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Aperncan JI. B,
OcoleHHOCTH YNPABJIEHHS NIEKTPOAKTHBHON CIBHIOBOI BOJIHOI B NLE30IEKTPHYECKOM BOJIHOBO/E
KyGH4YecKoi CHMMETPHH CO CMElIAHHBIMH VIEKTPHYECKHMH
MOBEPXHOCTHLIMH BO3/IeiicTRAMMH

Kniouesnie ciaosa: ANEKTPOAKYCTHYCCKAA BOJIHA, BOJHOBOC YIPaBICHHE, I'ILC303."IC[\‘T]JI‘I‘ICCKHE BOJIHOBO/,
HANPAAKEHHE MEKTPHUECKOTO N0, (PPOHTOROE YIIPaBICHHE, FAPMOHHKH (PYHKIHH YIpaBleHus.

PaccmoTpena 3anaua GeCKOHTAKTHOTO MOBEPXHOCTHOIO YNPABIEHWA PACTIPOCTPAHEHHEM MIEKTPOaKTHBHOI
nonepeyHoil BOMHBI B OECKOHEUHOM BOJHOBOJE M3 NbE302JCKTPHKAa KyOwueckoii cummerpun. Oama u3
MOBEPXHOCTEH MBE30ICKTPHYECKOTO BOJHOBOJAA JKGCTKO 3aj]elaHa, a BTopad cBOOOAHA OT MEXaHHYECKHX
HanpsaeHHii. B kauecTBe ynpapnsromMx BO3JACHCTBHII Ha MOBEPXHOCTH BOJHOBOJA PacCMAaTPHBAIOTCH Kak
NEPreHIMKYISPHOE  NePEMEHHOE  IeKTPHYECKOE CMEIeHHe, TNpuiIcKeHHoe K cBo0oiHol  nosepxHOCTH
BOJIHOBOJIA, TAK MW [Apajlie/ibHadg NEepeMeHHAad HAIPMAKEHHOCTh JICKTPHYECKOIO MOJ8 BIAOJIbL €I'0 KEeCTKO
3aJIEIaHHON TTOBEPXHOCTH.

CipopMynHpoBaHa HEOJHOPOIHAA HAYaIbHO-KpacBas MaTeMaTHUYECKas 3aava CO CMELIAHHBIMH TPAHHYHBIMH
yelnosHaMH. B KadecTBe pelieHHMA KpacBoi 3anaud SICKTPOYNPYTOCTH CBA3AHHBIN ¢ HMUM YIPYTHI CIBHI H
CONYTCTBYIOIINE KoneDaHHA TNOTEHIMANA SJIEKTPHYECKOTO MONs TNpeACTABIAIOTCA B Buiae panos Dypbe
CODCTBEHHBIX MOJ 2IEKTPOYNPYrUxX Kojebanuii. MYHKUMH YIPABICHHA NMOBEPXHOCTBIO NPEJACTABICHLI B BHIE
panos Dypee U COOTBETCTBYIOLIMX TaPMOHHMK coDCTBeHHBIX (GopM ekTpoynpyrux konebaumii. Ioctpoens
(OpMBI XAPAKTEPHCTHK BOJHOBOIO NMOJAA B TEKYWMi MoMmeHT Bpemenn. IIpoBeneHbl aHAIMTHYECKHE PACYETH
(yHKUMI ynpaBiIeHHs MOBEPXHOCTBIO B YACTHOM CJIyyae BIOOPA HAYAIBLHOIO H KOHEYHOIO COCTOSAHHIT BOJTHOBOIO
nporecca.

UyEwinhuyul L.
unpubupruhtt hmdwyunhmpyut whkqnkEnpuljub wjhpunwupnud, Ejunpuljub puownh jowep
dwljipimpuyhtt mgngnmpniatbipm] vwhph fEjunpuljuinpki wijnp] wihph jurujupdwi
wnwhdbwhwnlmpjnibbbpp

Zfwpwretp | hEjunpuwlynuunhly whp, wihph jurujuwpnd, whtgnkEjupuljwt whpuunap,
LEjupuiub  qupwnp  qupnud,  dwlbpmpught - junujupnud,  jurudupdwb - $mblghugh
hwpunihlwbkp

