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Ynpagienue pacnpocTpaHeHHeM JJ1eKTPOAKYCTHYECKO BOJIHBI B
NMbe30J1eKTPUYeCKOM BOJHOBO/IE ¢ HEAKYCTHYECKUM KPaeBbIM BO3/1eiicTBHEM

ABetucsin Apa C., Mkptusin M. I'., ABetucsin JI.B.

KiioueBble c/10Ba: DJIEKTPOAKyCTHUYECKas BOJIHA, BOJHOBOE YIPABICHUE, IIbE303IEKTPUUCCKUH BOIHOBOJ,
HEeaKyCTHYECKOe BO3/ICHCTBIE, KpacBoe YIpaBlICHHE, TApMOHUKH (yHKIUH YIIPABICHUS.

PaccMoTpeHa 3a1ada ynpaBleHHs PacpOCTPaHEHUEM OTHOHAIIPABIICHHOH BOJIHBI YIIPYTOT'O C/ABHI'a B OECKOHEYHOM
IIbE309JIEKTPHYECKOM BOJHOBOAE Ha KOHEYHOM MHTepBaje BpeMeHH. IIoBEpXHOCTH IbE303JIEKTPUUECKUX
BOJIHOBOZIOB CBOOOJIHBI OT HAIPSUKEHHs M KOHTAaKkTa. Harpy)keHHble 271eKTpOJIbl C NMEPEMEHHBIM MOTEHIHAIOM
9JIEKTPUYECKOTO II0JIs PACHONIOKEHbl Ha Pa3sHOM PACCTOSIHUM OT HOBEPXHOCTH BOJHOBoAa. HarpyskeHHble
9NIEKTPOABl BOIM3UM MEXAaHHUYECKH CBOOOJHBIX IOBEPXHOCTEH IIhE302JIEKTPUUECKOrO BOJIHOBOJA BBHI3BIBAIOT
9KBHBAJICHTHOE 2I€KTPOMEXaHHIECKOE BO3IEHCTBHE HA IOBEPXHOCTH BOIHOBO/A.

CoopmynupoBana 3aJaya TPaHUYHOIO YIPABICHUS pPaclpelelIeHUEM KOMIIOHEHT BOJHBI JJIEKTPOAKTUBHOU
OJHOHAIPABICHHON CABUIOBOH AedopMaluy IO TONMIMHE BOoNHOBOJa. OHa pemraercss ¢ IIOMOINBIO METOAA
paznoxkenus B psaasl Oypbe, 3aKIII0YAIONIET0Cs B HAX0XKACHUH IPABUIBHOM (HOPMBI DIEKTPOaKyCTHIECKHX BOJH C
HCIIONB30BAHHEM COOTBETCTBYIOIIHX TapMOHHK IIOBEPXHOCTHBIX BO3ICHCTBHH.

Taxk e, ObUIM IPOBECHBI AHATUTUIECKUE M YHCIICHHBIE PACUETHI A1 KOHKPETHOTO CIIy4asi paBHO HATPY)KEHHBIX U
PaBHOYAJIEHHBIX OT IIOBEPXHOCTEH BOJHOBOJA DJIEKTPOIOB.

EiEjunpuuyniunhl wihph wwpwsdwb nEjunwpnidp yhtgnhuphl whpunwpnid ny wniunhly
kqpuyyhti wqnlignipjui thgngny

Ugtnhuywi Upw U, Ujpunguu U.2., Udtnpuywb L.

Spiiwpunty’ Hblnpuwlnunhy wihp, wihph nbyutwpnud, whtqnikynphy wihpunwn, n
wlniunpl] wqpkgnipinil, tqpuyht nEjwjupnud, nEjudupdw $nibyghuyh hwpudnuhlubp:

Thunwplyylk E widbpe whiqnkEiuphy whpwwnwpnd dhwlinndwih wpwdquljui vwhph wihph
nuwpwdnidp  vwhdwbwhuwl dwdwbwyh ptnbpqunud nEjudupbne pughpp: MhkqnkEywunphy
whpwwnwph dwibpbnypubpp wquu & jupjuwdmipmnithg b othmdubtphg: BiEjupulut qupnp
wnuwpplp ynnkughwikpny pintdws LEjnpnputpp wknujupws ko whpuwnwph dwlkplnyputphg
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wnwpplp  hEipwynpnipinititbph  Jpu:  MhkgnbEjunpuljut wjhpwwwph  dbuwthynpit wqun
dwlkpunyputph Unwn (hgpudnpyws Likunpnnubpp hwigkgund G wihpwwnwph dwybplnygputph
Jpw hudwpdtp LEjunpudbiwihjuljut wqpkgnipyui:

