ՀԱՅԱՍՏԱՆԻ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

76, №2, 2023

Механика

УДК 539.3

DOI: 10.54503/0002-3051-2023.76.2-3 УПРУГО – СПИНОВЫЕ ВОЛНЫ В ФЕРРОМАГНИТНОМ ПОЛУПРОСТРАНСТВЕ С МАГНИТНЫМ ЭКРАНОМ Агаян К.Л., Атоян Л.А.

Ключевые слова: упруго-спиновые волны, ферромагнитное полупространство, магнитный экран.

Aghayan K.L., Atoyan L.A.

Elastic-Spin Waves in a Ferromagnetic Half-Space with a Magnetic Screen

Key words: elastic-spin waves, ferromagnetic half-space, magnetic screen.

In the proposed work, the problem of reflection of an elastic-spin wave incident from the inside of a ferromagnetic half-space onto its screened surface is solved. A general solution is found for the system describing the wave field in the structure. The question of the dependence of the amplitude of a magneto-elastic wave on the angle of incidence, frequency, and intensity of the external magnetic field has been studied. Corresponding graphs are constructed.

Աղայան Կ.Լ., Աթոյան Լ.Հ.

Առաձգասպինային ալիքները մագնիսական էկրանով ֆերոմագնիսական կիսատարածությունում

Բանալի բառեր՝ առաձգա-սպինային ալիքներ, ֆերոմագնիսական կիսատարածություն, մագնիսական էկրան**։**

Առաջարկվող աշխատանքում լուծված է առաձգա-սպինային ալիքի անդրադարձման խնդիրը ֆերոմագնիսական կիսատարածության էկրանավորված մակերեսից։ Ընդհանուր լուծում է գտնվել կառուցվածքում ալիքային դաշտը նկարագրող համակարգի համար։ Ուսումնասիրվել է մագնիսառաձգական ալիքի ամպլիտուդի կախվածության հարցը ալիքի անկման անկյունից, ալիքի համախականությունից, արտաքին մագնիսական դաշտի ինտենսիվությունից։ Կառուցված են համապատասխան գրաֆիկներ։

В предлагаемой работе решается задача отражения упруго-спиновой волны, падающей изнутри ферромагнитного полупространства на его экранированную поверхность. Построено общее решение системы, описывающее волновое поле в конструкции. Исследован вопрос зависимости амплитуды магнитоупругой волны от угла падения и частоты падающей волны, а также интенсивности внешнего магнитного поля. Построены соответствующие графики.

1.Введение. Упруго-спиновые, или иначе магнитоупругие волны (МУВ) представляют собой взаимосвязанные упругие и спиновые (магнитные) парциальные волны. Если скорости парциальных волн сильно различны, то магнитоупругая связь имеет мгновенный характер, если близки, то взаимодействие длительное и этот процесс называется гибридизацией. В безграничном ферромагнетике эффект гибридизации возникает для волновых чисел с $k = 10^{-5} cm^{-1}$ и скорость гибридной волны равна скорости звука. В тонких пленках их скорости для $k = 10^{-2} cm^{-1}$ в сто раз выше.

МУВ может быть использован для преобразования упругих волн в спиновые и обратно. Легче возбудить спиновую волну, чем упругую. В железо-иттриевом

гранате (ЖИГ) гибридизация происходит на частотах □ 10⁹ Гц. Взаимодействие упругой и спиновой волн происходит на ультразвуковой и гиперзвуковой частотах в диапазоне $10^8 < \omega < 5*10^{10}$ Гц. МУВ и магнитостатические волны находят свое применение в производстве фильтров частот, линий задержки, шумоуловителей, конвольверов и прочих устройств спинтроники.

Распространение спиновых волн в ферромагнитных средах разной структуры, находящихся в постоянном магнитном поле, рассмотрено во многих работах. В этой связи отметим монографии [1]-[3], и некоторые работы [4,5,9,13,15], где рассмотрены вопросы связанные с распространением спиновых волн в недеформируемых средах, а также в деформируемых [5-12,14] и др.

