1. 0.98696 ¢, 0.98696 ¢: 0.98696 ¢, 0.98696 ¢:
1. 0.45619 b, 0.45619 b. 0.45866 b, 0.45874 b,
0.98696 ¢, 0.98696 ¢. 0.98696 ¢, 0.98696 ¢.

5.10676 n 5.10676 n
20 | 15.9087 | 0.48246 b, 0.48251 b; 0.48272 b, 0.48272 b,

L.
1.

0.47957 b, 0.47957 b

0.98696 e, 0.98696 e;

0.98696 e, 0.98690 e.

0.98696 e, 0.98696 e;
0.48246 b, 0.48246 b,
0.98696 e, 0.98696 e.
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5.17992 n

5.17992 n

100 | 78.7362 2.38970 b, 2.38996 b, 2.38770 b, 2.38770 b,
L. 0.98696 e, 0.98696 e; 0.98696 e, 0.98698 e;
1. 2.38849 b, 2.38851 b. 2.38850 b, 2.38854 b,
0.98696 e, 0.98696 ¢ 0.98696 e, 0.98696 e
5.22225n 5.22225n
110 | 86.5901 2.62673 b, 2.62679 b; 2.62783 b, 2.62783 b,
1. 0.98696 ¢, 0.98696 e; 0.98696 e, 0.98696 e;
1. 2.62672 b, 2.62675b 2.62685b, 2.62691 b,
0.98696 e, 0.98696 e 0.98696 e, 0.98696 e
5.22695 n 5.22695 n
120 | 94.4441 2.86494 b, 2.86494 b; 2.86363 b 2.86363 b,
1. 0.98696 ¢, 0.98696 ¢; 0.98696 ¢, 0.98696 ¢;
1. 2.86496 b, 286496 b 2.86470 b, 2.86499 b,
0.98696 ¢, 0.98696 e 0.98696 e, 0.98696 e
5.23072 n 5.23072 n
125 | 98.3711 2.98411b, 2.98416 b; 2.98263 b, 2.98263 b,
1. 0.98696 ¢, 0.98696 ¢; 0.98696 ¢, 0.98696 ¢;
L. 2.98408 b, 2.98408 b. 2.98249 b, 2.98249 b,
0.98696 ¢, 0.98696 e. 0.98696 ¢, 0.98696 ¢
5.23234 n 5.23234 n
130 | 102.298 3.10323 b, 3.10327 b; 3.10323 b, 3.10323 b,

1.
L.

3.10320 b, 3.10320 b.

0.98696 e, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.23379n

0.98696 e, 0.98696 ¢,

3.10322 b, 3.10322 b,

0.98696 ¢, 0.98696 ¢
5.23379n

Table 3. Characteristics of eigenfrequencies for predominantly bending,
predominantly planar and nonsymmetrical vibrations of a cylindrical boron plastic
panel with hinged ends, when !l = 4,5 = 5.00326,s = 15.0893.

m 931 Mim = rf?.rr.-.=05 M3m = | Mm = M2m™Nm» Mim = M2m™N3m = M-
3 M- N3m = 0. s =5.00326;
3 5 =5.00326; s =5.00326; s=15.0893.
s=15.0893. s=15.0893.
1 0.78540 0.02758 b, 0.02853 b; 0.02758 b, 0.02852b;
l. 0.02801 b, 0.02801 b 0.02801 b, 0.02802b,
1. 5.08131 n 5.08131 n
2 1.57080 0.05189 b, 0.05525 b; 0.05189 b, 0.05525 b;
1. 0.05217 b, 0.05304 b 0.05217 b, 0.05304 b,
1. 5.08153 n 5.08153 n
3 2.35619 0.07224 b, 0.07241 b; 0.07224 b, 0.07241 b;
1. 0.07261 b, 0.07305 b 0.07261 b, 0.07305 b,
l. 5.08189n 5.08189 n
4 3.14159 0.09850 b, 0.10106 b; 0.09850 b, 0.10106 b;
l. 0.09570 b, 0.09623 b 0.09571 b, 0.09623 b,
1. 5.08239n 5.08239 n
5 3.92699 0.11932 b, 0.12028 b; 0.11932 b, 0.12028 b,

1.
L.

0.11934 b, 0.11977 b

s Ty

0.98689 e, 0.98692 e.

