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In the paper a comparative study of a band gap formation mechanism is presented in finite and infinite
homogeneous beams rested on periodically arranged intermediate external supports and periodically attached
local mass-spring resonators. The transfer matrix method in conjunction with Bloch-Floquet’s approach is
extended to study the flexural wave vibration and phonon band gaps generated by both of external intermediate
supports and local resonators. The eigenvalue vibration problems are formulated for pinned and clamped multi-
span finite length beams and the equation defining eigen frequencies are obtained. The novelty of the paper is the
analytical and numerical results concerning formation of band gaps caused by local resonators and intermediate
external supports.
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Kazapsan K., Inaunocsu I'.
®opMHpPOBaHHeE 3aNIPETHBIX 30H YACTOT GAJIKH € IPHCOEMHEHHBIMU JIOKAILHBIMHU PE30HATOPAMHU H
omnepToii Ha MEPHOANYECKH PACIIOJI0KeHHbIe BHEITHbIE ONOPBI

KiroueBbie cjioBa: 3alIpETHBIC 30HBI, JIOKaJIN3alus, p€30HaHCHAas YacToTa.

B pabore mpencraBneH CpaBHHTENbHBIM aHAIM3 MEXaHHW3Ma OOpa3OBaHUS 3alPETHBIX 30H YacTOT B Oalke ¢
MIPUCOEIMHEHHBIMH JIOKAJIbHBIMU PE30HATOPAaMU U ONEPTO Ha MEPUOJUYECKU PACIIONOKEHHBIE IPOMEXKYTOYHbIE
BHEIIHUE omopbl. B pamkax Tteopum bnoxa-droke B couyeTaHuM MeToAa TpaHChep MaTpull HCCICAOBaH
MEXaHH3M 00pa30BaHMs 3alIPETHBIX 30H, TEHEPUPYEMBIX KaK OHOpaMH Tak U pe3oHaTtopamu. CHopMyIupoBaHbI
KpaeBbIe 3aJa4d M IOJIyYCHHI ypaBHEHHs ONPECIIIONINe COOCTBEHHBIC YacTOTHI 3aIIEMJICHHBIX M MIAPHUPHO
OIEPTHIX MHOTONPOJIETHBIX 0AJIOK KOHEUHOH JUTHHBI.

1. Introduction
Periodic materials and structures, called mechanical metamaterials, demonstrate new
physical properties unfeasible in naturally occurring materials [1,2]. Under certain conditions
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their frequency spectra exhibits band gaps, which are frequency ranges where wave
propagation experiences significant attenuation [3—5]. This paper focuses on a particular
class of a periodic structure, a periodic flexural beam, where periodicity can be achieved by
a repeated variation along the axis of the beam, for example, by the presence of local
resonators, which are normally either attached to the surface of the metamaterial structure
or embedded inside [6-9].

Frequency bandgaps in metamaterial structures can be caused by local resonators or
Bragg’s scattering. In the first case local resonators absorb the kinetic energy from the
oscillations propagating through the metamaterial structure [10]. When the frequency of the
external vibration matches the resonant frequency of the local resonators the energy from
these vibrations transfers to the local resonators [7]. On the other hand, Bragg’s scattering
bandgap forms due to the destructive interference and standing wave formation when the
wavelength is multiple of the periodicity of the structure [11]. Bandgaps created by the
presence of local resonators appear at much lower frequencies than the Bragg’s frequencies
[12, 13]. Frequency bandgaps in both cases have a wide range of application in vibration
insulators, frequency filters, waveguides and energy harvesting [10, 14, and 15].

Wave propagating in beams may cause structural damages and inaccuracies in
experimental measurements. Band gaps in beams can be used in engineering constructions
for control of the behavior of waves since many engineering constructions are designed as
one-dimensional periodically supported structures such as railway tracks, pipelines and
multi-span bridges [16, 17]. Investigation the dynamic behavior of these structures are of great
importance in minimizing their vibration response and failure, fatigue and damage and
reducing the transmitted noise to the surrounding environment. Stronger vibration
attenuation may also have applications in ambient vibration energy harvesting [18-20].

For infinite metamaterials the Bloch-Floquet theory is normally used to reduce the
analysis of the wave propagation to the problem for a single unit cell [21]. Understanding the
wave propagation in finitely periodic media is however more important for analyzing their
acoustic properties, since most structures have a finite number of periodic cells. For finite
periodic structures the problem becomes complicated and the transfer matrix approach with
finite element method is often more suitable [22].