Yhuuplpws b unpubwppuoght hodwyuhmppuot yhkqnbEljuphljhg gpunpuum]wd whpumnwpnad
BEpunpuwlpnhy] juyulh whph vwpusdwt dwlbplngpm] wihynd jupudupdwb ebghpp:
Tpkiqnbykyunpuljwt wihpunwph wyplayplbphg Wklp Yoo wipulgius  hul kplpapp qtpd &
Ubjwthjulut  pupnudubphg: Ujhpunuph wqun dwljbpbngphtt jhpumjmd - nugpuhwjug
thnthnfuwljut bEjupuljut gupw, hul) gpu Ynpn wdpulglud dwlbphngph pljpuyipn] qgnuquiblin
thnthnjunn kjEljinpuljub gugn:
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Quulbpuyws E wihwiwube wygpbulwb-bqpuyhtl dwpklunhljulwh jubghp uwep bqpughi
wuwpdwbibpm): Opybu BEpupuwnwdquijuimppub vwhdwiughtt pingph jmsnud, wnwdquljub
uwhpp b fEjupuljwi npuonh mnklgnn munwbnudubpp thpluyugus o bEjunpuunudqujui
nuwnubnuiibph ukhwliwb whpwdbbph $mphkp 2wpph whkupm]: Uwlkptinyph nEjujupdub
wqnkgmpmbtbpp bnyygbu  Ukpuyugws Eo dmphkh pwpph wbupm] HEjunpuwnrwaquijoi
nunnubnulubph ukthwljwb wihpwabkph hwdwyunwupowt hwpdnthljubkph dhengm): Yurmgy

ti wihpuyht nwpwp pimpugpbph dbbpp dudwbwlh ppwghly wwhhb: Uihpuyhtt gnpépupwugh
uljgpiwuis b JEpetwljwb  Jp&wlukph plwpmput  Ynbyptn ghypnd  hpujuwbwugl] b

dwlbphnyph junujupdub pniblghwbph whwghnhl hapgwplobp:

The problem of contactless surface control of the propagation of an electroactive shear wave in an
infinite waveguide made of a piezoelectric material of cubic symmetry is considered. One of the
surfaces of the piezoelectric waveguide is rigidly embedded, and the second is free from mechanical
stress. Both the perpendicular alternating electric displacement applied to the free surface of the
waveguide and the parallel alternating electric field strength along its rigidly embedded surface are
considered as control actions on the surface of the waveguide.

A non-homogeneous initial-boundary value mathematical problem with mixed boundary conditions is
formulated. As a solution to the boundary value problem of electro elasticity, the associated elastic
shear and accompanying oscillations of the electric field potential are represented in the form of
Fourier series of the eigenmodes of electroelastic oscillations. The surface control functions are
presented in the form of Fourier series for the corresponding harmonics of the natural modes of
electroelastic vibrations. The forms of the characteristics of the wave field at the current moment in
time have been constructed. Analytical calculations of surface control functions were carried out in
the particular case of choosing the initial and final states of the wave process.

Introduction

The propagation of an electroacoustic three-component wave in a homogeneous two-
dimensional waveguide in the case of an oscillating crystallographic plane of a
piezoelectric and the distribution of wave characteristics over the thickness of the
waveguide is a well-studied problem in the linear theory of electro elasticity [1], [2], [3].
The possible generation of an electroacoustic three-component wave, as well as the
localization of wave energy of high-frequency (short) waves, are determined by the
anisotropy of the piezoelectric material and the electromechanical conditions on the
surfaces of the piezoelectric waveguide [4].

Moreover, different anisotropies of the piezoelectric material and different
electromechanical conditions on the surfaces of a homogeneous waveguide lead,
accordingly, to different localization along these surfaces [4], [5].

The controllability of electroactive acoustic waves and accompanying electric field
oscillations using boundary effects expands the possibilities of studying the nature of the
wave process in a piezoelectric medium [6,7]. The variety of conditions for coupling
electromechanical fields on the surface of a piezoelectric allows us to formulate various
mathematical initial-boundary value problems of electro acoustics. A new possibility of
surface exposure appears-exposure to electromechanical fields without acoustic contact [7].
The presented work examines the problem of contactless surface control of the propagation
of an electroactive SH shear wave in an infinite piezoelectric waveguide made of an
anisotropic piezoelectric material classes 43m or 23 of cubic symmetry is considered. In
contrast to the problems of controlling the propagation of shear waves in a piezoelectric

37



waveguide of the 6mm class with hexagonal symmetry, here the boundary value problem is
formulated from a system of non-separable homogeneous quasi-static electro elasticity
equations with mixed electromechanical surface conditions [8].

