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PacnpochaHeHne rnﬁpnna Pa3HOPOJAHBLIX JIEKTPOAKYCTUY€CKHUX BOJIH B
Komno3utHoM NbE303JIEKTPUYE€CKOM BOJTHOBOAE 0e3 AKYCTHY€CKOI'0 KOHTAKTAa MEXKAY CJI0AMHU

ABerncsiH Apa C., Xayarpsin Basren M.

Ku1ioueBble c10Ba: COCTABHON BOJHOBOJ, NEPHOANYECKAS BOJHA, HEAKYCTHUECKHI KOHTAKT, THOPHUL
3JIEKTPOAKYCTUUECKUX BOJIH, JIOKAJIH3AIHUs BOJIHOBOW SHEPTUHU.

The problem of propagation of an electroactive unidirectional wave signal of elastic shear (or plane
elastic deformation) in an infinite piezoelectric composite waveguide consisting of periodically
repeating two-layer cells is considered. In the sagittal plane of one piezo layer in the cell, antiplane
electroactive deformation is possible, and in the adjacent layer, electroactive planar deformation is
possible. The layers are in a state of non-acoustic contact. The surfaces of the piezoelectric composite
waveguide are free from mechanical influences. One of the waveguide surfaces is electrically open,
while the other is electrically closed. The propagation of an electroacoustic wave signal occurs due to
the penetration of accompanying electrical oscillations through a non-acoustic contact between the
piezoelectric layers. There is a multiple transformation of a three-component electroelastic shear
wave into a four-component electroelastic wave of plane deformation and vice versa. A hybrid of
electroacoustic waves is formed. In the case of a high-frequency wave signal, a hybrid of surface
electroacoustic waves of the Rayleigh and Gulyaev-Bluestein types is formed. The distributions of
elastic displacements and electric potential along the thickness of the waveguide are determined. The
resulting hybrid has the character of a periodic Floquet-Bloch wave. The zones of allowable
frequencies and allowed lengths of the hybrid are determined. Rapidly decaying components of the
electroacoustic wave are also found.

Udtunhywi Upw U., uswmnput 9wqqkh U.
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Paccmorpena 3ajaua 0 pacrpOCTPaHEHMH DJIEKTPOAKTHBHOIO OJHOHAIPABJIEHHOTO BOJIHOBOIO CHIHANIA
yIpyroro cisura (WIHM IUIOCKOH ynpyroil nedopManuu) B OSCKOHEYHOM IThe309JIEKTPHYECKOM KOMIIO3HTHOM
BOJIHOBOJIE, COCTOSILLIEM M3 MEPHOAUYECKH TOBTOPSIIOLIMXCS IBYXCIOWHBIX su€eK. B caruTralbHOM IIIOCKOCTH
OJTHOH TPOCIIOWKY B siYeiike, BO3MOXKHA aHTHU IUIOCKas 2JIEKTPO aKTHBHAs Ae(opManus, a B COCeHeH Mpocioiike
BO3MOJKHA IEKTPOAKTUBHOE IIOCKOCTHAS AedopManust. [Ipocioiiku HaxoiTcs B COCTOSIHUN HE aKyCTHYECKOro
KOHTakTa. [IOBEepXHOCTH IThE303JIEKTPHYECKOTO KOMIIO3UTHOTO BOJHOBOJA CBOOOAHBI OT MEXaHHMYECKHX
Bo3zeiicTBuil. OnHa U3 MOBEPXHOCTEH BOTHOBOAA MIEKTPUUECKH OTKPHITA, 4 APYTast JNEKTPUIECKH 3aMKHYTA.

PacnpocTpaneHne curHana 3IeKTPOAKyCTUYECKOH BONHBI IMPOMCXONUT 3a CUET IPOHUKHOBEHHUS
CONyTCTBYIONMX  KONEOAHHH  DNEKTPUUECKOr0  MOMsL,  uYepe3  HEaKyCTHYeCKHH  KOHTaKT — MEKAy
[bE30’JIEKTPHYECKUMH  CIOAMH.  [IpOHCXOAMT  MHOTOKpaTHOe — IpeoOpa3oBaHHE  TPEXKOMIIOHEHTHOM
9NIEKTPOYHIPYTroi CABUTOBOI BOIHBEI B YETHIPEXKOMIIOHEHTHYIO 3JIEKTPOYIPYTYIO BOJIHY IUIOCKOH JedopMmaluu u
HaoOopoT. OOpa3syercst THOPH] ANEKTPOAKYCTHUECKUX BOJIH. B Cilydae BBICOKOYACTOTHOTO BOJHOBOTO CHTHANA
dopmupyercss THOpHUA TOBEPXHOCTHBIX 3JEKTPOAKYCTHYECKMX BOJNH TUMOB Panmes u ['ynseBa-bmrocreiina.
Ormpezienensl pacnpeenenys yIpyruxX NepeMEIleHni U 3JIeKTPHYECKOro MOTEHIHaa M0 TOJIHHE BOJHOBOJA.
TlomydeHHsIii THOPHI MMeeT XapakTep Hepuoandeckoil BosHbl dioke-broxa. OnpeneneHsl 30HBI TOMYCTHMBIX
9acTOT ¥ pa3pelleHHBIX JIMH ruopupa. OOHapyXKeHBI Takke OBICTPO  3aTyXaloIlHe KOMIIOHEHTHI
3JIEKTPOAKyCTUYECKON BOJIHBI.