Работа относится к ферромагнитному полупространству с примыкающим к его поверхности магнитным экраном. Конструкция находится в постоянном магнитном поле. Магнитный экран — это сверхпроводник в виде тонкой пластины или мембраны, изготовленный из железа, свинца, олова или молибдена, которые хорошо экранируют магнитное поле. Рассматривается задача отражения упруго-спиновой волны, падающей на поверхность изнутри ферромагнитного полупространства. Решение задачи основано на использовании решения системы определяющих уравнений, описывающих волновую картину в конструкции. Проведено численное исследование задачи. Исследована зависимость амплитуды волны от угла падения МУВ и ее частоты, а также от интенсивности внешнего магнитного поля. Построены соответствующие графики.

2.Постановка задачи. Рассматривается ферромагнитная среда, отнесенная к декартовой системе координат Oxyz (фиг.1), в виде полупространства, занимающего область $\Omega_0 (-\infty < x < \infty; 0 < y < \infty; -\infty < z < \infty)$. К граничной плоскости (y = 0) примыкает магнитный экран в виде сверхпроводящей пластины. Относительно магнитного экрана будем полагать, что он либо абсолютно жесткий ($G = \infty$), либо абсолютно податливый. В первом случае имеем жесткое закрепление, во втором – поверхность свободна от напряжений. Конструкция находится в постоянном, внешнем магнитном поле $\vec{H}_0 = (0, 0, H_0)$, направленном по оси Oz, объемная намагниченность насыщения ферромагнетика $\vec{M}_0(0, 0, M_0)$ также направлена по оси Oz. Задача рассматривается в рамках антиплоской деформации, т.е. предполагается, что отлична от нуля только компонента смещения по направлению оси Oz - w(x, y, t), а также соответствующие компоненты магнитных параметров.

4

Предполагается также, что из бесконечности на поверхность ферромагнитного полупространства Ω_0 под углом \mathcal{G} падает заданная сдвиговая плоская упругоспиновая волна с парциальными компонентами:

$$w_{I}(x, y, t) = w_{\infty}(x, y)e^{-i\omega t} = W_{I}e^{-iqy}e^{i(px-\omega t)}$$

$$\mu_{I}(x, y, t) = \mu_{\infty}(x, y)e^{-i\omega t} = M_{I}e^{-iqy}e^{i(px-\omega t)}$$

$$v_{I}(x, y, t) = v_{\infty}(x, y)e^{-i\omega t} = N_{I}e^{-iqy}e^{i(px-\omega t)}$$

$$\phi_{I}(x, y, t) = \phi_{\infty}(x, y)e^{-i\omega t} = \Phi_{I}e^{-iqy}e^{i(px-\omega t)}$$

$$q = k\sin \vartheta, p = k\cos \vartheta$$
(1)

где $W_{\infty}(x, y), \mu_{\infty}(x, y), \nu_{\infty}(x, y), \varphi_{\infty}(x, y)$ -амплитуды компонент упруго-спиновых волн, W_I, M_I, N_I, Φ_I -постоянные, p, q-компоненты волнового вектора \vec{k} , ω круговая частота, $0 < \vartheta < \pi/2$ - угол скольжения падающих волн, t-время.

Для следующих двух случаев граничных условий на поверхности y=0 ставится задача определения магнитоупругого волнового поля в конструкции с приведенными выше магнитными и упругими параметрами (временной множитель $e^{-i\omega t}$ здесь, и в дальнейшем, опущен).

1. Жесткое закрепление поверхности с магнитным экраном:

$$w(x, y)\Big|_{y=0} = 0, \qquad \left(\frac{\partial \varphi}{\partial y} - \rho v\right)\Big|_{y=0} = 0$$
 (2)

2. Свободный край с магнитным экраном:

$$(Gw_{y} + \rho vB)|_{y=0} = 0, \quad \left(\frac{\partial \varphi}{\partial y} - \rho v\right)|_{y=0} = 0$$
(3)

Требуется определить распределение отраженных и дифрагированных волновых полей в области Ω_0 , а также выявить зависимости амплитуды магнитоупругой волны от параметров задачи: угла падения, частоты и интенсивности внешнего магнитного поля.