A typical example of a periodic structure is a uniform beam rested on external sup-
ports and local resonators [23]. In this paper the oscillatory response of wave propagation in
such structure is investigated. Using the transfer matrix approach the problem is solved
analytically by means of the Silvester’s theorem.

2. Statement of the problem
Consider a dynamic problem of interaction of metabeams with both finite and infinite
length with attached local resonators. The meta beam is rested on periodically arranged

intermediate supports at points X =(n —1)d andx=nd, (n=1,2,..) and the local
spring-mass resonators attached periodically at points x = (n -1/ 2) d (Fig.1).

} Fixnt)
x = (n-1)d ¥ = (n-1/2)d x=nd
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Fig. 1: The unit cell of the metabeam with external supports and local spring-mass resonators



The equation of motion of Euler-Bernoulli beam can be described by the following
equation
o'w o'W
—+pA——=0, (1)
ox Ot
where W (x,t)is the dynamic deflection of the beam, E is the elastic modulus, / is the
area moment of inertia, p is the bulk density and 4 is the cross-section area.

EI

The transverse interaction force F'(x,,#) (Fig.1) of the beam with a local resonator of

mass m attached at the points X = X is given by the following formula [1]
2

F(x,0)=—m dd? , ®

where V () is the vertical displacement of the resonator.

On the other hand we also have

KW(x,,t)-V (t))+m C;tz/ =0, 3)

n?

where W (x,,t)is the displacement of the beam at point x, , K (force per unit of length) is

the resonator’s spring stiffness.
Assuming functions in the form

W(x,t)=U(x)e", V. =V, e @)
where ®is the frequency and substituting into (3) leads to
K
I/;)n = 2 U(xn) ° (5)
K —-mo
Substituting (4) and (5) into (3) results in
Kmw’
F(x,)=———=U(x,) (6)
K—-—mo

In the basic unit cell x € ((n—1)d,nd)the solutions for amplitude functions can be

written as

U,(x) = A sin(px) + A, sinh(px) + A, cos(px) + A, .cosh(px), 7

where p = y/pA®(EI)™" , subscripts () denote regions:
(-) > xe(dn-1),dn—-d/2), (+)— xe(dn—d/2,dn))
At each intermediate support the beam deflection is zero, the slope and the moment just

to the left and to the right of the support are the same. These conditions at the support
points in the unit cell can be written as

U+(nd):O, {M}:O’ {dZU+—(2nd)}:0 ®)
dx dx
U (n-1)d)=0. dU_((n—l)d):O’ dZUf((nz_l)d) _0 ©
dx dx



where [] is a jump of a function across the interfaces.

The interface conditions at the points X, = nd —d / 2 where the local resonators are

attached can be cast as

dU (x,) _dU (x,)

V) =U) . =00 d (10)
dU.(x) dU(x) dU(x) d'U(x)
o de | dye o U
Km»®
here f = —— o
where f (K—mo’)EI

Introducing non-dimensional parameters: bending frequency of the beam
Q = od?\|pA(EI) , resonance frequency of the resonator O, = d’+/(E£Im) ™ 47K and
mass of the resonator 4 = m(pAd)™", we rewrite parameter f as
= nuQ’Q;}
d* (0 -7)
The last condition of (10) provides a relationship between a local resonator and multi
span beam rested on external supports.

(1)

3. Solution of the problem. Propagator matrix approach
In the unit cell the solutions (7) satisfying to the conditions (8) can be cast as

U, (x)=A4, sin(pd(x—n))+ A, sinh(pd(x—n))+
+ 4, (cos(pd(x —n)) —cosh( pd (x - n))),
U (x)=4_sin(pd(x—n+1))+ A4, sinh(pd(x—n+1))+
+ A4, (cos(pd(x —n+1))—cosh(pd(x —n+1))).