Introduction.

In [1], and in [2] the possibility of localizing of the wave energy of the SH elastic wave
with accompanying oscillations of the electric field on a mechanically free surface of a
piezoelectric medium of a certain symmetry, under various boundary conditions is shown.
The features of the propagation and localization of the wave energy of a purely shear
electroelastic wave are still being studied. In [3] the propagation of Bluestein-Gulyaev
waves in materials with complicated properties is investigated. The propagation of
Bluestein-Gulyaev waves in a prestressed layered piezoelectric structure was considered by
[4]. The propagation of transverse surface waves in a functionally graded substrate carrying
a layer of piezoelectric material of the 6mm class of hexagonal symmetry was studied by

57



[5]. In [6] the amplitude-phase interaction during the propagation of an electroelastic
monochromatic wave signal in an inhomogeneous piezoelectric with hexagonal symmetry
of class 6mm is considered.

Rayleigh-type electroelastic waves have been relatively little studied, although, for plane
deformation waves, the localization of wave energy near a mechanically free surface in an
isotropic half-space was first discovered by [7]. In particular, in [8] the propagation of the
Rayleigh wave in a rotating initially stressed piezoelectric half-space is considered. In the
article [9], the authors proposed an analytical model for studying the propagation of
Rayleigh waves in an orthotropic half-space with a piezoelectric layer. Propagation of
coupled Rayleigh waves in a piezoelectric layer of a material of the class 2mm of rhombic
symmetry over a porous piezo-thermoelastic half-space is studied in the work [10].

Under various alternative boundary conditions on mechanically free surfaces of a
piezoelectric waveguide, the problem of propagation of high-frequency electroacoustic
waves of plane deformation (Rayleigh-type electroacoustic waves) is solved in the work
[11].

The acoustic artificial structures with tunable parameters have attracted much research
interest in these days. In [12], the authors presented a tunable composite waveguide based
on the piezoelectric phononic crystal shunted by an inductor circuit.

Naturally, various studies have shown the possibilities of various types of localization of
wave energy under various boundary conditions near the surfaces of elements of a
composite (inhomogeneous) waveguide.

In modern high-precision technologies, composite periodically inhomogeneous waveguides
made of piezoelectric crystals are widely used as converters, filters or resonators of
electroacoustic wave signals.

For the first time, the presence of frequency cut-off zones in an unidirectional periodic
elastic structure was noted in the work [13]. An overview of the perspectives, current state
and future directions of research of wave processes in periodic structures are given in [14].
From the mathematical point of view, the spectral theory of transverse vibrations of
periodic elastic beams is presented in articles [15, 16]. In the work [17], the dispersion
relations of SH-waves were obtained and investigated during their propagation in periodic
piezoelectric composite layered structures. Papers [18] and [19] are devoted to the
application of the Floquet-Lyapunov theory to the problems of propagation of elastic waves
in periodic structures. In the works [20], the authors investigated the spectrum of Floquet-
Bloch waves in elastic periodic waveguides.

In the article [21] the spectrum of acoustic oscillations generated by interdigital transducers
in a plate made from a LiNbOs3 piezocrystal with a thickness on the order of the acoustic
wavelength is studied. It is shown that, along with zeroth and higher-order modes, this
spectrum also contains odd harmonics of the same modes.

Coupled electro-elastic SH waves propagating oblique to the lamination of a one-
dimensional piezoelectric periodic structure are considered in the framework of the full
system of Maxwell’s electrodynamic equations. The dispersion equation has been obtained
and numerical analyses carried out for two kinds of composites both consisting of two
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different piezoelectric materials [22, 23]. Analysis of the role of impedance on the existence
of forbidden frequencies are given in the works, where it is also shown that if the
impedance of a periodically inhomogeneous 1D structure is constant, then there are no
forbidden frequencies in this structure.