3.Общее решение определяющей системы. Система определяющих уравнений, описывающая механические перемещения и движение плотности намагниченности в ферромагнитном теле представляется в виде [1-3,6]:

$$w_{tt} = S^{2} \Delta w + B(\mu_{x} + \nu_{y})$$

$$\mu_{t} = \omega_{M} (\phi_{y} + \hat{b}\nu + Bw_{y})$$

$$\nu_{t} = -\omega_{M} (\phi_{x} + \hat{b}\nu + Bw_{x})$$

$$\Delta \phi = (\mu_{x} + \nu_{y})$$

(4)

5

где $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ - оператор Лапласа, $\vec{\mu}_0(\mu, \nu, 0)$ -плотность намагниченности, φ - магнитный потенциал, $S = \sqrt{G/\rho}$ - скорость упругой волны, G -модуль сдвига, ρ - плотность материала, $\omega_M = \overline{\gamma}M_0$, $\overline{\gamma}$ -гиромагнитное отношение, $B = (b+f)\mu_0$, $\mu_0 = M_0/\rho$ - массовая намагниченность насыщения, b, f -магнитоупругие коэффициенты связи.

Подставляя выражения (1) в систему уравнений (4), получим однородную систему линейных уравнений, условие разрешимости которой дает следующие соотношения между постоянными W_I, M_I, N_I, Φ_I :

$$M_{I} = \alpha W_{I}, \quad \alpha = \frac{B(ipb - q\Omega)}{\Omega^{2} - \Omega_{SV}^{2}}$$
(5)

$$N_{I} = \beta W_{I}, \quad \beta = \frac{B(iqb + p\Omega)}{\Omega^{2} - \Omega_{SV}^{2}}$$
(6)

$$\Phi_I = \lambda W_I, \quad \lambda = \frac{Bb}{\Omega^2 - \Omega_{SV}^2} \tag{7}$$

с характеристическим уравнением:

$$k^{2} \left[\left(\omega^{2} - k^{2} S^{2} \right) \left(\Omega^{2} - \Omega_{SV}^{2} \right) - \hat{b} B k^{2} \right] = 0,$$

$$\text{ rge } k^{2} = q^{2} + p^{2}; \quad \Omega = \omega / \omega_{M}; \quad \Omega_{SV}^{2} = \hat{b}^{2} + \hat{b}.$$

$$(8)$$

Отметим, что характеристическое уравнение (8) определяет связь между частотой ω и волновым числом k падающей волны.

Общее решение системы (4) ищем в виде:

$$w(x, y, t) = w_I(x, y, t) + W(x, y)e^{-i\omega t}, \quad v(x, y, t) = v_I(x, y, t) + N(x, y)e^{-i\omega t}$$

$$\mu(x, y, t) = \mu_I(x, y, t) + M(x, y)e^{-i\omega t}, \quad \varphi(x, y, t) = \varphi_I(x, y, t) + \Phi(x, y)e^{-i\omega t}$$
(9)
ГДЕ $w_I, \mu_I, v_I, \varphi_I$ - определяются соотношениями (1),

 $W(x, y), M(x, y), N(x, y), \Phi(x, y)$ - неизвестные амплитуды.

Подставим (9) в систему (4) и учтем, что функции (1) удовлетворяют этой системе. В результате, без учета временного множителя $e^{-i\omega t}$, мы придем к системе уравнений для определения неизвестных функций W, M, N, Φ :

$$W + \frac{S^2}{\omega^2} \Delta W + \frac{B}{\omega^2} (M_x + N_y) = 0, \quad \Omega_M M - \hat{b}N = BW_y + \Phi_y,$$

$$\hat{b}M + \Omega_M N = -BW_x - \Phi_x, \quad \Delta \Phi = M_x + N_y; \quad (\Omega_M = -\frac{i\omega}{\omega_M}).$$
(10)