Substituting (12) into the interface conditions (11), the constants Ali and AZi can be

(12)

expressed via A, in the following way
Al— = —OL(’YAm + BAof)’ Azf = _a(8A0+ + 9AOf)
A, =B, +14,), A, =a(04, +94,), (13

where

o = (2f (cot(§) — coth(§)) + 8 p’ cot(§) coth(E))

B= csc(§) (csc(&) coth(&)(4p’ cos(28) — fsin(2€)) + f(csch(&) + cos(2§) csc(&)))
vy =—csc(&)( f csc(E)— f esch(§) +4p’ csc(&) coth(&)) ,

0 =csch(§) (cosh(2§) csch(E)(f —4p’ cot(§)) f ese(E) -2 f cot(E) cosh(@)),

9 = fesch(€)(esc(E)—csch(E)) +4 p’ cot(E)esch?(E), &= pz_a'



Since the interface conditions at external supports are imposed on the functions
dU (x) d’U . (x)
= and =
dx dx’
dU.(x) d*U.(x))
0 o[ 20 410
dx dx
Now expressing the vectors U (nd)and U, _((n—1)d)via the vector
A=(4,,4,)" weget
U, (nd)=QA, U((n-1d) =Q.A

it is convenient to introduce the following column vectors

(14)

where
_PB+6)  p(y+9) rB+9) p(y+9)
Q = a o , Q, = a a
-2p’ 0 0 -2p’
Excluding vector A = Q™ U_((n—1)d) we obtain the following relation
U, (nd)=MU_((n-1)d), (15)
where M =Q, Q' and
B-y+0-3)(B+y+0+3)
1 |6-P
M= 2ap (16)
T 2ap 0—p

Herein the matrix M is a unimodal propagator matrix for the Euler metabeam wave
field, linking the vectors U, (nd)and U_((n—1)d)at the ends of the beam unit cell

where the external supports are located and the local resonators are attached at the middle
of the unit cell. Elements of matrix M in the explicit form can be written as

M—(m” mlzj
m, —m,

and

cos(pd)( f —4p’ sinh(pd))+cosh(pd)(4p’ sin(pd)— f ) -

m, =A" > (A7)
—4 f'sin (pde sinh (pde + 2 f sin( pd) sinh( pd)

f£4 cos (%) sinh (%) —(cos(pd) +1)sinh(pd) + 2 sin( pd ) cosh’ (%djj
m,=p A"
+4p’ —4p’ cos(pd)cosh(p)+4 f sin (%dj cosh (%d]
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(18)
m, =A" p(2sinh( pd)(f(cos(pd)—1)+4p’ sin(pd))+4f sin( pd)sinh’ [%dD;m” =m,

A= f(cos(pd) —cosh(pd) +4sin [p—zdj sinh [pTdD +4p’ (sin(pd)—sinh(pd));
(19)

If the resonators are absent f = 0 then

sin( pd) cosh( pd) — cos( pd) sinh( pd) 1—cos(pd)cosh(pd)
o sin( pd) —sinh(pd) psin(pd) — psinh( pd)
° 2 psin(pd)sinh(pd) sin( pd)) cosh( pd) — cos(pd) sinh( pd)
sin( pd) —sinh(pd) sin( pd) —sinh(pd)
(20)

The matrix M|, links the vectors U (nd) =M U, ((n—1)d) at the ends of the n-th cell
where the external support are placed only.
4. Finite and infinite length meta beams, Sylvester’s theorem

The elements of this matrix M are independent of the unit cell number, and since the
vectors U, (nd)and U_((n—1)d)are continuous at the supports points of the

neighboring cells, repeating relations (15) n times the propagator unimodal matrix M" can

be found. For any n = I, 2, .., N the matrix M" links the beam deflections and slopes at x
=(0and x = nd.

U, (nd)=M"U_(0). 1)
According to Sylvester’s matrix polynomial theorem [24] the elements of the n-th

power of a 2 x 2 unimodal matrix M = {m,}’, _ can be expressed as

i,j=1

M, (n) M, ,(n

M":( u(m) M,y ( )j )
M, (n) M, (n)

where

M, (n)=m,S, ()-S,,m), M,(n)=m,S, (M),

le (I’l) = m21Sn—1 (11) 4 M22 (71) = mzzSn—l (n) - sz (n) (23)

and S (1) are the Chebyshev polynomials of second kind, namely

S () = sm(('n +1)arccos(n)) n= m, +m,, 24)

sin(arccos(m)) 2

The relation establishing a link between values of the vectors U (L)and U_ (0)

will enable to solve the boundary problems of free and forced vibration of metabeam. The
following three boundary problems can be solved for beam with periodically arranged
supports: clamped—clamped, hinged-hinged, hinged-clamped at x =0 and x = L.
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In the case of the clamped-clamped metabeam the following matrix equation can be
imposed