Quuipydws k wihpwwnwph hwunmpudp LEjupuwwlnhy dhwinndwih vwhph nhdnplughuygh
wihph pununphsiubph puohdwt tqpuyhtt nEjujupdwi fuunhpp: Uju msynud £ oquuugnpdtyng
Sniphbh owpph tkpjuyugdwi dkpnnp, npp tkpuenud b REjupuwlniunply wihpubph &hown duh
hwjintwptpnud, oquuugnpsting  dwlbpimpuyhtt wqplgnipmmitiiiph hwdwyuwnwuwh
hwpdnuhyubpp:

Pugh w, wiwhwnhy b pluht hwpquplubp G ppufwiugyl) Ynulptn nhyph hwdwp, tpp
EEyupnnputpp hwjuuwpuybu pintws i b quidnmd ko wjhpuwnwph dwlipinyputphg hujwuwp
htnpwynpnipjui pus

Considered the problem of controlling unidirectional elastic shear wave propagation in an infinite piezoelectric

waveguide over a finite time interval. The piezoelectric waveguide surfaces are free from stress and contact. Loaded
electrodes with varying electric field potentials are located at varying distances from the waveguide surfaces. The
loaded electrodes near the mechanically free surfaces of the piezoelectric waveguide result in equivalent
electromechanical action on the waveguide surfaces.
The boundary control problem for the distribution of electroactive unidirectional shear deformation wave
components across the waveguide thickness is formulated. It is solved using the Fourier series expansion method,
which involves finding the proper form of electroacoustic waves using corresponding harmonics of surface actions.
Additionally, analytical and numerical calculations were conducted for the specific case of electrodes being equally
loaded and equidistant from the waveguide surfaces.

Introduction

The widespread use of multi-functional materials in modern electronics has led to the
discovery and study of new coupled wave effects, such as electro-magneto-elastic and
thermo-elastic, with both plane and antiplane deformation elastic wave properties. The study
of wave propagation modes and changes in wave field characteristics is a critical step in
solving dynamic problems. The transfer of wave energy, its localization near the waveguide
surface, and the distribution of wave characteristics across the piezoelectric waveguide
thickness are important aspects of the dynamic process.

In 1968, after confirmation by Bluestein J.L. [1], and in 1969 by Gulyaev Yu.V. [2]
assumptions about the existence of localization of the wave energy of an electroactive elastic
pure shear wave on a mechanically free smooth surface of a piezoelectric medium, under
different boundary conditions for the accompanying electric field Kaganov M.L.,
Sklovskaya L.L. [3].

In [4] Ingebrigsten K.A. considered the effect of various electromagnetic boundary
conditions on the propagation of surface waves in piezoelectrics, by introducing an electrical
"surface impedance". In works [4, 5] Avetisyan A.S. is shown that the conditions of
conjugation of electric fields on a mechanically free surface of a piezoelectric lead to the
appearance of "effective mechanical stresses", which leads to near-surface localization of the
component’s energy of electro elastic waves.

In the article Avetisyan A. S., Mkrtchyan M. H. and Avetisyan L. V. [6], considered a
variety of surface non-acoustic influences in problems of surface control of three-component
electroacoustic waves in a piezoelectric waveguide.
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The possibility of the control problems formulating of the electro-acoustic transverse waves
propagating in the piezoelectric half-space by non-acoustic action on its surface is studied
Avetisyan A.S. [7]. It is shown that the non-stationary electric potential on the electric screen
or the non-stationary width of the gap between the indicated surfaces leads to a non-acoustic
effect on the piezoelectric half-space.

In work Ilyin V.A., Moiseev E.L [9], the seven different problems of boundary control for a
stretched string were considered. In work Ilyin V.A., Moiseev E.I. [10], to find an
unambiguous solution to these problems, it is sometimes necessary to impose additional
conditions on the desired functions.

In articles Barseghyan V.R. [11, 12], the problem of optimal control of string vibrations and
the optimal boundary control of string vibrations with given values of the velocities of the
deflection points at intermediate times are examined. The control function for all orthogonal
vibration modes in these problems considers the total edge action.