Отсюда выразим M, N через W, Φ :

$$M(x, y) = C_1 W_y - C_2 W_x + C_3 \Phi_y - C_4 \Phi_x,$$

$$N(x, y) = -C_1 W_x - C_2 W_y - C_3 \Phi_x - C_4 \Phi_y$$
rde $C_1 = \frac{B\Omega_M}{\overline{\Omega}_M}, C_2 = \frac{B\hat{b}}{\overline{\Omega}_M}, C_3 = \frac{\Omega_M}{\overline{\Omega}_M}, C_4 = \frac{\hat{b}}{\overline{\Omega}_M}; \overline{\Omega}_M^2 = \Omega_M^2 + \hat{b}^2.$
(11)

Подставим (11) в первое и четвертое уравнения системы (10), получим:

$$\Delta \Phi = -\frac{C_2}{1+C_4} \Delta W; \qquad \Delta W + r^2 W = 0, \tag{12}$$

где
$$r^2 = \frac{\omega^2 (\Omega^2 - \Omega_{SV}^2)}{S^2 (\Omega^2 - \tilde{\Omega}_{SV}^2)}; \ \tilde{\Omega}_{SV}^2 = \Omega_{SV}^2 - \hat{b}BS^{-2}, \ \Omega_{SV}^2 = \hat{b}^2 + \hat{b}$$
 (13)

Общее решение системы (10) в трансформантах преобразования Фурье представляется в виде:

$$\overline{W}(\sigma, y) = Q_1 e^{-\gamma y} + Q_2 e^{\gamma y}, \quad \overline{\Phi}(\sigma, y) = R_1 e^{-\sigma y} + R_2 e^{\sigma y} + \tau_0 (Q_1 e^{-\gamma y} + Q_2 e^{\gamma y})$$
(14)
$$\overline{M}(\sigma, y) = C_1 \overline{W}_1 + i\sigma C_2 \overline{W} + C_2 \overline{\Phi}_2 + i\sigma C_4 \overline{\Phi}$$

$$\overline{N}(\sigma, y) = i\sigma C_1 \overline{W} - C_2 \overline{W}_y + i\sigma C_3 \overline{\Phi} - C_4 \overline{\Phi}_y$$
(15)

где
$$\gamma^2 = \sigma^2 - r^2; \ \tau_0 = \frac{B\hat{b}}{\Omega_{SV}^2 - \Omega^2}; \ Q_1, Q_2, R_1, R_2$$
-постоянные интегрирования,

$$\overline{f}(\sigma, y) = \int_{-\infty}^{\infty} f(x, y) e^{i\sigma x} dx; \ f(x, y) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \overline{f}(\sigma, y) e^{-i\sigma x} d\sigma$$

4.Решение задачи. Перейдем к решению поставленных выше задач. Для первой задачи граничные условия (2), после преобразования Фурье, запишутся в виде:

$$\overline{w}(\sigma, y)|_{y=0} = 0, \quad \left(\frac{\partial\overline{\phi}(\sigma, y)}{\partial y} - \rho\overline{v}(\sigma, y)\right)|_{y=0} = 0 \tag{16}$$

Тогда, решение первой задачи можно сформулировать в виде краевой задачи (12), (15), (16), решение которой должно удовлетворять условию затухания при $y \rightarrow 0$. Решение, в конечном итоге, представляется в виде:

$$w(x, y, t) = 2\pi W_{I}(e^{-iqy} - e^{iqy})e^{i(px-\omega t)}$$

$$\varphi(x, y, t) = (2\pi \Phi_{I}e^{-iqy} + \tau_{5}e^{-|p|y} - 2\pi W_{I}\tau_{0}e^{iqy})e^{i(px-\omega t)}$$

$$\mu(x, y, t) = (2\pi M_{I}e^{-iqy} + \tau_{2}\tau_{5} | p | e^{-|p|y} - 2\pi W_{I}\tau_{1}e^{iqy})e^{i(px-\omega t)}$$

$$v(x, y, t) = (2\pi N_{I}e^{-iqy} + \tau_{4}\tau_{5} | p | e^{-|p|y} - 2\pi W_{I}\tau_{3}e^{iqy})e^{i(px-\omega t)}$$

$$r_{\text{T}e}$$
(17)

