ZU3UUSULE @bSNhE3NPLLENP ULAUSHL UUUNEURUSE SENtulahl
W3BECTUSI HALIMOHAJIBHOM AKAJIEMUM HAYK APMEHUM

Uthiwuhlu 76, Ne3, 2023 MexaHnuka
YK 539.3; 534.2 DOI: 10.54503/0002-3051-2023.76.3-35

ON THE DYNAMIC BEHAVIOUR OF A THREE-LAYERED STRIP IN A NON-
CLASSICAL MIXED PLANE DEFORMATION PROBLEM

Aghalovyan L.A., Ghulghazaryan L.G., Kaplunov J.D.,
Sargsyan M.Z., Prikazchikov D.A.

Keywords: Three-layered package, asymptotic method, plane deformation, seismology, prediction of
earthquakes.

The non-classical dynamic problem of plane deformation of a three-layered isotropic package which is
modelling the behaviour of Lithospheric plates and blocks of the Earth's crust is considered. The upper surface of
the package is free, and the conditions of full contact are set between the layers. It is assumed that the
measurement data were taken from the points of the contact surface between the first and second layers of the
package, as data from inclinometers or strainmeters placed between the layers. The solution of the corresponding
dynamic equations and correlations of the problem of plane deformation in the theory of elasticity was obtained
by the asymptotic method. A numerical analysis has been carried out for a three-layered package by simulating a
block of the Earth's crust in Armenia. Monitoring of changes in the stress-strain state of the package according to
the data of measuring instruments in time allows tracing the process of preparation of earthquakes and predicting
the possibility of their occurrence and their magnitude.
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KarwueBbie cioBa: TpexcioiHBI MakeT, aCUMITOTHYCCKHA METOJ, IUIOCKas aedopmarius, ceidcMOoIorus,
TIPOTHO3 3€MJICTPSICCHUI.

PaccmoTpeHa HekiaccHueckas AMHAMHMYECKas 3alada O IUIOCKOH JedopMamiy TPEeXCIOHHOrO HM30TPOIHOTO
MaKeTa, MOJICIMPYIOIIET0 MOBEICHUE JIMTOCHEPHBIX TUTUT U OJIOKOB 36MHOI KOpbI. BEepXHssS MOBEpXHOCTh NMaKeTa
cBOOO/IHA, a MEXY CIOSAMH 3aJaHbl YCJIOBHS IIOJHOTO KOHTakTa. Ilpenmonaraercsi, 4yTo AaHHBIC HW3MEPCHUI
Opanch ¢ TOYEK MOBEPXHOCTH KOHTAKTa MKy NMEPBBIM M BTOPBIM CIIOSIMH MTAKeTa, KaK JaHHbIC HHKIHHOMETPOB
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i  gedopmorpadoB, pasMELICHHBIX MEXAY CIOSIMH. ACHMIOTOTHYECKHM METOJOM MOJIYy4YEHO pEILICHHE
COOTBETCTBYIOIIUX JUHAMHYECKUX YPAaBHEHUH M COOTHOIIECHHH 3319yl IUIOCKOMH 1edopManiy TEOPUH YIIPYTOCTH.
[IpoBeaeH 4YHCICHHBIH aHAIM3 TPEXCIOWHOrO MakeTa IIyTeM MOJSIMPOBaHHUs OJIOKa 3eMHOW KOPbI B ApPMEHHH.
MOHHTOPUHT H3MEHEHMS HAINPSHKEHHO-Ae(OPMUPOBAHHOTO COCTOSHMS MaKeTa II0 JaHHBIM H3MEPUTEIbHBIX
prOOPOB BO BPEMEHH II03BOJSET IPOCNIEIUTh IIPOLECC MHOATOTOBKH 3EMIICTPSCEHHII M IIPOTHO3HMPOBATH
BO3MOXHOCTb HX BOSHUKHOBEHHUS M MX MarHUTYIy.