1. Problem modeling and formulation of a mathematical boundary value problem

Let us consider the propagation of the signal F(x,y,t)= f(y)-expli(kx—0(t))] of a

normal, three-component electroelastic wave {W(x, Wt); e (x,0,1); e},(x, y,t)}, in

which e (x,y,1)=—(0¢(x, y,1)/dx) and e (x,y,t)=—(8¢(x,y,1)/dy), induced in a

homogeneous piezoelectric waveguide €(x,y)= {lxl <o, y€[0;h], ZI < 00} associated

with an orthogonal coordinate system 0xyz (Figure 1).

The case of a homogeneous anisotropic piezoelectric of classes 43m or 23 cubic symmetry
is considered as a waveguide material.

avgyh,t -0 by agogr;,t)=5(t)
% X
W(0,t)=0 0 o(0,t)=6¢(t) /

Fig. 1. Scheme of Homogeneous piezoelectric waveguide with the mixed electromechanical
surface actions.

In case of cubic symmetry piezoelectric classes 43m or 23, the system of quasi-static
equations for a three-component electroelastic wave has the form

W' ()00 = k* - w(y)- 0(1) +2i(e, /e ) k- ¢/ (9)-0() = C* - w(3)-6(1)
—2i(e,/&,)k W)+ (M=K -p(y)=0
In equations (1.5), C, =/c,,/p is the velocity of the volumetric non-electroactive elastic

(1.1)

shear wave, ¢, is the shear rigidity, e, is the piezoelectric modulus, &, is the relative
dielectric constant and £ is the density of the cubic symmetry, piezoelectric classes 43m

or 23 material.
On a mechanically rigidly fixed and electrically conducting surface y =0 of the

waveguide, electromechanical conditions are written in the form
w(pn)| =0, P(v,0)|,_, = 9(0). (1.2)

On a mechanically free waveguide surface y =5, loaded with a perpendicular electrical

displacement, the electromechanical conditions will be written as
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ow(y,t) .
ot iek-p(y,t)| =0
20 )

v=ht

o . (1.3)
. oLyt

[4k' ( ar)_ 11 =§(£)
[se w(y,t)—¢& o }

v=h
It is known that in the quasi-static formulation of the problem of electro elasticity, the
dynamics of changes in oscillations of the accompanying electric field is uniquely
determined by the dynamics of elastic waves [2], [9]. Therefore, to describe the initial and
final states of the control process, pairs are selected from the conditions:
The initial state of the electroacoustic wave at the moment of time ¢ =0 is written in the
form of one of the pairs of conditions

w(»,0=S5(y), W(»,0)=4(»), (1.4)
w(y,0)=£4(y). @(y,0)=39(y). (1.5)
P(»,0)=n(y). W(»,00=4(), (1.6)
P(»,0)=n(), @».0=39(y). (1.7)

The final state of the electroacoustic wave at the moment of time 7 =7 is written in the

form of one of the pairs of conditions

wnT)=E0), W) =4(), (1.8)
W) =50, e T)=3(»), (1.9)
o, T)=7(y), W)=, (1.10)
e T)=A(). eI =9). (1.11)

The mathematical initial-boundary value problem of controlling the propagation of an
electroelastic transverse wave under the influence of surface influences of an electric field
is formed by a system of equations (1.1), boundary conditions (1.2), (1.3), as well as pairs
of initial state conditions from (1.4)-(1.7) and pairs of conditions final state from (1.8-
(1.11).

It determines the control by the surface effects of the electric field on both the distribution
of wave characteristics over the thickness of the waveguide and on the nature of the
propagation of the electroactive transverse wave. It is determined by what surface
influences the wave process can be brought from the initial state at the moment of influence
t =0 to the final state over a period of time[0; 7} ] .