In the last part of the book Avetisyan A.S. [12], the problem of controlling electroacoustic
waves in a waveguide is formulated. A method for solving problems of control of
electroacoustic waves by non-contact surface action is proposed.

1. Problem statement.

1.1 Formulating and modeling a mathematical boundary value problem.

The control of the propagation of normal electroacoustic shear deformation waves in a
piezoelectric waveguide, under external influence by an electric potential is investigated. A

piezoelectric layer with a thickness of 2H, is located between electric screens at a distance
of [Hy+h,] and [H,+ h_] from each other respectively. The electric screens are loaded
by field potential ¢, (¢)-exp(ikx) (Figure 1).
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Figure 1. The scheme of contactless edge control of the distribution of an electro acoustic wave in a
piezoelectric waveguide.

In the investigations of the propagation of electroactive unidirectional elastic shear
deformation waves of a type W (x, y,t) =w(y,t)-exp(ikx) in a 6mm hexagonal symmetry
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class piezoelectric layer yS|H0|, the system of the quasi-static equations of electro
elasticity has the form

W'y )=k w(p.0) = (1)) W (r.0)

00,0 =k -y, =(es/a) | Wt =k -w(p.0) ] (1.D)
Here, W(,?) is elastic shear distribution function over the waveguide thickness, ¢(1,?) is

distribution function of the accompanying electric field potential over the waveguide

thickness, ¢’ =(1+ y*)-\/c,,/p the quadrate of the elastic wave velocity, e

piezoelectric module and &,; coefficient of dielectric and y* = e}, / (cy4¢,,) the coefficient
of electromechanically coupling of material.

In the near surface vacuum gaps ye[H,; H,+h ] and ye[-H,-h; —H,],
respectively, the accompanying quasi-static electric field vibration equations have the form
oL -k 9. (3.)=0, (1.2)
Here @, ,(y,t) is the accompanying electric field potential distribution function in vacuum
gaps respectively.

As follows from equations (1.1) and (1.2), according to the quasi-static theory, an elastic
transverse shear wave propagates in the waveguide, with accompanying oscillations of the
electric field in it and in vacuum gaps.

Electrical dynamic loads on the electrodes create electric fields in vacuum gaps, forming
mechanical stresses and electrical polarization on the surfaces of the piezoelectric waveguide.
Taking into account the electromechanical boundary conditions for propagating
electroacoustic oscillations of the type F(x,y,t)= f(),t)-exp(ikx) on the mechanically
free surfaces of the piezoelectric waveguide and the conditions of continuity of the electric
field on the electrodesin y = H, + A, and y =—(H, + h_), the solution of equations (1.2),
which describe the oscillations of the accompanying electric field in the gaps
yvelHy;Hy+h] and ye[—(H,+h );—H,] can be written in the following form,
respectively

ShkQr=Hy=h)] o shik(y=H)]

@, (y,1)=—p(H,) sh(kh) o(t) (k) @.0(1) (1.3)
o Shlk(y+Hy+h)] ) o shlk(y+H,)]
o (v,0)=p(-H,) ShkTL) o(1) i) @.,(1) (1.4)

The obtained values of accompanying electric field oscillations in vacuum gaps (1.3) and
(1.4) form mechanical stresses and electrical polarization on the surfaces of the piezoelectric
waveguide.

The piezoelectric layer is mechanically balanced when
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kh @, (t) =ch(kh)-p(H,) - 6(7)

WDy, = @s/E) (60 f ) — @ p (1.5)
The piezoelectric waveguide surfaces also have balanced electric polarization

, P kh— @,(t) —ch(kh)-p(H,)-0(1)
o0, =F(&/é): e 0 (1.6)

sh(kh) h
It is obvious from (1.5) that in the absence of the piezoelectric effect in the mediume s =0,

there will be no mechanical tensions on the surfaces.
Obviously, under non-acoustic influence on the electric surface, the layer will be in

equilibrium when the electrodes are equally charged ¢ ,(f) =¢,,(f) and are at the same
distance i_ = h, from the mechanically free surfaces of the piezoelectric layer. In this case,
the values of the electric potential on the surfaces of the waveguide are equal
o, (H,,tH)=¢_ ,(—H,,t) and the electric polarization on these surfaces is directed in the

opposite direction goie(y,t)|y:H = —(pie(y,t)|y}H .

