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KarwueBble cjioBa: TIOBEPXHOCTHBIC ITONIEPEIHBIC BOJIHEI, HeHI[eaJ'[BHBIﬁ KOHTAaKT, TUCIICPCHS.

HccnenoBano pacnpocTpaHeHUe MOBEPXHOCTHOW MONEPEUHOIM BOJHBI IJIsl CIIOUCTOW CTPYKTYpPbI, COCTOSIIEH
U3 YyOPYroro CIIOs, JISKAIIEro Ha yIPYroM IONYIPOCTPAHCTBE C OBEPXHOCTHIO HEMIOJIHOTO YIPYroro KOHTAKTA.
PaccMoTpeHBI Be pa3NMYHBIE MOJENHM HEMONHOro ympyroro. IlomydeHBl IUCIEPCHOHHBIC YpaBHEHHS,
OIMCHIBAIOIINE 3aBHCUMOCTh (Da30BOil CKOPOCTH IIOBEPXHOCTHOI! BOJIHBI OT BOJIHOBOrO 4yncia. Ha ocHOBe aHanusa
JIMCIIEPCHOHHBIX YpaBHEHUH II0Ka3aHO, YTO HECOBEPIIEHCTBO IPaHHIBI pa3/iena MOXKET CYIECTBEHHO YMEHBIIUTh
WIIH YBEINYUTH (DAa30BYIO CKOPOCTH HOBEPXHOCTHOH BOJIHEL
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The surface shear wave is studied in layered bi-material structure consisting from an elastic layer lying on
an elastic half-space with an imperfectly bonded interface. The two models of the imperfect “slip” and “scattering”
interface are considered. The dispersion equations are obtained describing the surface wave phase speed versus
wavenumber. Based on the analysis of dispersion equations it is shown that the interface imperfectness can
sufficiently decrease in “slip” case or increase in “scattering” case the surface wave phase speed.

Introduction

The term elastic surface waves is used to denote waves propagating along the interface
of elastic media with the energy localized in a band of a width of the order of several
wavelengths. The classic results concerning the shear surface waves propagation in layered
media were firstly published in [1,2]. Wave propagation through a layered composite
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material and the formation of surface waves bands is a well-studied topic [3,4,5] and has
significance in applied geoscience [6].

A model of an imperfectly bonded interface between two elastic media is proposed in
[7] where the displacement discontinuity (slip) is taken to be linearly related to the stress
traction which is continuous across the interface. A model of “scattering” imperfectly
bonded interface is used in [8] where the stress traction discontinuity is taken to be linearly
related to the displacement which is continuous across the interface where one-dimensional
time-harmonic waves interact with a finite number of scatterers. The surface shear waves in
elastic semi-spaces separated by elastic layer with an imperfectly bonded “slip” interfaces
between layer and semi-spaces are considered in [9]. The shear surface waves at the
electro-mechanical imperfect interface of two piezoelectric materials is studied in [10,11] .
The localized electro-acoustic Rayleigh and Gulyaev-Bluestein waves is studied in [ 12] It
is shown that the choice of materials can increase or decrease the surface electro elastic
wave energy localization at the surface of non acoustic interface of bi-material
piezoelectric structure. The surface electro-magneto elastic shear waves in a bi-material
structure in an external constant magnetic consisting of the bonded piezoelectric and
perfectly conducting half-spaces is considered in [13], where the conditions of an existence
of surface shear waves localized at the interface between two media were derived.. In [14]
the dynamic contact problem is studied concerning propagation and diffraction of shear
plane waves in a composite structure consisting of elastic half-space and a layer, weakened
by a semi-infinite tunnel crack interface. In [14-15] the dynamic contact problems are
studied concerning propagation and diffraction of shear plane waves in a composite
structure consisting of elastic half-space and a layer, or consisting of two elastic half-
spaces, weakened by a semi-infinite tunnel crack interface. Electroacoustic transverse
waves in a piezoelectric half-space via non-acoustic influence on its interface is considered
in [16]. The conducting interface near the traction free surface of a piezoelectric half-space
changes the character of the near-surface localization of the electroacoustic wave.