$$\begin{split} \tau_{0} &= \frac{C_{2}}{1+C_{4}}; \quad \tau_{1} = -C_{1}\gamma + iC_{2}\sigma - C_{3}\tau_{0}\gamma + iC_{4}\sigma\tau_{0}; \quad \tau_{2} = iC_{4} - C_{3}; \\ \tau_{3} &= C_{2}\gamma + iC_{1}\sigma + iC_{3}\tau_{0}\sigma + C_{4}\gamma\tau_{0}; \quad \tau_{4} = -iC_{3} + C_{4}; \\ \tau_{5} &= \frac{2\pi[W_{I}(\tau_{0}\gamma + \tau_{3}\rho) - iq_{0}\Phi_{I} - \rho N_{I}]}{|p|(1+\rho\tau_{4})}, \\ -\gamma &= iq, \qquad q = \sqrt{\frac{\omega^{2}(\Omega^{2} - \Omega_{SV}^{2})}{S^{2}(\Omega^{2} - \tilde{\Omega}_{SV}^{2})}} - p^{2} > 0 \end{split}$$

Как видно из (17), волновое поле в области Ω_0 состоит из следующих составляющих:

- падающие и отраженные сдвиговые волны для упругого перемещения w(x, y, t),

- падающие, отраженные и локализованные у поверхности y=0 сопутствующие волны сдвига при магнитном потенциале $\varphi(x, y, t)$ и компонентах плотности намагниченности $\mu(x, y, t)$ и v(x, y, t).

Эти волны распространяются по направлению оси Ox со скоростью $\omega/k \cos \theta$, а по направлению оси Oy со скоростью $\omega/k \sin \theta$. Амплитуда локализованной у плоскости y=0 сдвиговой сопутствующей волны стремится к нулю при $y \to \infty$.

Во второй задаче аналогичным образом определяем волновое поле в ферромагнитном полупространстве, которое представляется следующими формулами:

$$w(x, y, t) = (2\pi W_I e^{-iqy} + \tau_6 e^{iqy}) e^{i(px-\omega t)}$$

$$\varphi(x, y, t) = (2\pi \Phi_I e^{-iqy} + \tau_7 e^{-|p|y} + \tau_0 \tau_6 e^{iqy}) e^{i(px-\omega t)}$$

$$\mu(x, y, t) = (2\pi M_I e^{-iqy} + \tau_2 \tau_7 | p | e^{-|p|y} + \tau_1 \tau_6 e^{iqy}) e^{i(px-\omega t)}$$

$$v(x, y, t) = (2\pi N_I e^{-iqy} + \tau_4 \tau_7 | p | e^{-|p|y} + \tau_3 \tau_6 e^{iqy}) e^{i(px-\omega t)}$$

$$\tau_6 = \frac{2\pi [iqGW_I (1+\rho\tau_4) + \tau_4 \rho B(iq\Phi_I + \rho N_I)]}{\rho B \tau_3 - \gamma G - \rho \tau_4 \gamma G - \rho \tau_4 \tau_0 B \gamma}$$

$$\tau_7 = \frac{2\pi [(iq\Phi_I + \rho N_I)(G\gamma - \tau_3 \rho B) - GiqW_I (\tau_0 \gamma + \rho \tau_3)]}{\rho B \tau_3 - \rho G - \rho \tau_4 \rho B(iq\Phi_I - \rho \tau_3 \rho B) - GiqW_I (\tau_0 \gamma + \rho \tau_3)]}$$
(18)

Наличие в формулах (17) затухающей волны обусловлено падающей упругоспиновой волной и особенностью уравнений магнитоэлектростатики.

 $\rho B \tau_3 - \gamma G - \rho \tau_4 \gamma G - \rho \tau_4 \tau_0 B \gamma$

Из (18) следует, что волновые поля качественно совпадают и только амплитуды у них различны.

Перейдем к численному исследованию зависимости амплитуды сопутствующей волны от угла падения, частоты падающей волны и напряженности внешнего

магнитного поля. Введем обозначение $\lambda = \Phi_s / W_I$, где Φ_s -амплитуда сопутствующей волны, W_I - амплитуда падающей волны. На фиг.2,3,4 приведены соответствующие зависимости.