Based on the above, the conditions for conjugating the distribution functions of the
electromechanical field on the mechanically free surfaces of the piezoelectric layer will be
written in the form

W,(y’t)|y:iH0 =t (615/544) (‘90/511) : (p;e(y»t)h:ﬂ{o (1.7)
P00 Ly =F(&/E0) 0L D], (1.8)
[e(r.0-0..(».1)] ., =0 (1.9)

Conditions for electric field conjugation on screens with electric potential are written in the
form

Pee VD iy = Pox (D) (1.10)

Formally, the initial conditions of the electroacoustic wave field characteristics at a moment
are written in the form

w(»,0)=¢&(»); p(»,0)=¢,(»); ?.(3,0)=9,,(») (1.11)

w(»,0)=4,(»); P(3,0)=vy,(»); ?.(»,0) =y, (») (1.12)

The final state conditions for the electroacoustic wave field characteristics at a moment are
written in the same manner

W(y,To)=éZo(y); qo(yaTo)zéo(y); (Pie(y’To)=(Z¢e(J/) (1.13)

W, Ty) = ¢, (¥); P Ty) =y, (¥); P (0. T) = .. (¥) (1.14)
However, according to the quasi-static problem statement, the accompanying electrical

potential vibrations D(x,y,f) and @, (x,y,f) have the same dynamics 6(f), as
electroactive unidirectional elastic deformation waves W(x, y,t)
W (x,3,0; ©(x,,1); @, (x,9,0} = {W); @(); ..(»)}-exp(ikx)-6O(t).
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Therefore, the initial oscillation values of the accompanying electric fields are described by
functions ¢@,(»), ¥, (»), #,.(»). ¥,.(») will be associated with the functions describing

the initial state of elastic displacement &,(»), 50 ). &y (), 4: (). The following system

of equations describes the connection between them

[k &) _ 60 -k -4 _ I2.)- () -k & ()
&) &ow’ () B &) ’
b0, (V) = b () =0, (1.15)

and the boundary conditions

o, (1) iy i(615/544)(‘90/‘911)'¢1r0re,y(y) y=tH,’

%, () D [0 -0, =0 (1.16)

y=tH,’
Similarly, a mathematical boundary value problem is formulated for the functions describing

y=tH, = $(‘5‘0/511)'¢i0e,y(y)

the final state of the electroacoustic field ¢ZO )., (»), &ie (»), v.,(y) and ézo (),
é: 0(»).

Therefore, in the quasi-static formulation of the wave process control problem, the initial
conditions of the electroacoustic wave field characteristics (1.7) and (1.8) in a moment ¢ =0

, and the final state conditions (1.9) and (1.10) in a moment ¢ = 7, will be written only for

the leading component of the process

w(y,0)=&,(»), w(»,0)=&,(») (1.17)

w(n,T,) =€), W) =&, () (1.18)

1.2 The reduced problem of the wave propagation control
The system of the quasi-static equations of electro elasticity has the form

W'y 0) =k w(p.0) = (1)) W (r.0),

w'(y,0)—k* -y (y,0)=0 (1.19)
With introduced function y (y,7) = @(y,1)—(e;5/€,)-W(¥,1) .

On a mechanically free and electrically open surface y = H, we will have equivalent effects

of the first kind
kh  @,(t) —ch(kh)-p(H,)-0(1)

W,(y,t) v, (615/544)(‘90/‘911)' sh(kh) 7 (1.20)
, W a0 —ch(dh)-g(H,)-0()
V0], == a0 s : (121)

It is important to note that, in case of ultra-high frequency (the actions of the ultra-short
length) actions, for which 277/1/1 > 1, the mechanical surface tensions and electric surface

polarization will have the following forms respectively:
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w’(y,t)|y:H0 = (2”/&*) : (615/544)(50/511) : (D(Ho) : 0(1‘)
V' L, =-Qr/A) (& /8)) o(H,) 0(t)

In case of ultralow frequencies of surface actions, for which 27rh/ A <1, the mechanical

(1.22)

surface tension and electrical surface polarization will have the form, respectively
@ () —p(H,)-0()

h
@ () —p(H,)-0(t)

h

In both limiting cases (1.22) and (1.23), surface conditions (1.5) and (1.6) are identically
satisfied.