2. Solutions of the problem.

2.1 In a homogeneous piezoelectric waveguide made from a piezoelectric of cubic
symmetry of classes 43m or 23, an electroacoustic three-component wave is represented as
a solution to a system of homogeneous equations (1.1), with homogeneous surface
conditions
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w()|_, =0, o), =0. @.1)

on a mechanically rigidly fixed and electrically conducting surface y=0 of the
waveguide, and

[e[owm)/ov]+iek-o()] =0, [iek w)~¢,[0pm/v]] ,=0. @2
On a mechanically free waveguide surface y=h.

The components of a high-frequency electroacoustic wave (in the short-wave

approximation, when 277/k = A < h') are written in the form

w(x, y,t)= A, exp(kq,y)-expli(kx —wt) +

(26 /60,62 D)) 4, explhgy)-explitke-/2-0r) )
@(x, y,t) = -4, exp(kq,y)-expli(fx —wt)+

+[2(e. /&) a1/ (g =D)]- A, explkq,)-explithke —7/2 - t) e
In these decisions
¢,(@) = [[1 + 2 (k,0)+47°))2 1+ &’ (k,0) + 41T JA—a’ (k, w)]m 2.5)
¢, (@) = [[1 + (k) +4 7712+ [T+ o (ko) + 47T J4—al (k. w)TZ 2.6)

are the wave coefficients, in which ¢’ (k,0) =1-(a’p/k’c,) .

From the eigen solutions (2.3) and (2.4) of the boundary value problem (1.1), (2.1) and
(2.2) it is obvious that it consists of two groups of linearly independent normal signals.

Propagating with the phase of motion§,(x,#) = (kx—at), the first pair of associated
characteristics of an electroelastic wave, is represented as

W, (%, 341) = 4, explkq, (@)y]-expli(kx - on)]

o (x,3,0) =[2i(e,,/£,) 4,(@)/ (¢} (@) ~D)]- 4, explkq, (@)y]- exp[i(kx - 1)
Propagating with the phase of motion &, (x,#)=(kx—7z/2—t), the second pair of

2.7)

associated characteristics of an electroelastic wave, is represented as

W, (x,0,0) = [2i(e,, /¢.) 4, (0)/ (g5 (@) = &) 4y, explkg, (@) y]expli(kx - on)]
@,(x,y,1)=—4,, explkq, (@) y]-expli(kx — wt)

2.2 To solve the initial-boundary value control problem formed by the system of
homogeneous electro elasticity equations (1.1), inhomogeneous boundary conditions (1.2),
(1.3), as well as the initial state conditions from (1.4)-(1.7) and the final state conditions

from (1.8 -(1.11), we reduce the problem to an initial boundary value problem with
homogeneous boundary conditions.

. (2.8)
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Taking advantage of the fact that the surface conditions for elastic shear are already
homogeneous, to reduce the boundary value problem we introduce only a new
characteristic function of the electric field

_h 2 2
U2 0-L50, 29)

The system of homogeneous equations (1.1) is reduced to an inhomogeneous system of

W(%f) = Q(y&t) -

equations, in the right-hand sides of which surface influences ¢(¢) and &(¢) are appearing
[ W)=k - w(p)+2i(e. [ ) k-v'(0) |-00) - w(»)- G- 6() =
==2i(e,s /e ) k| [200= 1)/ |- ¢0)+ v/ 1)-5(0) |

[ 2i(e, /&) k- W (W) +y" () =k -y (») |-0(1) =

=[[K*(y=h)* =2/ |- ) +[[K*y* - 2)/2h |- 5(0)

Solutions of the system of inhomogeneous equations (2.10) and (2.11) with homogeneous
surface conditions (2.1) and (2.2) with respect to the newly introduced characteristics of the
electromechanical field can be represented in the form of Fourier series with eigenmodes
and their corresponding eigen harmonics. Since this homogeneous boundary, value problem

(2.10)

@.11)

has two eigenfunctions exp[k, g, (@)y] andexpexp[k, g, (®)y], we write the required
characteristics as the sum of two terms

w0 =w,(y,0)+w,(y,0)=

= ZAl\V exp[kuqm(a))y]'gl(t)+ (2.12)