1. Introduction

According to the modern theory of lithospheric plates, the entire lithosphere is divided into
separate blocks by narrow and active zones - deep faults - moving in the plastic layer of the
upper mantle relative to each other with a speed of 2-3 ¢m per year. For the first time the
assumption about the horizontal movement of crustal blocks was made by Alfred Wegener
in the 1920s [1]. It was the work of A. Wegener formed the basis of the research conducted
in the 60s of the last century. It became the foundation for the emergence of the theory of
"lithospheric plate tectonics". The main provisions of plate tectonics were formulated in
1967-73 by a group of American geophysicists - W. J. Morgan [2], X. Le Pichon [3], J.
Oliver, J. Isaacs, L. Sykes [4]. According to these theories, the Lithosphere is divided into
tectonic plates, which have a rigid structure and have different masses, and are placed on
the plastic substance of the asthenosphere. They are in an unstable state and are constantly
moving. During displacements, the plates constantly collide, overlap one another, and there
are joints and zones of separation of the plates. Most of the earthquakes recorded in the
world arose as a result of movements of tectonic plates, when there is a sharp displacement
of rocks. This can be either collisions with each other, or lowering a thinner plate under a
thicker one. Although this shift is usually small, and amounts to only a few centimeters (1-6
cm), mountains located above the epicenter begin to move, which leads to the accumulation
of deformations that reach the order of 104, and according to the Japanese seismologist
Rikitate of the order of 4.7-10-5 [5], contributes to the release of a huge force of potential
energy, as a result of which global destruction occurs - an earthquake. As a result, cracks
form on the earth's surface, along the edges of which huge tracts of land begin to shift along
with everything that is on it. The focus of an earthquake is a gap, after the formation of
which the earth's surface instantly shifts. It should be noted that this gap does not occur
immediately. First, the plates collide with each other, as a result of which friction occurs
and energy is generated, which gradually begins to accumulate. When the stress reaches its
maximum and begins to exceed the force of friction, the rocks rupture, after which the
released energy is converted into seismic waves that move at a speed of approximately 8
km/s and cause the earth to shake. An earthquake consists of several stages. The main, most
powerful shock is preceded by warning oscillations (foreshocks), and after it, aftershocks
begin, subsequent shaking, and the magnitude of the strongest aftershock is 1.2 less than
that of the main shock. The period from the onset of foreshocks to the end of aftershocks
may well last several years.

The thickness of lithospheric plates is much less than other geometric dimensions. The
greatest thickness of the lithospheric plate reaches up to 200km, and the thinnest plate is
located in the ocean zone. Its thickness does not exceed 10km, and in some areas this figure
is Skm. The length and width of lithospheric plates can reach tens of thousands of
kilometers. Therefore, when modeling the problem of the theory of elasticity for studying
the stress-strain state of lithospheric plates, the asymptotic method of solving by
introducing a small parameter is effective [6].

The issues of generalized plane deformation for anisotropic bodies are considered in
[7,8,9]. The dynamic problem of a two-layered plate in the presence of viscous resistance in
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both layers is considered in the three-dimensional formulation, where the values of the
displacement vector components are collected from inclinometers and other measuring
instruments at the contact surface between the layers, was solved in Ghulghazaryan et al.
(2020) [10]. The dynamic non-classical 3D problem for a layered orthotropic shells with
complete contacts between the layers, when the measurement data are taken from the
contact surface between certain layers inside the package, was solved in Aghalovyan et al.
(2020) [11]. A non-classical boundary value static problem of the theory of elasticity of
plane deformation of a three-layer isotropic package was solved in Ghulghazaryan et al
(2022) [12].

The corresponding 3D quasi static problem of elasticity theory (the Rikitake problem) for
a layered package from isotropic plates was solved in Aghalovyan et al (2022) [13] and
dynamic problem of elasticity theory (the Rikitake problem) for a layered package from
isotropic plates in [14].