1.Statement and solution of the problem
In Cartesian coordinate system (X1,X2,X3) we consider the layered structure

consisting from an elastic semi infinite substrate (|x1|<oo, X, e(—oo,O),|X3|<oo)

imperfectly bonded with an elastic layer (|X1| <o, X, € (0, h) , |X3| < oo) .
The anti- plane equations of motion and material relations are given by
(s) (s) 21 1 (s)
00y + 00y _ 9Us .
ox,  OX, ot?

ouU (s) ouU (s) @)

o) =G 2 5l =g 2

OX,

Here U3(S) are elastic displacements, o, ,

(s) U(S)

,; are the shear stresses, p(s) are the

mass densities, G are the shear elastic modulus, respectively. The indexes s =1;2 stand

for the layer and substrate, respectively.
The model of the imperfect “slip —scattering” interface between elastic layer and
substrate will be used [7,8 ]. According to this model the traction and displacement are not
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continuous across the interface and the following contact conditions are valid at interface
X, =0
2

o (%,0,t)—o% (x,0,t) = (Ué“(xl,O,t)+U§2)(x1,0,t))

N @

U (34,0,1)-US? (%,0.8) = (02 (%,0.0) o2 (x,0.1) @

g=>0, f>0,
When g =0, we have the model of the “slip” interface at X, =0where the shear

N | —

stresses are continuous but the displacements have a jump [7] . When f =0 we have the

model of the “scattering” interface where the displacements are continuous but the shear
stresses have a jump [8].

At the layer upper surface X, =h we consider the traction free interface condition

o (x,h,t)=0 ®)
or the clamped interface condition
U (x,h,t)=0 @

In the semi-space the displacement decaying to zero at infinite distance from contact
interface x, =0

U (%, %y, 1) = 0,%, — —oc )
We consider harmonic  wave travelling along the X, direction,
U (%, %,,t) =U (x,) exp[i (kx, — ot )], where @ is the wave angular frequency, k

is the wave number.
Since the interface conditions at X, =0 are imposed on functions

U®(x,),0% (x,) itis convenient to introduce the following column vectors

U(S)(Xz) _ (U ©) (Xz)ﬁ;) (Xz)) (6)
In the matrix form the solutions of (1) in the layer can be cast as
U®(x,)=F¥(x,)-C, C=(C.C,)" . (0
= (X )_ eXp(inZ) exp(—irlxz)

2 ) —| . . . .

iG,r exp(irx,) -iGr exp(-irx,)
In substrate the solutions can be cast as
exp(rx
U(Z)(Xz)zA( p(z 2) ] )
LG, exp(1,%, )
In (7,9) A,C,,C, are constants, v, =4/G, /o, denote the shear wave speeds in the
bi- material structure

®)
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2 2
w w

N i S [ (10)
Vl V2

The condition @ <kv, provides decaying of the surface wave from the

interface x, = 0.
The interface conditions (2) in the matrix form can be cast as

u®(0) =SuU® (0) (11)
fg+4 4f
S 4-fg 4-fg
49 fg+4
4—-fg 4-1g

Using the procedure of transfer matrix approach [9] we obtain the following relation
linking the values of the vector UW® (%) at the layer interfaces x, =0,Xx, =h via
transfer matrix

u®(h) =Tu®(0) (12)

o[ cos(hr) (G,r,) “sin(hr) ; (13)
~Gyr; sin(hr,) cos(hr,)

In the case of the traction free surface at x, = h we have

U (h) = U,,0)' (14)
At the clamped interface X, = h we have
U (h) = (0,0,)" (15)

In (14,15) U,, o, are constants.
Using (5) and (6) we come to the following homogeneous set of equations with respect
to constants A, o, o for the “clamped” case, or A, U0 for “traction free” case