+i[23‘(e|4 /C1s) s, /(QSH - af )] Aqu [k,4,,(@)y]-6,(1)
v, =y,(r,0)+y,(y,0)=
=Y [2i(e, /) /(a2 D] Ay explk,g,, (@)y]-6,0) @.13)

n=0
_Z AZW exp[kquH (w).V] ) 92 (t)
n=0
where the wave coefficients ¢,(®) and ¢,(®) are defined as in (2.5) and (2.6), in which
o, (k,,0)=1-(a; |Ck}) = (nz/kh)* , neN.
In the presented relations for the desired characteristics (2.12) and (2.13), the functions

6,(t) and 6,(t) are their own harmonics, corresponding to the natural vibration modes

explk, g, (@)y] and exp[k,g,,(@)y]
QI (t) = i Hl:r(t) = i[Alwn Sin(a)lnz) + Blwu COS((Umf)] * (2 14)

n=0 n=0
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82 (t) = EHZH (t) = i[Ang Sin(a)b:t) + B?gm COS(a)Zut)] (2’ 1 5)

n=0 n=0
For true harmonics of electroelastic vibrations of a piezoelectric medium, we obtain an
equation characterizing the sum of its own harmonics and harmonics of the surface action.
In accordance with the presented relations for the desired characteristics (2.12), (2.13) and
harmonic vibration functions (2.14), we obtain the vibration equation for the first eigen
branch of the electroelastic wave in the form

0,0+ Ck; [ (4274, - (ar, - 1*V/(q7, - |-6,, () =

(2.16)
= _{Ml Ign + NI 16n " |:M12¢n/Nl2(?n:|} ) ¢n(£)
with the Fourier coefficients of the surface actions expansions
1 h )
M, lgn = ;J‘_h(em/cu,)k ‘[2(y - h)/h2 }exp(kq]y)dy >
0
1 I )
Nisgy = [ =2ieew) k- v/ ) explig,)dy
0
1 h )
My, = [[12=K2 o= 1/ |- explh,)dy
0
¢ )
Nyysu = ;I[[kzy‘ -2]/ Zk] -exp(kq,y)dy . 217
0
The vibration equation for the second eigen branch of the electroelastic wave in the form
é2n () - sz (afz - l)kf -6,,(t)= _[leqm : (N22c>‘n/M22¢n) + Nzlo'n] +6,(1) (2.18)
1 L} R ,
MEM" = ;ch-kii [(Qan - arz )/Q2n] : [Z(y - h)/h-]exp(kthy)dy s
0
l I )
NZI()'H = ;_[C.r_ku [(qju - afz )/qEH] : (y/h) cxp(kQEuy)dy ’
0
l I
Moy, = (1212 0=V |-explha,, y)dy
0
l h
Nasg, == [k =21/2h |- explha,, y)dy 2.19)

0
In the presented equations of oscillations of electroelastic wave characteristics (2.15) and

(2.16) there are harmonics ¢,(f) and O, (¢f) surface influences corresponding to the

eigeandes exp[knqln(w)y] and cxp[kHQ2il(&))y]
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4= 4,(0)= 3[4, sin(a, 1) + B, cos(@,1)]. 2.20)

n=0 n=0
8(1) = 25,, (1) = Z[AJ,, sin(@,,t) + By, cos(w;,1)] 2.21)
n=0 n=0

For the true harmonics of oscillations f,, (1) =0,, (r)—(wf@,/wfg,,) “¢,(2), of the first
eigen branch of the electroelastic wave (2.7), an equation is obtained that characterizes the

sum of eigen harmonics 0, ,(f) and harmonics of surface action ¢, (¢)

Ju @+, £, (0=}, /@) 4,(0). (222)
with the corresponding frequencies ®j, =C k. -[[4)(3(;[2" —(q;. —1)2]/((;,2” —1)] and
m;n = Mn@p + Ml2¢u ’[Nllaa:/leem]-

In the characteristic equation (2.22), we use the Fourier expansions of the eigen harmonics
(2.14) and harmonics of surface effects (2.20).

For the true harmonics of the medium oscillations the solution of equation (2.22) is
obtained in the following form
f:ﬁw (t) = A]wu ! COS(a)lﬂut) + BI ’ Sin(a)léﬂmt) -

wn

(@, /mﬁm) : [Aw cos(@,,1)+B,, sin(caé,,t)} '

From the solution (2.23) for the true harmonics of vibrations of the first pair of coupled

(2.23)

characteristics of an electroelastic wave, it follows that the surface actiong,(f) changes

only the harmonic of the first natural vibration mode exp[£,q,, (@)y].
This impact is determined through the expansion coefficients of the surface impact (2.17)

and the frequency of impacts created by them @}, = M, + M, [N, I@:/le‘w] .