The non-classical dynamic problem of plane deformation of a three-layer isotropic package
modelling the behaviour of Lithospheric plates is considered. The upper surface of the
package is free and the layers are supposed to be in ideal contact. It is assumed that the
measurement data were taken from the points of the contact surface between the first and
second layers of the package, as data from inclinometers or strainmeters placed between the
layers. Within the current consideration, it is also assumed that the wave length exceeds
substantially the thickness, thus providing a natural geometrical small parameter. Explicit
asymptotic results for the displacements are obtained, which could be useful for estimates
of certain parameters of earthquakes. The problem in particular models the stress-strain
state of the territory of Armenia (the area between northern latitudes 39.00-42.00 and
eastern longitudes 42.00-47.00) [15].

2. The plane strain-state dynamic problem of elasticity theory for layered package
Consider a static problem of elasticity theory to determine the plane deformation state of a
three-layered isotropic package D = {(x,y,z), (x,z) € Dy, 0<y <h, h=h; +h, +
hs;, h <<}, in full contact between the layers, where [ its characteristic tangential
dimension (the smallest of the linear dimensions of the surface D), and measurements are
taken from the points of the contact surface between the first and second layers of the
package, as data from inclinometers placed between these layers.

The formulation of the problem includes: equations of motion

a0} 09y _ (jyotud)

P ay PYERE j=L111I1
(J) 9 @) 21,() (1)
Py 4 Dy () OV
0x ay at2

constitutive relations for an isotropic solid

aU(J)
'31(1) (1)+ﬁ(1) (6))
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where pU) is the density, j is the index of the layer. The 8,7, U) coefficients of elasticity are
expressed by formulas:
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where EU) is the Young's modulus, GU) is the shear modulus and v is the Poisson's
ratio.

Let the upper face ) = 0 be traction-free:

ol =0, ol =0 )
On the contact surface between the layers, the values of the displacements of the points
of the contact surface are known, as data from inclinometers or other measuring
instruments:
UD(x,hy) = UID(x, hy) = Ut (x)exp(i2t), (U,V) (5)
Complete contact between the layers is assumed:
04y (6 1) = 0 (1), (02, 9,)
(”(x hy) = (”)(x hy), (U, V)
0y (0 by + ho) = 0" (b + 1), (02y,0,)
U(”) (x,hy + hy) = U(’”) (x,hy +hy), (UV)

Let us introduce the scaling x = I§, y=¢el{ = h{,U=1lu, V=1v 0(1) Uo r(r{,)c, the
total thicknessh = h; + h, + hs, y and p are typical values of elastic moduh and density,
respectively, and € = h/l as a small geometrical parameter.

The solutions transformed equations are sought for in the form:

QD) = QU D exp(int), (a,Bv) mk =123;j=LILII (7)

where QU ) denotes any of the stress or displacement components. As a result, we arrive at a

(6)

singularly perturbed system in respect of Q(’ ) with a small parameter €.
The stresses and displacements are now represented in asymptotic form as follows
(Aghalovyan (2015) [6])

P, =e*699¢,0) (11,12,22), j=LILII, s=0,N

U0 =eul(E 0, (U,V) ®)
The notation s = 0, N here and below denotes summation along the dummy index § within
the region of 0, V.

By substituting (7)-(8) into the dimensionless forms of the governing equations (1), (2),
we arrive at a system taking the form:
661(21115_1) 6~(1r5)

L—+ 61; +pD02u0 =0, j=1111I
L + 52U = g
_ PR a¢ "
%’2‘”_ 1(11) (JS)_I_B(]) (15)’ M = DI 4+ pNGIS)

ﬁ(l) '3(1)’ ﬁéje) _ Haéjﬁ) p(]) - p(J)/p
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We use relations (9) to express the stress tensor components in terms of displacement
vector components:

~Gs) _ 1 w09 1 guUs D g 1 9wUS 1 guUsD
%2 TF0a¢ 5D et 1 T TRD ar TED ot
11 12 ) . 12 11 (10)
~Gs) _ 1 auU® 1 gpUs—D
Mz Tl e Tl
where
" 5% _ 50?2 0 OOk
g _ P~ Pz p() _ P — Pz
By = =0 , B ﬁ(}.) j=L11,111
11 12
For determining the displacement vector components we obtain the equations
92U ) ' ' 92yUs-1 ) ao.(f.S—l)
~(D 2=, Gs) — _ _ = 7% C
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whose solutions have the form
w0 = 99siny U ¢ + €99 cosyUme + uU9(&,¢), j=1,11,111 (12)

v0S) = cIVsiny UM + €99 cosy U + 5U9)(€,0)

where #US) (€, ¢), a9 (&, {)are particular solutions of equations (11), and
U = fﬁéfgﬁ(j)g*, U = /gl(ll')ﬁ(j)g*, j=1LILII