W’(y:t)L,:iHo =(e;5/8) (&) /1))
(1.23)

w'(y,1)

y=H, (‘90/511)'

On the middle surface of the waveguide y =0, the symmetry of the problem is given by the
conditions of the first kind
w0l _, =0 v (0|, =0 (1.24)

Considering relations (1.20), (1.21) and (1.24), the new functions for electroactive elastic
shear and the electric potentials are represented in the following form:

Uy,0) =w(y,t) = yo, - u(t) (1.25)
Y(».0)=w(y,0)+ o, (kh)- u(t) (1.26)
In relations (1.25) and (1.26), a new designation is adopted:

(0) =@, (£) = ch(kh) - p(H,)-0(1)] /h (1.27)

the total surface non acoustic contact action

kh - kh
o, (kh)=(es/¢,) (g, /€,) ——, 0O, (kh)=(5,/&,) ——
(kh) =( 15/ 44)( o/ 11) sh(kh) v 0/ 1 Sh(kh)
are a intensities of the non-acoustic surface actions.
Considering new boundary conditions (1.20), (1.21) and (1.24), as well as the introduced
designations (1.25) + (1.28), the boundary value problem (1.1) and (1.7)+(1.9) is reduced to
a system of inhomogeneous differential equations with separated variables

(1.28)

U(y,0)-EU"(y, )+ &, -U(y,t) ==y8, [ ji(t)+ &K (1) | (129)
Y'(y,0) = kY (y,0) = —yk*6,, (kh) - (1) (1.30)
with a homogeneous boundary condition

U, =0. U.1)|,_,=0 (1.31)
P'( y,t)|y:Ho =0, ‘P(y,t)|yzo =0 (1.32)

The values of the introduced quantities U(y,t), W(,¢) and their velocities U(y,?),

W¥(y,1), characterizing the initial and final states of the wave process at the moments 7 =0
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and ¢ = T respectively, are determined from the known relations (1.17) and (1.18) , taking

into account both of solution boundary value problem (1.29)+(1.32) and the introduced
notation (1.25)+(1.28)

U(y,00=¢,(y)—yo,, - u(0), U(y,0)=¢,(¥) = 3, - f1(0) (1.33)
U, T) =& () - y5, - u(T,), Uy, T) =&, (») - yS, - iu(T,) (134)

Thus, the control problem for unidirectional electroacoustic waves in the piezoelectric layer
with a non acoustic action is already can by written as a nonhomogeneous differential
equations (1.29) and (1.30), with the homogeneous boundary conditions (1.31) and (1.32),
the initial and final states conditions (1.33) and (1.34) with account the relations (1.27), (1.28)
and (1.29) with respect to reduced elastic shear and the electric potentials in the coordinate
rectangle O, =[0< y < H Ix[0<¢<T(].

2. Analytical solution of the waveform control problem.
It is necessary to find a unique solution to the initial boundary value problem: a control

function £(¢) in the class Wzl [0,7;], that satisfies the smoothness requirements, as well as

functions of the required characteristics that satisfy the initial conditions (1.33), final
conditions (1.34)

& 0:0:5,(n.0} eW,[0,T3]. @.1)
and boundary conditions (1.31) and (1.32), it is necessary for the problem of controlling wave
propagation

W0 wo(n,0)} € L[-H,, Hy]. 2.2)
Representing the solution to the boundary value control problem (1.29)-(1.32) by multiplying
the functions of the separating variables allows us to present the characteristics of the wave
in the form of Fourier series expansions of the distribution of the wave form over the
thickness of the piezoelectric waveguide and the true harmonic of the process in terms of the
harmonics of the surface action.

Considering homogeneous surface conditions (1.31) and (1.32), the generated wave with the
corresponding harmonic for inhomogeneous equations (1.29) and (1.30) is obtained in the
following form:

Uy,t)= i Uu,»)-6,,(t)= i A, sin(ex, ) [AOm sin(@,,,t)+ B,,, cos(a)Omt)] (2.3)

Y(y,0) =D ¥, (3):6,,) =D B, sin(k,y)-[ 4, sin(@,,1) + By, cos(@,,1)]  (2.4)
m=0

m=0

Here @, =Ck, -\/1+(mA, / 4H,)’ are the frequencies of the eigen harmonics, and

A, =27k, is the length «wm» forms of the wave.

Expanding all the factors in equation (1.29) and using the Fourier series over the thickness
of the piezoelectric waveguide for the natural waveforms, the inhomogeneity leads to the
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appearance of new modes of vibration, which are the combined influence of the harmonic
functions of the natural modes of vibration and the surface action function.