Как следует из графиков, изображенных на фиг.2,3,4 угол падения, частота падающей волны, а также напряженность внешнего поля могут служить параметрами контролирующими величину амплитуды.

Заключение

Рассмотрена задача отражения упруго-спиновой волны от поверхности ферромагнитного полупространства с примыкающим к его поверхности магнитным экраном. Построено общее решение системы уравнений, описывающей волновые поля в ферромагнитных средах. Для двух случаев граничных условий на поверхности полупространства (закрепленный магнитный экран и свободный) установлено волновое поле в полупространстве. Проведен численный анализ и на его основе построены графики зависимости амплитуды сопутствующей волны от угла падения, частоты падающей волны и напряженности внешнего магнитного поля.

ЛИТЕРАТУРА

- 1. Можен Ж. Механика электромагнитных сплошных сред. М.: Мир, 1991, 560 стр.
- 2. Гуревич А. Г. Магнитный резонанс в ферритах и ферромагнетиках. Москва: Наука, 1973 стр.591.
- 3. Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. М.: Наука, 1967. 368 с.
- Даноян З.Н., Атоян Л.А., Саакян С.Л., Даноян Н.З. "Квазипериодические спиновые волны в одномерной ферромагнитной среде". Proceed. Of 8-th Int. Conf. "The problems of dynamics of interaction of deformable media", 22-25 Sept., 2014, Goris- Stepanakert.p.205-212.
- Danoyan Z., Piliposian G, Hasanyan D. Reflection of spin and spin-elastic waves at the interface of a ferromagnetic half-space. Waves Rand. Complex Media 19(4), 567-584 (2009).
- Hasanyan D., Batra R. Antiplane Shear Waves in Two Contacting Ferromagnetic Half Spaces. J. Elast. (2011) 103, p.189-203.
- Parekh J.P. Magneto elastic surface wave in ferrites // Electron. Lett. 1969, [Vol 5], №14, - P.322-323.
- 8. Bernardo L., Mills D.L., Reflection of magneto-elastic waves from ferromagnetic surfaces, Phys. Rev. B 22 (1980), pp. 4445 4449.
- Багдасарян Г.Е., Даноян З.Н., Атоян Л.А., Манукян Г.А. Отражение спиновых волн от границы ферромагнитного полупространства. Тр. VI межд. конф. сентябрь, 2008, Горис–Степанакерт, с.115-125.
- Даноян З.Н., Агаян К.Л., Атоян Л.А. Упруго-спиновые волны в слоистой среде ферромагнит-диэлектрик. Тр. 4-ой межд. конф. по совр. проблем мех. сплош. среды, Армения, Цахкадзор, 21-26 сент., 2015г., стр.185-189.
- 11. Kittel C. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. B110, 1958, 836-841.
- 12. Bagdasarian G.E., Hasanian D.J. Magneto-elastic interaction between soft ferromagnetic-elastic half-plane with crack and constant magnetic field, Int. J. Solids Struct. 37,2000 y., p. 5371-5383.
- 13. Baghdasaryan G.E. Existence and propagation character of spatial spin surface waves in ferromagnets. Proceed. NAS of Armenia, Physics. v.44, 6, p.405-416 (2009).
- 14. Camley R.E., Maradudin A.A. Pure shear elastic surface wave guided by the interface between two semi-infinite magneto-elastic media. Appl. Phys. Lett. 38(8), 1981, 610-612.
- Nikitov, S.A., Tailhades, Ph., Tsai, C.S. Spin waves in periodic magnetic structuresmagnonic crystals. J. Magnet. Mater, v.23, 3, 2001, p.p.320-331.

Сведения об авторах:

Агаян Каро Леренцович – д.ф.-м.н., вед. науч.сотр. Института механики НАН РА. Адрес: РА, 0019 Ереван, пр. Маршала Баграмяна 246.

E-mail: karoaghayan@gmail.com

Атоян Левон Арутюнович – к.ф.-м.н., ст.науч. сотр. Института механики НАН РА. Адрес: РА, 0019 Ереван, пр. Маршала Баграмяна 246. E-mail: levous@mail.ru

Поступила в редакцию 17.06.2023