0 0
AU (L) |= (M” M”J d*U (0) (25)
—+2 M 21 M 22 —+2
dx dx
From the non-trivial solutions of (25) one can find the following frequency equation
M, (o,m)=0 (26)

For a simply hinged-clamped metabeam based on matrix equation

2
0
‘ sz( = M M d*U (0 27
0 M 21 M 22 d—J}()
the following frequency equation can be cast as
M, (o,m)=0 (28)

For a hinged-hinged metabeam from matrix equation

d’U (L d’U, (0

—d;-z( ) _ (Mu M12 J d);Q( ) (29)
0 MZ] M22 0

the following frequency equation can be cast as

M, (0,m) =0 (30)

The equations (26), (28) and (30) define the eigenfrequencies of a beam of finite length

L=Nd rested on N +/ external supports with attached N local mass-spring resonators.

Investigation of these equations is the aim of our future studies and will not consider here.

Applying the Bloch-Floquet quasi periodicity condition at both ends of the
unit cell

U, (nd)=2U_((n-1)d) 31)
where A = exp(ikd) , k is the Bloch-Floquet wave number, and taking into account (15)
we come to following matrix eigenvalue problem

(M-ADU ((n-1)d)=0 (32)
It follows from (32) that the eigenvalues of the periodic structure satisfy the following
equation:

A =2Mn+1=0, n=m, (33)

Taking into account (33) the equation defining the gaps of the infinite beam with external
supports and local resonators can be written as

cos(kd) =m,, =n(p,Q,Q,) (34)
where

N(1Q,Q,)=0K"
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@ = Q0 (ur(cos(r) — cosh(r) —4sin(r / 2)sinh(r / 2) + 2 sin(r) sinh(r))

—4 cos(r) sinh(r) + 4 sin(r) cosh(r)) + 4Q* (cos(r) sinh(r) — sin(r) cosh(#));

K= Qg (4(sin(7) —sinh(7)) — 2ur(sin(r / 2) —sinh(r / 2))*) — 4Q*(sin(r) — sinh(r))
r=Q

The deviation the function M(L,€2,€2, ) defines gaps in both infinite beam and eigen

frequencies of a finite beam given by equations (26), (28) and (30).

. Analysis, discussion and numerical results
The condition |N(W,€2,€2,)[>1defines band gaps in an infinite beam. When

resonators are absent (L = 0), it follows from (17) that
sin(@)cosh(@)— cos(x/ﬁ)sinh(\/a)
= sin(\/ﬁ)—sinh(\/ﬁ)
Dispersion curves defining band gaps in the first Brillouin zone for a beam without
resonators rested on periodically arranged supports, are presented in Figure 2. Figure 2a

shows the band structure of frequency € versus the real part of a Bloch wave vector kd, the
dashed horizontal lines on dispersion curves determine the bounds of the first four gaps

0e(223,39.4), Qe(61.6,88.7), Qe(120.7,157.7) and Q2 € (200.8,248.7)

There is also a cut-off frequency at 2 = 9.6 below which the waves cannot propagate.
Figure 2b presents the complex band of the real and imaginary parts of the Bloch
wave vector kd versus frequency () . Solid blue curves correspond to the real part of the

(35)

——= Refkd), Tmkd)

e frequency, {1

Marmaliz

13 |';I',' 200 248 s

(a) Band structure of Q versus the real part of kd, (b) Complex hybrid band structure of
real (solid blue) and kd imaginary (dashed) parts of kd versus frequency
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Bloch wave vector kd in the first Brillouin zone kd € (0, ), dashed symmetric curves
correspond to the imaginary part of the Bloch wave vector.

The imaginary parts of the Bloch vector Im(kd) define the attenuation of the flexible
waves whose frequencies are inside the bandgaps, while the real part of the Bloch vector
Re(kd) defines the dispersion of the flexible waves whose frequencies are outside the
bandgaps [25].