In the works listed above, the wave field is uniform, and the character of the initial normal
wave does not change during the propagation in a periodically inhomogeneous waveguide.
In [24] it is shown that, depending on the crystallographic symmetry of an anisotropic
piezoelectric, in its sagittal planes it is possible to excite either an electroelastic wave of
pure elastic shear, or an electroelastic wave of plane deformation, accompanied by
oscillations of a plane electric field.

In [25] the elastic wave propagation properties of phononic crystals (PnCs) composed of an
elastic matrix embedded in magnetorheological and electrorheological elastomers are
studied. The variations in the band gap characteristics with changes in the electric/magnetic
fields are given.

In articles [26, 27], it is shown that the non-acoustic contact between two different
piezoelectrics allows the formation of a hybrid of electroactive elastic shear and plane strain
waves. In article [28] the possibility of propagation of an unidirectional hybrid of
electroacoustic waves of elastic shear and plane deformation is showed, in a periodically
inhomogeneous composite, the layers of which are made of different piezoelectric materials
and are in non-acoustic contact. Two groups of allowed discrete frequencies are revealed. It
is shown that if the ratio of the widths of the interlayers and the velocities of elastic waves
in them is inversely proportional, then the admissible discrete frequencies are resonant.

We present here in a simple scheme of an inhomogeneous piezoelectric waveguide that
allows multiple mutual conversion and co-propagation of localized electroactive normal
anti-plane strain waves and plane strain waves under different electrical conditions on the
waveguide surfaces.

1. Formulation of the problem

Let us consider the propagation of the electroelastic wave normal signal
F(x, y,t) = f(x,¥)-exp(iat) , in a periodically longitudinally inhomogeneous layer, which
is assigned to an orthogonal coordinate system Oxyz (Fig. 1). Composite waveguide layer
consists of periodically repeating cells Q(X,Y,z) = (X,y,z2) U Q,(X,Y,2), from different
piezoelectric crystals of rectangular cross section

Q,(xy)2{xe[0a] ye[-hh], [z]<eo}, Q,(xy)2{xe[-a,;0] ye[-hhl} (1.1)
There is no acoustic contact between adjacent layers and cells.

The crystallographic axes and sagittal crystallographic surfaces of the adjacent layers
materials in the cells are referred to the Cartesian coordinate system Oxyz, so that the

multicomponent electroactive waves of anti-planar and planar deformations can exist
separately in the adjacent layers of the waveguide.
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Without violating the generality of the reasoning, for clarity, we formulate the boundary
value problem by choosing specific anisotropies of the materials of the composite
waveguide bands.

Let us assume that the material of the strips €,(X,Y,Z) belongs to the crystallographic
class 6mm of hexagonal symmetry, and the symmetry axis of the piezocrystal P, is
parallel to the selected coordinate axis p||0Z. Then, the quasistatic equations for

unidirectional waves of electroactive antiplane deformation
{0; 0; w, (X, y); ¢(x y)}-exp(iet) , with respect to the functions of the elastic shear

w, (X, Y) and the potential of electric field ¢, (X, y) in the plane xOy of the Cartesian
coordinate system are written as

W (X, Y)Wy (X, Y) == (@ /CE) - W (X, Y) | 12)
P (%, Y) + 014y (%, Y) = @8 /D) - W (%, Y) + Wy (%, V) |
In equations (1.2), C, =m is the velocity of the volumetric electroactive elastic

shear wave, g% =c% (1+ ;(12) is the shear rigidity of the material, taking into account the
4611

piezoelectric effect, c{) is the shear rigidity, Zf:(e{?)z /(cfﬁ) Q) is the

electromechanical coupling coefficient, e{ is the piezoelectric modulus, &9 is the

relative dielectric constant and o, is the density of the piezoelectric material.

17}

v

Fig.1 Periodically longitudinally inhomogeneous composite waveguide, without
acoustic contact of piezoelectric interlayers.

On both surfaces y =+h of rectangular sections €,,(X,y) of the waveguide strips free
from mechanical loads, the conditions for mechanically free boundaries are written as
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[ -wyy (o y)+e -, ()| =0 (1.3)
The conditions for the conjugation of the electric field with the external field on the

surfaces y = +h of rectangular sections €,(X, y) of strips are written in the form

[ V) -p.(x V)], _,, =0

y=th -

(€ /e) Wy, (V) =, (W] =~ (e0/e?) 0., (%, Y)

(1.4)

y=th

In surface relations (1.4), ¢,(X,Y) is the amplitude function of the external accompanying
electric field.