[0,00-C,-5,,-(/e) i1, |+ @}, [60)+C,-5,,-()&)- 1, (D) | =

(2.5)
=—C,-5,-(/e)| @}, @}, |- 1, (1)

Hy
Here the Fourier coefficients C,, = (1/ H, ) I y-sin[e, y]-dy are determined from right-
0

hand side of the equation (1.29).
From equations (2.3) is also follows, that the true oscillation is formed as a sum of two
oscillations with different frequencies. It is important that the frequency characteristics

®,, =Ck, |1+ (mA, / 4H,) and @,, =¢,k,, as well as the coefficients
H, (hk)=C, -5, -(1 / ¢y (cofm — @, ) characterizing the intensity of the surface impact,

are correspond to the eigenmodes of oscillation in the propagating wave. Hence, it is obvious

that the frequency of the zero harmonic @,, =¢, -k, , will be resonant @, =¢, -k, = @, .

Therefore, this equation represents the relationship between natural vibration harmonics
6, (¢) and external surface action harmonics ¢, (¢) for m >1.
Equation (2.3) can be written as an infinite system of linear differential equations,

representing both the true vibration harmonics and the harmonics of the surface action
function:

fm (a)ﬁmt) + a);m : fm (a)ﬂmt) = Hm (hkm) : (a)ém - wftm) : /'Im (a)ymt) (26)
In equation (2.5), the true (total) vibration harmonic for the layer oscillation is represented in
the form

F(0)=2 1, (0)= 2 6, (@,0) + H,, (hk) - p,(@,,1) ] 2.7)
m=1 =

m

The dynamics function corresponding to the natural modes of oscillation of the layer (%)

is determined from equations (2.3)

o(t)= Z 0,()= z A, cos(w,, t)+ B, sin(w,,t) (2.8)
m=1 m=1

The surface action ££(f) of non-acoustic contact can be represented in a Fourier series, with

indeterminate coefficients A B, and new frequencies @

um um um

w0 =3 1, 0)= 3 [ 4, c05(,,0)+ B, sin(@,,)] 2.9)

The surface non-acoustic contact action function also decomposes into harmonics

Pow (1) = 4, cos(@,, 1)+ B, sin(@,,t) corresponding to the eigenmodes of the layer

m

vibration
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@, (1) = Z%m (H)= Z[AW cos(®,,t)+ B, sin(a)(/,mt)} (2.10)

On the other hand, the total surface action is determined by (1.27), and therefore
u, () =4,,cos(®,,t)+ B, sin(@,,t) -

. @.11)
—[ch(hk,)/h]- @, (H,) [ 4y, cOS(@,,,t) + By, sin(@,,t)]

In the time interval [O <t< 72)] , the general solution for the m™ harmonic orthogonal,

from the infinite system of equations (2.8), is obtained by the method of constant variations,
in the form of the addition of the harmonics of the intrinsic and forced formation of forms

f.@)= Afm -cos(w,, t)+ Bfm -sin(@,,t) +

) (2.12)
+H, (hk,)- [Aym cos(a)mt) + Bﬂm sm(a)ﬂmt):|
The coefficients Aﬁn s Bfm R Aﬂm and B o > like the frequencies w,, and @®,,,as well the

coefficient of the intensity / (hk, ) are determined by the physical constants of the medium
and the geometric dimensions of the piezoelectric layer and vacuum gaps.

The boundary control problem of wave propagation decompound into an infinite number of
boundary control problems of orthogonal waveforms with the corresponding harmonics of
the boundary action.

It is necessary to take into account that equation (2.12) is characterizes the dynamics of m -
number form in the process of wave formation with the eigenvalue

km = \/(a);m /Etz) - (}7177'-/2[{0)2 and the frequency a)ﬁm = Etkm : V 1 + (mj’m /4H0 )2 :

In the control process of the wave propagation, the boundary action @, (¢), with its action

harmonics ¢,,, (¢) , is transmitted by the frequency @, (k) =¢, k,,.

The current harmonic of wave formation @(f), with its harmonics €, (¢) is represented by

the expansion of frequencies @, (k,)=Ck, -\/1+(mA,, / 4H,)" .