Figure 3. shows the plots of the beam resonance frequency €2  for
n(u,€2,,€2,) = oo as a function of the local resonator frequency Qo for different values

of u, where 9 is the resonance width for given values of Qj and p. As it follows from Fig. 3
the beam resonance frequencies depend on the resonator mass and do not coincide with

local resonator frequencies (2 # €. The resonator mass increases the beam resonance
frequency. In the case of p = 0.1 the beam resonance frequency 2 practically coincides
with local resonator frequency €2, .
1,
350
300 |
250
200
150
100

50

20 40 . a0 . SU. .][Pl} . 120 140

Fig. 3: The beam resonance frequency €, as function of local resonator frequency Q.
The blue, black and dashed curves correspond to p= 1, p=0.5, and pn = 0.2 correspondingly.

p=02; 0 =181, =182, 6=68 pu=1;0=18,0,=222,6=193

Fig. 4: The plots of the derivation function n(p,£2,€2) at the beam resonance frequencies Q.
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n=02;00=50,0,=524,6=62 p=1;0=500,=93,0=43

;///
1 ) /
‘ ‘ . ‘ ‘ .
120 140

Fig. 5: The plots of the derivation function n(p,Q,€) at the beam resonance frequencies Q..

On the Figures 4 and 5 the plots of the deviation functions n(p,Q2,Q0) are presented in
the neighborhood of the resonance frequencies () which are not coinciding with the
resonator resonance frequencies Qr , Qr * QO , 0 1s the resonance width for given values
of Q. Blue and red curves correspond to a beam with and without resonator:

1) Fig. 4 (a,b) at the resonator resonance frequency €2, =18in the case of two different
masses of the resonator p=1and p=0.2,
2) Fig 5 (a,b) at resonance frequency € = 50in the case of two different masses of the

resonator p=1and p=0.2.

w=02 05=18.0, 10, =182, ,6=68 w=02, 0y =500, =524,6=62
ks,

10
05
0.5
A
| 50 100 150

Fig. 6: Attenuation curves versus frequency in the range Q € (0, 250) illustrating the variation of band
gap width caused by the local resonators.

As it follows from Figures 4 and 5 at resonance frequencies new bandgaps open with
widths 6 significantly depending on the mass of the resonator and the resonance frequency.
Since the imaginary parts of the Bloch vector Im(kd) operate inside the bandgaps, the
analysis of the bandgap structure caused by a local resonator will be carried out by
considering the attenuation function (Im(kd) in the bandgaps. The influence of the resonator
resonance frequency €y on the formation of band gaps is illustrated in Figures 6 and 7
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where the imaginary parts (attenuation curves) of the Bloch wave vectors are plotted as a
function of Q in the range Q € (0.250). Blue curves correspond to the multi span beam with
resonators and red curves to the beam without resonators. In Figures 6 and 7 the lowest
contours of the attenuation curves where Im(kd) — 0 define the map of bandgap
frequencies.

It follows from Figures 6 and 7, that for a local resonator of a small mass L= 0.2 at
resonance frequencies new bandgaps open only in their neighborhood. But for the resonator
with a mass L= 1new broader band gaps also open both above and below of resonance

frequencies. Note that dimensionless mass p is the ratio of the local resonator’s mass and
the mass of the beam unit cell. As it follows from Figures 6 and 7 the attenuation curves
within a resonance bandgaps are not symmetrical while the attenuation curves describing
bandgaps due to supports are symmetrical.

p=1,00 = 180, 0, = 222, 6= 19.3 u=1,0=50,0,=930,6=48
o) Imikdy

30
25

20

o | [ o
50

()]
Fig. 7 Attenuation curves versus frequency in the range Qe (0,150) illustrating

the variation of band gap width caused by the local resonators.

6. Conclusion

A locally resonant homogeneous multi span beam rested on periodically arranged
intermediate supports with periodically attached spring—mass resonators is studied in this
work. The transfer matrix method in conjunction with Bloch-Floquet’s approach is
extended to study the flexural wave vibration and bandwidth of a metabeam phononic
band gaps generated by both of external intermediate supports and local resonators. The
eigenvalue problems for the free vibration study is formulated for finite length pinned and
clamped multi-span beams. For an infinite beam explicit analytical formulations are provided
defining the bandgap formation. It is demonstrated that two types of band gaps, due to
resonance and external supports, co-exist in the beam. It is shown that the beam resonance
frequencies depend on the mass of resonators and do not coincide with local resonator
frequencies. The resonator mass increases the beam resonance frequency. The local resonator
of small mass opens new band gaps only in the neighborhood of the resonance frequencies.
If the mass of the resonator is comparable with the mass of the beam’s unit cell new and
wider bandgaps open up both above and below of resonance frequencies.
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