U®(h)-Tsu® (0)=0 (16)

Equating the determinant of these sets of equations (16) to zero, we obtain the
following dispersion equations:

Traction free interface at X, = h

K fﬁznz —1tan(K /ﬂznz _1): \/1_772K(‘9§+4)+4§ a7

y(9§+4 1—7729K+4)’

Clamped interface at X, =h
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K fﬂznz —lCOt(K ?52772 _1):_ \/1_772K(9§+4)+4§ (18)

7(9§+4 1—772¢9K+4)
In (17, 18) the following dimensionless notations are used
B=V,/v,, n=a/kv,, y=G,/G, ,K=kh6&=1G,/h,E=gh/G,; (19)

The equations (17,18) may have real solutions corresponding to the surface wave if
only

Br<n<l, Vv,<akt<v, (20)
Dispersion equations (18,19) reveal that the phase velocity of the surface wave is a
function of the wave number 77(K), and these equations have the finite numbers of

solutions (modes). For the given value of K the number of the modes do not depend of
interface complaints @, & and is defined by the formula

K1,
T

n = Floor

The function FIoor(x) gives the greatest integer less than or equal to X .

Traditionally, the first mode of the dispersion equations solutions is assumed as Love
waves.

2.Numerical Results
The curves on Figl., Fig 2. are plotted and the numerical data of Tabl.1 are calculated

for substrate and layer materials corresponding to shear modulus ratio ¥ =G, /G, =0.5,

speeds ratio =V, /v, =2.

£=0,0=0 £=7,0=0 £E=7,0=7
Modes Perfect Scattering Slip+Scattering
Free | Clamped | Free | Clamped | Free | Clamped
1 K 0 0.8 0.7 1.7 0.57 | 1.3
2 K 1.8 2.7 2.5 3.5 2.2 3.0
3 K 3.7 4.6 4.1 5.0 4.3 49
4 K 5.5 6.3 6.6 7.8 6.7 7.2

Tablel. Data for the thresholds of wave number K = kh corresponding to normalized
phase speed 7 =1, for the first four modes in the cases of different imperfect interfaces

In the Table 1. the thresholds K =kh of the lowest and subsequent three higher
modes are presented which are correspond to phase speed 77 =1; The different imperfect
interfaces are considered. The results of the case £ =0,6 =7 are not presented since they

coincide with the perfect contact case & =0,0=0.
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On the Fig.1., Fig2. the first lowest modes of the normalized phase speed 77 = a)/kv1

are given as a function of the dimensionless wave number K =kd. Red curve
corresponds to  the classic Love wave perfect contact case & =0,0 =0, green curve to
“scattering” interface & =7,6 =0, blue curve to “slip” interface & =0, =7, black
curve to “slip-scattering” interface & =7, =7 (see online version for colors).
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Figl. The dispersion curve of the shear surface wave first mode:
the layer upper interface is traction free

3.Results and Discussion

As it follows from the analysis of the first mode of dispersion equations the slip
interface essentially decreasing the values of phase speed. For scattering interface we have
the contrary effect of increasing of phase speed. This influence is more notable in bands of
the long waves . When the upper interface is traction free we have the maximal deviation of

the phase speed up to 30 % which takes place at K ~1.5. In the case the of clamped

interface this same effect takes place at K ~ 2.7 . For short waves these deviations are
small. The case of the “slip-scattering” interface is very interesting one since in this case
the dispersion curves are close to the dispersion curves of perfect contact case of Love
waves. In combined “slip-scattering” interface the effects caused by “slip” and “scattering”
interfaces are practically compensate each other.

It is necessary to mention that imperfect interfaces do not change the number of
surface wave modes.

From the data of the Table 1. we can conclude that the imperfect interfaces increasing
the thresholds of the wavenumbers in the firstand the highest modes.
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Fig.2. The dispersion curve of the shear surface wave first mode:

the layer upper interface is clamped
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