5.08303 n

0.11934 b, 0.11977 b,
0.98694 ¢, 0.98697 e.
5.08303 n
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12.5664

0.38120 b, 0.38245 b;

0.38121 b, 0.38207 b

0.98695 e, 0.98696 ¢;

0.98696 ¢, 0.98696 ¢
5.09806 n

0.38120 b, 0.38190 b,
0.98695 e, 0.98696 e;
0.38121 b, 0.38134 b,
0.98696 ¢, 0.98696 ¢
5.09806 n

13.3518
L.
L.

0.40568 b, 0.40620 b;

0.40569 b, 0.40663 b

0.98696 e, 0.98696 e;

0.98696 e, 0.98696 .
5.10000 n

0.40568 b, 0.40620 b,
0.98696 e, 0.98696 e,
0.40503 b, 0.40506 b,
0.98696 e, 0.98696 e.
5.10000 n

14.1372
L.
1.

0.42885 b, 0.42947 b;

0.42885 b, 0.42947 b

0.98695 e, 0.98696 e;

0.98696 e, 0.98696 ¢
5.10201 n

0.42885 b, 0.42947 b,
0.98696 e, 0.98696 e;
0.42892 b, 0.42897 b,
0.98696 e, 0.98696 e.
5.10201 n

14.9226

0.45267 b, 0.45326 b;

0.45267 b, 0.45279 b

0.98695 e, 0.98696 e;

0.98696 e, 0.98696 e
5.10409 n

0.45267 b, 0.45326 b,
0.98696 e, 0.98696 e;
0.45268 b, 0.45270 b,
0.98696 e, 0.98696 e.
5.10409 n

20

0.47650 b, 0.47705 b;

0.47650 b, 0.47719 b

0.98695 e, 0.98696 ¢;

0.98696 ¢, 0.98696 e.
5.10622 n

0.47650 b, 0.47705 b,
0.98696 ¢, 0.98696 ¢;
0.47660 b, 0.47667 b,
0.98696 ¢, 0.98696 e.
5.10622 n

100

78.5398
1.
L.

238310 b, 2.38329 b;

2.38289 b, 2.38329b

0.98696 ¢, 0.98696 ¢;

0.98696 e, 0.98696 e.
5.22212n

2.38294 b, 2.38310 b,
0.98696 ¢, 0.98696 ¢;
2.38242 b, 2.38254 b,
0.98696 ¢, 0.986906 e.
5.22212n

110

86.3938
1.
L.

2.62129 b, 2.62188 b;

2.62087 b, 2.62159 b

0.98696 ¢, 0.98696 ¢;

0.98696 ¢, 0.98696 .
5.22684 n

2.62102 b, 2.62115 b,
0.98696 ¢, 0.98696 ¢;
2.62078 b, 2.62081 b,
0.98696 ¢, 0.98696 .
5.22684 n

120

94.2478
1.
1.

2.86049 b, 2.86167 b;

2.86049 b, 2.86188 b

0.98696 e, 0.98696 ¢,

0.98696 ¢, 0.98696 e.
5.23064 n

2.86003 b 2.86025 b,
0.98696 e, 0.98696 ¢;
2.86003 b, 2.86010 b,
0.98696 e, 0.98696 .
5.23064 n

125

98.1748
L.
1.

2.98037 b, 2.98069 b;

2.97940 b, 2.97989 b

0.98696¢, 0.98696 ¢;

0.98696 e, 0.98696 e.
5.23226 n

2.98037 b, 2.98069 b,
0.98696 e, 0.98696 e;
2.97947 b, 2.97955 b,
0.98696 e, 0.98696 e.
5.23226 n

130

102.1020
L.
1.

3.10074 b, 3.10194 b;

3.09760 b, 3.0059 b

0.98696¢, 0.98696 ¢;

0.98696 e, 0.98696 e.
5.23373 n

3.10074 b, 3.10152 b,
0.98696 e, 0.98696 e;
3.09040 b, 3.09261 b,
0.98696 e, 0.986906 e.
5.23373 n
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In Tables 1, 2, 3 after the characteristics of eigenfrequencies the type of vibration is
indicated: 'b"’- predominantly bending, "’e"’'- predominantly planar, and "'n"’ for the new
type of vibrations. The elasticity modules E and E, correspond to the directions of
generatrix and directrix, respectively. The case with 71, = Nam = M3m = Um
corresponds to the problems (1.1)- (1.6). The case with 71,, = 2, = 0 and 3, = M
corresponds to the problems (1.1)- (1.6), where are no tangential components of the inertia
force, i.e., we have the predominantly bending type of vibrations. The case with 17y, =
N2m = Nms Nam = 0 corresponds to the predominantly planar type of vibrations.
The following equalities hold for isotropic materials:
Biz _ Bia _ _Bgs _ Bes _ 1-0C
22 =22 g B8 = 86— (6.2)
Bi1  Baz Bi1  Baz 2
Hence, in the dispersion equations and for the calculation characteristics it can be set