On the electrically open y =h and electrically closed y =—h surfaces of the piezoelectric
rectangular sectionQ,,(X,y), the conditions for the transparency and shielding of the
electric field take the form, respectively

[(2/e) Wy, (X ) ~a1, (Y], =0, (1.5)

a(xy),_, =0 (1.6)
Because of the penetration of accompanying electrical vibrations through the vacuum gap,
in the rectangular section Q,,(X,Y), the propagating three component electroelastic shear
waveform{0;0;w, (X, y); @, , (X, y);gol,y(x, y);0}-exp(iat) , is converted in the rectangular
section Q.,(X,y), into the four component electroelastic plane deformation wave
{U (X Y); Vo (%, ) 05 0, (%, Y); @, (X, Y); OF-exp(iet) . Similarly, because of the
penetration of accompanying electrical vibrations through the vacuum gap, in the
rectangular section Q.,(X,y), the propagating four-component electroelastic shear
waveform is converted in the rectangular sectionQ,(X,y), into the three-component
electroelastic plane deformation wave. Such multiple transformations

{00, (%, 1) @, (X Y, ), (X, Y, 1), 0 2

2 {U, (% Y 15V, (X, Y, 10 9, (X, Y, 1)1, (X, Y, 1); O}

of the wave field are possible if adjacent piezoelectric strips of different materials are in
non-acoustic contact with each other.

Let the material of the composite bands Q,,(X,y) belong to the class 6m2 of hexagonal
symmetry and the inversion symmetry axis ﬁe of the piezocrystal be aligned with the
coordinate axis 0z . Then in the coordinate plane Oxy the quasi-static equations for
unidirectional electroactive plane deformation with respect to both amplitude functions of
elastic displacements U,(X,Y), V,(X,y) and the potential of the electric field @,(X,Y)
will be written in the form [12, 23]

Upo (X, ¥) + Uy (X, Y) = (00" /C3) - U, (X, Y) (1.7)
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Voo 6 V) + V5 (%, Y) == (@7 /CF) -V, (%, Y) (.8)
(92,00 (X Y) + 05,4, (%, V)] = €11/ €11) - [Ug o (%, ) + Uy (X, V)] (1.9)
In equations (1.7) + (1.9), the ¢?,¢? and ¢ = (¢ —c® )/2 is the elastic modulus of

rigidity and shear, respectively, e is the piezoelectric modulus, &2 is the relative

dielectric constant, p, is the density and #{” =./e?/(cQe?) is the coefficient of
electromechanical coupling of piezoelectric material.
Co =[C2- @+ 22) =@ /p,) W+ z2) and C, =\[c?/p, are the velocities of

longitudinal and transverse elastic volumetric waves, respectively, without taking into
account the piezoelectric properties of the material.
The conditions of mechanically free surfaces y =+h of rectangular sections of strips

Q,,(X,y) in the case of a selected cut of the given piezoelectric will be written in the form

(e U () +el? v, ()] = »
[Usy 06 Y) + V5, (6 V) + (& /c2) - 5, (%, ) | 10
The conditions for the conjugation of the electric field with the external field on the
surfaces y = +h of rectangular sections of strips Q,,(X, y) written in the form

[P /D) [z (% )+ Vo, (X DT = 05, (6 ) Heo/6) 00 (1Y) ], =

[2.(x V) —e.(x. V)], =0 (1.11)

On the electrically open surface y =h and on the electrically closed surface y =—h of

y+h

the piezoelectric layer, the conditions for the transparency and screening of the electric
field, respectively, take the form

[P /&) Tz () + Vo, (YT = 5, (Y], =0, (112)
(%, y)|,_, =0 (1.13)
Without acoustic contact of the strips of the composite waveguide, on the facial surfaces

Xy, =—8 N, +a,), X,=1n(a +a,) and x,=a tn(a +a,), where neN"of the
interlayers, both the conditions of mechanically free surfaces and the conditions of
conjugation of the electric field are satisfied.