For the true harmonics of oscillations f;,(£) =0,, (£) — (3, /@2,) 8, (£) . of the second
eigen branch of the electroelastic wave (2.8), an equation is obtained that characterizes the

sum of eigen harmonics 0,,(f) and harmonics of surface action 0, (f)

2n

Jan () =03, [, () =—(w}, [ 03,,)-3, (D). (2.24)

with the corresponding frequencies  ®;, =M, +M,,, (N, /Nypy,)  and
5, = (0] =1)-Ck;.

In the characteristic equation (2.24), we use the Fourier expansions of the eigen harmonics
(2.15) and harmonics of surface effects (2.21).

For the true harmonics of the medium oscillations the solution of equation (2.24) is
obtained in the following form
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f:)"(t) A”@m COS( "-‘)nt)+ 2gm Sln( 20m )_

Jr/a)zﬁn) [At)u COS( c}n'{)—‘r an Sln( arrt)].

From the solution (2.25) for the true harmonics of vibrations of the first pair of coupled

(2.25)

characteristics of an electroelastic wave, it follows that the surface actiond,(f) changes

only the harmonic of the first natural vibration mode exp[k,q,,(@)y].
This impact is determined through the expansion coefficients of the surface impact (2.17)
and the frequency of impacts created by them ®;, = M, +M,,,, -[Nzl&,/sz, ] .

Both in the above expansions and in the resulting solutions (2.20), (2.21) there are
s By Ay By, and A, 5 B, 5 A, 5 B

Twn? “lwn? “2pn? — 2pn dn > dn ) an 5 an
obtained solutions, they separated in pairs according to the wave’s eigenmodes
W) =W (3,0 + W, (p,0) =

coefficients A undetermined constants. In the

i Al\w ’ cos(wlﬂnt) + B]wu ' Sin(a)wmt) -
=2 explk,q,, (@)y]- (2.26)
n=0 ] ( giu/ Iﬂu [Agﬂrr COS(&)mf) +B in Sll'l((:.‘)wt)]
4,,, -cos(@,,,t) + B, -sin(@,, 1) -
+ ﬁwn (a)) exp[kuq n (ﬂ))y]
"Z(; ’ ( r)ﬂ "6‘:}) [‘A{)u Cos(wr)nt) + B{)N Sln( dut)]

v, 0=y, (»,0)+y,(y,0)=

= i ﬁgm (0)- exp[k"q]” (m)y]

n=0

A, cos(my,t)+ B, -sin(w,,, 1)

[ ( @,/ @;y,) [Amcos(a)@,t)nL sin(wm;)]]’ (2.27)
4,,, - cos(@,,,t) + B, -sin(@,,, 1) -

[ @}, @35,) [ 45, cos(e,, 1)+ B, sin(a){,-,,t)]]

In the solution representations (2.28) and (2.27), as well as in (2.12) and (2.13),
B (@) =[2i(e,/c.y) 4, (@)/ (4, (@) ~ & (@))]and
ﬁm(a))=[2:‘(e,4/£],)qm(w)/(qﬁ,(a))—l)] are the amplitude coefficients of the

-Z exp[k,q,, (@) y]-

n=0

corresponding accompanying characteristics of the wave field.
The uncertain coefficients {4,,; B,,,}, with {4,; B, } and {4;,; By}, with

{4 } are determined from the data defining the initial and final states in the

2gm 5 "gm
waveguide.
Taking into account the structure of solutions (2.12) and (2.13), the initial and final states of
the wave process, are also represented in the form of the corresponding Fourier series
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5{] (y) = Z[}/w : exp[kuqlu (&))y] + Von - exp[kﬂ:qb:(m)y]]
" , (2.28)
g{) (y) = Z [?{én ! exp[knqln (&))y] + ?o‘n : exp[k”qz,,(w)y]]

n=l

$r (1) =D My - explk, g1, (@)y]+ 7, - explk, gy, (@) 1]

n=1

G;:r()’) = Z [ﬁ@: : exp[kn%n (Ct))y] + ﬁ{}'n : exp[kn‘bn (&J)y]]

n=l1
Comparing the representations of the initial and final states (2.28) and (2.29) with solutions
(2.26) and (2.27), in the form of two independent systems of linear algebraic equations for
uncertain amplitudes we obtain the matching conditions at the initial and final states of the
control process