1-o

Bi1 = Byy =1,B13 = 0,Bg6 = N

Conclusion. Numerical calculations showed that the first eigenfrequencies localized at
the free generators of the cylindrical panels with arbitrary fastening of the ends, where the
normal component of inertia force is not zero are the frequencies of predominantly bending
type. Along with the first frequencies of quasi-transverse vibrations, there are frequencies
of undamped quasi-tangential vibrations. With the increase of m, these vibrations become
of Rayleigh type. The analysis of numerical data indicates that for €, — 0 free vibrations
of cylindrical panels with arbitrary fastening of the ends decompose into quasi-transverse
and quasitangential vibrations, and their frequencies tend to the frequencies of a rectangular
plate with arbitrary fastening of the opposite sides. Numerical results showed that
asymptotic formulas (5.6) of dispersion equation (2.16) and the mechanism presented here
are good reference points for finding the eigenfrequencies of the problems (1.1)-(1.6). The
first eigenfrequencies of vibrations of cylindrical panels with arbitrary fastening of the
ends, depend on the chosen basic functions 4, 5,6. Note, that the first dimensionless
characteristics 1}, n2, and 13, of the problems with rigid-clamped ends, rigid-clamped
and hinged ends and hinged ends, respectively, satisfy the inequalities 73, = 72, >
n3,,m = 1,0 . For 8,, - 0, the frequencies of vibrations at free generators of a finite
cylindrical panel become practically independent of the basic functions and of the boundary
conditions on the ends [8-10,19-21].

Appendix. The analytical expressions for m;; are given below:
mqyq = H.X'f’ + d1Xf <+ dlez +- dg, mqy, = Hf_:l; + d1f73 + dzf_l,
myz = Hfy +dif + dyymys = Hfs + di fy,

m21 = Txls + d4x]:_3 + dsxl, m22 = TE + d4E + ds,m23 = TE + d-‘l-ﬁ' m24 =
Tf, +dy

may = FXP + deXit + d; X7 + dg,m3, = Ffs + defy + do fy,
Ma3 = Ffy +def, +dy, mgy = Ffz +dgfy,

m41 = F.X‘f + 9x15 + dlox]:_s + dllxl, m42 = FE + dgE + leE + dll’
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My3 = Ffs + dofs + diofi, Mag = Ffy + dofy + dyo;

mis = (=1 'myexp(zy), mig = (=1)" 7 (myzexp(z;) + myy[212,)),

my; = (=D (myzexp(z3) + mya[2223] + myy[212,23)),

mig = (=D (mysexp(zs) + myz[2324) + mip[252524] + myy[212,2324)),
i=14;

Mgj = My 447 M5 g4j =My j; Mej = Ma s, Meagj = My j; L

My7j = M3 44j, My 44j = Mg j; Mgj = My 44, Mgasj =My j; j = 1,4.

H=—a 222 T = q2212822.p _ B2z (7.1

11 B11Bee Byq

B:
- BZZ (n%m + 87%1) ]
11

d. = a? B11B11Bm—Bi2 Bm+4BZsBm
1 B11Bes

__Bgs _2 21 Biz +4Bgs (Baz o 2 2 (B22 2
dy = =2 + a2 B S (2222, — By ) — eha? (22 ki, —
B T 22 11 11
311311ﬁm‘3123m+4366»8m)
B11B32 i )
_ ' 2 By1B11B8m—Bi2Pm 366 2 _ 2.2
d3 - (6mﬁm - n2m)( B..B - ’Tlm »am =1+4a Ems
11822
_ 2 {B12B2> 2312 312
d4_a (B B £m+BZ ﬁm_ lm
11Bs6
_Bzz B1 BuBuﬁm 312»8771 2 pr Bi12 +4Bee (B2z 2
dS - Hlm + HZm t+a m im —
B11Bee 3 22 B
Baz n 4312 a2 _ 522 Bee
B ﬁm Sm: B 17 + rIZm + gm — By,
66 11

B " B B B
dy; = (ﬂzm_ﬁm) (ﬁfhm_ )"‘iﬁm (Bz—ﬁmm—ﬁnmﬁ
gm (4(12 Pz e (Bm)z — By + Bﬁnlm)

By1B
B1:: Bge 2 "
ﬁm( Nom — mﬁm)( mJ»
_ 322 322 4366 '
dq = Bis nlm n2m + By, em - Bl - ﬁm:

B, 2\ | B +4B B B
dl(] = (‘qu - ﬁm) (inlm - m) +E— ﬁm ( - ﬁn%m - Blin%m) -
B, B
&2 (By + 472 — 22 nim),
B, B, By2 +4B, B,
dyy = 4Emﬁm (SL; B, _f"%m) %ﬁm(’hm ﬁm)( N — B;r;)
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