The initial values of the deflection and it vibration speed functions &,(y) and 50 (), as well

as the final values of its functions ¢, (») and cf (), we expand into the Fourier series, to

satisfy the initial conditions (1.17) and the final conditions (1.8)

£V =370 W (), E0) =37 W () 2.13)
LN =38, Wy (3), E =38, W,,(») (2.14)

Comparing the obtained relations for the initial and terminal conditions (2.13) and (2.14)
with the relations (2.7) and (2.9), we obtain the matching conditions at the beginning and at

the end of the control process
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0,0)+H(hk,) un,(0)=7,, (2.15)

6,(0)+H(hk,)- i1,(0) =7, (2.16)
0,(Iy) + H(hk,)- 1, (T;) =6, (2.17)
6,(T)) + H(hk,) i1, (T,) =3, 2.18)

Taking into  account the representation of the  deflection function
H, (hk)=C, -5, -(1 / ¢y (a)im —w,,) ,expansions of the initial and final conditions for

the elastic shear (2.8) and (2.9), and its velocities, the system of equations (2.15) + (2.18)
are written as an infinite system of linear algebraic equations in relatively to undefined

amplitudes 4, , B,,, 4,,and B,,
Ay, +H, (k) A, =7,

By, +(@,,/®,,) H,(hk,)-B,, =7,]®,,

Ay, - cos(@,, Ty) + B, -sin(w,, T;)+ 4,,H,(hk,) - cos(®,,T,) +
+BﬂmHm(hkm) . sin(a)l 1,)=0,

A, -sin(w,, T,)—B,, -cos(w,,T,) +

+(@,,[w,,) H,(hk,)- [Aﬂm sin(w,,T;)— B, cos (%mTo)] =-5,/w,,

m

(2.19)

By finding four unknown constant coefficients 4,,, B,,, 4,,and B,,, it is easy to
construct the boundary control function @,(f) according to (1.27) and the elastic shear
distribution function W(y,?) in the electroacoustic wave, taking into account (1.25) and

(2.3), in the coordinate rectangle [—HO <y<H, ] X [O <t< TO]

W0 = Y Wos ) £, (0= S W, (0)-[0, (@) + H, (h)- 1, (0,0 (220)

m=0 m=l1

_~n| sh(hk,) W, (H,) , ‘
(po(t)—; m (615/044)(80/8“)+ch(hkm) @, (H,) |-0,(0,,1)+

, 2.21)
m=1 m (ers/c) &0/ €1)
The required time of the edge action is defined as
T,= mli[l(;a;(]{ 27/min{w,, }; 27r/min{a)¢m}} (2.22)

3. Analysis of numerical results for the surface control of electroacoustic wave
propagation in the boundary value problem.

Considering the problem's symmetry, the solution and numerical calculations are performed
in an area {|x|<oo; 0<y<H;; 0<¢t<T;}, for a layer with a thickness of
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2H,=2x10"m, for a piezoelectric material PZT — 4. This material is from class 6mm of
hexagonal symmetry and its physical mechanical constants are given in Table 1. Electrosed
screens are located at a distance /#=2.5x10"" m from the mechanically free surfaces of the

piezoelectric layer.
It is worth paying attention to the fact that the intensity of the non-acoustic contact action

H, (hk)=9,(k, h)-D, , (transmission coefficient of the surface action) depends on the

relative length hk, =27h/2, of the propagating wave signal modes. It is obvious from

relations (2.5) and (2.12) that this dependence is true for all eigenforms of the wave. It is
natural, that the non-acoustic contact action intensity for the materials with a smaller
electromechanical coefficient is small. For the piezoelectric material PZT-4, with an

electromechanical coefficient 7” =0.9409 the action intensity coefficient for non-acoustic

contact is small 5 % < H,, (hk) <16 %, for wavelengths 0 < 27h/2,, <3.

Table 1. Shear modules, densities and velocities of shear waves in piezoelectric crystal

Shear module | Density of the Piezoelectric Dielectric coefficient of (SH) wave

of the material material module permeability EM coupling Velocity

cyy (nfm*) | p (kg/m") | es(C/m*) | &,/e,(F[m)  z° C, (m/sec)
PZT-4 | 256x10" | 7.5x10’ 12.7 6.45 0.9409 | 2.574x10’

The structural symmetry of the problem allows us to write the reduced inhomogeneous
equation (1.23) in the form

U, (00)—k -Up.n—(a" &) Uy =ys, (/&) ity + k*yS, - u(t) — (3.1)
With homogeneous boundary conditions
U0, =0, Um0, =0 (32)

Where &, = (e,5¢,)/(hcé&,,) - (kh)/sinh(kh) and u(t) = [, (1) — @(H,,t)- cosh[kh]].
For the true harmonics of oscillations f, (t)=6, (:)-C, -0, -(1/ &y u, (1), as well as for

the harmonics of the surface action function # (¢), an infinite system of linear differential

equations is obtained
7 2 ~2 2 2
fm (a)Hmt) + a)Hm ’ f;n (a)ﬂmt) = _Cm ’ 5wm ’ (l/ct )(a);tm - w&m) ) /um (a)ymt)