On satisfying the boundary conditions (4) - (6) we obtain independent inhomogeneous
algebraic systems with respect to the Cl-(] ) (i=1,4; j=11I1II). These systems will
have finite solutions if
COSX(I'u)(l * 0' {1:h1/h' (u' 17)
After solving these systems we obtain the solutions:

for the first layer

20 = r®—g@s)g,)) COS)((I’u)Z N
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for the second layer
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)Sinx("") G =9+ 59
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— Gy sing (G = ) + a9 (Q)
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iy G2 sy @y = ) + 79 Q)
for the third layer
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3. Numerical calculation
For the three-layer orthotropic package what modeling Lithospheric plates calculations are
made for the s = 0 and s=1 approximation. Then for the components of the displacement
vector in dimensional form we obtain:
for the first layer
UD = [yl 4 pytD, vy = [0 4 p D
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D = (w0 (g) — D (gy) ) cosy 9 (g, - 7) -
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For calculations, a three-layer isotropic package with the following geometrical and
mechanical parameters of the layers given in Table 1 is used. The initial data of the layer

materials are taken from the works [15].
Three cases of values obtained with the help of measuring instruments at different points in

time were taken for analysis.

Table 1. The geometrical and mechanical parameters of the layers of the package (I =150 )

) . . ; ; Layer
i Layers EY Young's G/ shear v P () density, thickness,
modulus, Pa modulus, Pa Poisson's ratio kg/m? km
I Sedimentary 55*%10° 23.2*10° 0.184 2050 5
I Granite 74.83*10° 30.82*10° 0.21 2610 10
I Basalt 75.11*10° 29.22*10° 0.27 2910 20

First case: u* =0.05+0.02&, v =0.06+0.01¢.

Il First layer
Il Second layer

W Third layer

Fig. 2 - Displacement vector components for the package: first case.
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Second case: u” =0.05+0.04&, v =0.06+0.03&.

Fig. 3 - Stress tensor components for the package: second case.

 First layer
H Second layer

I Third layer

Fig. 4 - Displacement vector components for the package: second case.

Third case: u* = 0.05+0.06&, v = 0.06+0.05¢.

Fig. 5 - Stress tensor components for the package: third case.

Il First layer
W Second layer

H Third layer

Fig. 6 - Displacement vector components for the package: third case.
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4. Conclusion

The Rikitake plane dynamic problem for a three-layer isotropic package of strip is
solved using data of the displacements of contact surface points between the first and
second layers. The procedure for determining the amplitude of forced oscillations in the
foreshock stage for a three-layer package is given. Having the solution to the external
problem, it is possible to monitor the change of the stress-strain states over time, in
accordance with regularly carried out measurements. Judging by the numerical calculations
given above, it can be said that if the data of the displacement amplitudes of the contact
points between the layers, obtained with the help of measuring devices, increase along the
length of the package with time, then the values of the amplitudes of vibrations when
moving away from the surface into the inside of the package increase significantly.

It is possible to detect separation between some layers - when tangential stress becomes
greater than the admissible value.

The found solution let to calculate the accumulated potential energy of deformation W
by formula:

1
W = Efv(axxexx + 0yy€yy + 04,82 + OxyExy T Oxz€xz + ayzeyz) dv (20)
where & - components of deformations tensor.
Having the value of W corresponding to the time ¢ =£, of the primary measurement, it

is possible to carry out the monitoring of its change in time f >, , in accordance with new

measurements and fix the time when W', reaches the critical value, using the relationship
between W and the magnitude M of the expected earthquake [16,17].

lgW = 11,8 + 1,5M (21)
Having the value W, according to the formula (21) it is possible to predict the
magnitude M of the expected earthquake.
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