A = (@}, [03,) 44, = 7,

(@10, )/ (@3 )1 By = (@5 [ @10, By = 70 | @y

Ay -c08(@,, 1)) + By, -sin(@,,, 1) —

—(w;, / wﬁ;u) . [Ag," cos(@y,Ty) + By, sin(wg,ﬂﬂ,)J =4,

(@, )/(%,,)][—Alw” -sin(@,,T,) + By -cos(a)w”To)] -

~(@}, | @) [~ 4y, sin(@,,Ty) + B, cos(@,,Ty) | =77, [(@,)
Asgn @5,/ @39,)- A5, = V5,

[(&;‘2011)/(&)511)] ' BE(.OM - (wr')-)'n/a)?;jﬂn ) : B()'n = ymr)'n/a)()'n
A

, (2.29)

(2.30)

2on COS((OZO."T;]) + B2¢m ’ Sin(a‘bﬁm%) -

. (231)
_(mgn /wi‘in) ) [Ac)‘n COS(&)‘)‘”}B) + Bc)'n Sln(mﬁnTﬂ)] = 7?0‘:;

[(mzﬂn )/(mé'n )][_AE:,U.-: ) Sin(&)?.{ha}:]) + BZ:\"H : COS(&’I!{»'HTO)] -

_(mgn/mgﬁn) ) [_Ac)'n Sin(wﬁnTo) + BJH COS(CE)O-”T('))] = _ﬁo‘n/(mc)'n)
From the conditions for the existence of nontrivial solutions of systems (2.30) and (2.31), in

the form of two multitudes of discrete times ¥, ={7;,,} and T

n

={T}s,,} of surface

influences ¢@,(f) and J,,(¢), are determined, respectively.

The control time 7. of the wave process, during which the combined action of surface
influences leads the process from the initial state (2.28) to the final state (2.29), defined as
T.= min [T, € {T,,} (T} ]. (2.32)

n,mel
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For certain amplitude coefficients from (2.30) and (2.31), the wave characteristics of the
current process will be determined according to relations (2.26) and (2.27)

explk, (q,,(@)y +ix)]x
w(x, y,t) = i A4, -cos(w, t)+B,,, -sin(w,, t)— +
0 —(a);,,/wfg") . [Aw cos(w,,t)+ B,, sin(a)‘?,,‘t)] 033
B (@) -explk, (g, (@)y +ix +iz) 2k, )] x ’ '
+ i 5 4,,, -cos(@,,,t) + B, -sin(@,,, 1) — .
A I (@}, ] @3,,) [ 45, cos(@,,t) + By, sin(w,,1)]
B, (@) - explk, (q,, (@)y+ix—iz/2k,)]x
w(x,y,t)= i A4, -cos(w,t)+B,,, -sin(w,,,t)— }
T (@, @b, [Am cos(@,,t)+ B,, sin(a)wt)]
- (2.34)

explk, (¢,, (@)y +ix)]x
- Z 4,,, -cos(@,,,t) + B, -sin(@,, 1) - ]

" - (mi:/&);ﬁrr) : [A(‘iu COS((U t) + B

e 5, SIN( wd,,t)]

Conclusion

In the process of surface non-contact control of the propagation of an electroactive elastic
shear wave in an infinite piezoelectric waveguide of cubic symmetry, the equations and
mixed surface conditions in the mathematical boundary value problem are not separated.
Electromechanical interaction occurs in low frequency mode (acoustic frequencies). The
initial and final states are specified by two pairs of conditions for the characteristics of the
electroelastic shear wave. The other two pairs of initial and final state conditions describing
accompanying oscillations are derived from the basic equations.

The initial boundary value problem is transformed into an infinite system of control
problems for the formation and propagation of eigenforms of electroactive transverse waves
by expanding the desired characteristics and functions of surface action into Fourier series.
In the case of the short-wave approximation, by solving an infinite system of differential
equations, we obtain surface action functions and true harmonics of wave oscillations,
which correspond to the wave surface that brings the process from a known initial state to a
given final state.
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