-(1 / &) (a)flm —w,,) on the right-hand side

(3.3)

It should be noted, that the coefficient C o

m= wm

of equation (3.3) indicates the intensity of the non-acoustic surface action on the propagation
of an electro-elastic wave. As we can see, this coefficient is different for different waveforms
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k, =mm/2H, and for different vibration frequencies @, = C, \/ (7m)/(2H,)+ k. and
®,, =Ck

1t%m -
Let’s consider a low-frequency steady-state electro-elastic shear wave W, (x,y,0), with a

frequency @, =5x10°Hz and a wavelength 2, =0.001 m, that propagates along the

waveguide. Initial state conditions in the control problem are written in the form

20? 2 2
VVIn(x,yao): COs 2ﬂ-y AI 501 ~ _1 +Sin 2ﬂ-y ﬂl[ C;)l~ _1 X
4 (2”) -G 4 (272') C; (3.4)
x [ cos(4x)+sin(4x)]
W, (x,7,0) =0 3)

It is required to find such a surface action £(¢) that will bring the process into a state with
an elastic displacement distribution W,,(x,y), with a frequency @, =2x10°Hz and a

wavelength 2, =107 m.

The final state conditions in the control problem are written in the form

2 Ay~ O, |2 A5 0,
W, (x,,T,)=| cosh AR - 20)’1 +sinh| 2L - L za)’i X
Ay (27) -C, Ay, (2z) -C, (3.6)

x| cos(4,,-x)+sin(4,-x)]

Wy (x,3,T,)=0 3.7)

The initial values of the deflection and its vibration speed functions (3.4) and (3.5), as well
as the final values of the deflection and its vibration speed functions (3.6) and (3.7), we
expand into the Fourier series, to satisfy the initial conditions (1.13) and the final conditions
(1.4)

W, (3,0)=>, sin(e,y), W, (»,0)=0 (3.8)

m=1

We(, 1)) = z§m -sin(@,, ), WFi(y,]})) =0 (3.9)

m=1
Taking into account (3.8) and (3.9), from the system of equations (2.20) we find four groups
of unknown coefficients 4_, B

om > Bom > A,, and B, . The non-acoustic surface action function

H(t) can be represented as an expansion with already defined coefficients
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Figure 2. The graph of the function of surface action H(t), when m=10.

u(t) = i[ 4,, cos(®w,,t)+ B, sin(®,,t )] -
2, (3.10)

~®(H,)- Y cosh(k,h)-[ 4, cos(m,,t)+ B,, sin(w,,1)]
m=l1

The graph of the non-acoustic surface action function £(¢) when m =10, is given in Figure
2.

8(t)/PZT-4

0.002

gl V.V | hrw' ,H _o

Figure 3. The graph of the function of natural vibrations O(t), when m=10.

The graph of the function () of the corresponding to the eigenmodes of the layer vibration
of dynamics is given in Figure 3, in case when m =10.
The function of the true oscillations f(#) can be represented as
x (A, ~cos(w,,t)+ B, -sin(w,,t)+
+C, -6, -(1/&) -(a)zm -w,, ) . [A#m sin(®,,1)+B,, cos(a)#mt)]

g7

f(= (.11

The figures of these functions are obtained in the form (Figures 2+4)
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Conclusions

f(ty/PLZT-4

0.005}

-0.005

Figure 41| The graph of the function of true oscillations f'(t), when m=10.

The problem of controlling wave formation and propagation of electroactive shear waves in
a piezoelectric waveguide has been solved by applying an electric potential to the
mechanically free surfaces of the layer without contact.

In the quasi-static formulation of the control problem for the formation and propagation of
an electroelastic wave, the initial and final conditions are set only for elastic shear. The initial
and final functions for the accompanying components are derived from the basic equations.
The boundary value problem is simplified into an infinite system of control problems for
shaping and propagating eigenforms of electroactive shear waves by expanding the functions
of two variables into Fourier series and using harmonics of surface action.

By solving the infinite system of differential equations, we obtain the function of surface
action and the true harmonics of wave vibration, which brings the wave surface from a known
initial state to a given final state.

The work was supported by the Science Committee of RA, in the frames of the
research project Ne 21T-2C130.
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