On all the facial surfaces X, =-a& tn(a+a,), X,==tn(a+a,) and

X, =& tn(a +a,), wherene N* of the interlayers, the conditions of mechanically free
surfaces are written in the following form

i -wy, (xy)+el @, (X y) =0, (1.14)
o Uy, (X Y)+¢f v, (X, y) =0, (1.15)
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Uy, (% Y) + V5, (6 ) + (62 /c2) - ¢, , (%, ¥)=0 (L.16)

The wave signal propagates along the inhomogeneous waveguide by means of the
penetration of accompanying electrical oscillations through vacuum gaps on the same
surfaces. On all these facial surfaces, the conditions for the conjugation of the electric field
are as follows

(% Y) =p,(xY) (1.17)

ey Wi, (X, V) +& @, (% Y) =] Uy, (% Y) —e -V, (X V) + &7 - @, (X, Y) (1.18)
Systems of equations (1.2) and (1.7)+(1.9) together with boundary conditions (1.5 ) and
(1.6) on the surfaces of the inhomogeneous waveguide y=+h, as well as with boundary

conditions (1.14)+(1.18) at the ends X,,=-8,=n(a +a,), X, ==*n(a +a,) and
X, =& tn(a +a,), constitute the complete mathematical boundary value problem for

studying the propagation of the hybrid of four-component and three-component
electroactive elastic waves of plane and antiplane deformations.

The general solutions of equations (1.2) and (1.7)+(1.9) satisfying the boundary conditions
(1.5) and (1.6) on the surfaces of an inhomogeneous waveguide characterize the
distribution of the wave field (intensity of wave quantities) over the thickness of the
waveguide.

The solutions satisfying the boundary conditions (1.14)+(1.18) at the inner ends of the
interlayers of the composite waveguide correspond to the filtration mode (the admissible
frequencies of waves propagation).

2. Solution of the mathematical boundary value problem

Based on the structural periodicity of the inhomogeneous waveguide, it is natural to study
the propagation of the electroelastic wave signal according to the Floquet-Lyapunov theory.
The periodicity of the structural inhomogeneity of the composite waveguide makes it
possible to construct the solution to the formulated boundary value problem for the unit
periodic composite cell Qy(X,y) =Qy, (X, y) UQy,(X,Yy), taking into account the Floquet

conditions on the facial surfaces of the composite.

2.1. Formation of a hybrid of multicomponent electroacoustic waveforms over the
thickness of the interlayers of the unit cell.

Propagating along the infinite periodically inhomogeneous waveguide, the Normal wave
signal induces a three-component and a four-component waveform of

f. (% Y) =Y, (Y)- X, (X) type, in each layer, respectively

X, (X) = i[cn cos(k,X) + D, sin(k,,x)] ,

n=1

Y, () = 3 [A, 008(ct, Ky ) + By sin(ay ki y)]. 2.1)

n=1
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In wave functions f_ (X,y), the multiplier Y,(y) characterizes the shape of the wave
component along the thickness of the waveguide, X, (X) characterizes the shape of the
propagation of the wave component, m e{L; 2} is the numbering of the wave numbers in the
layers Q, (X, y) and Q,,(X,Y), respectively.

Induced in the interlayers €).(X,Y), the three-component normal electroelastic shear
waveforms, as solutions of the system of equations (1.2) are written in the form

Wl(X1 y) = i[ANn Cos(ﬂlnkln y) + Bwn Sin(ﬂlnkln y)][cln COS(klnX) + Dln Sin(kln X)] ! (22)

. [Aﬁm cos(ky, y) + B, sin(k,, y)} +
2 (xy) = Z‘ +(e1(§)/gl(l)){ A, CO?( Bk, Y) 1 [C,, cos(k,,X) + Dy, sin(k,,X)] (2.3)
+Bwn Sln(ﬁln kln y)

where the wave number K, (@) for each form will be defined from dispersion equation

tan[2/3,, (@) -k, (@)h] } 0 (2.4)

Pin (@) |:ﬂln (@)- tan[2k,, (@)h] X1

Solutions (2.2) + (2.4) involve the wave coefficient /3, (@) = \/[wzCl}Z] k2 (@) —1 of shear
oscillations for swift waves of antiplane deformation, for the phase velocities of the forms
of which a/k,(w)>C,. Generally, swift waves correspond to long waveforms (low
oscillation frequencies), for which 4, (@) =h or k,(w)-h=1.

In the case of the high-frequency wave signal, in the piezoelectric rectangle Q,(X,Y), the
short electroactive elastic transverse single-mode wave propagates in the piezoelectric
rectangle, for which 4, (w) <h or Kk (®)-h>>1. Then, electroactive shear waveforms can
be damped deep into the piezoelectric rectangle (X, y).

The high frequency components of the electroelastic wave are represented as

inh K
W, (%, y) = L’f‘g S':Ois’[léw(l}) 1&“&)”)];} -[C, cos(k,x) + D, sin(k,x)] (2.5)
[ A, sinh[k, () y]+ B, cosh[k, () y] | +
atuy)=1 g A, sinh[a, (@) - k () y]+ ] ¢ *[C: cos(k (@) x) + Dy sin(k, (@)x)]  (2.6)
& /40) L p coshla, (@), (@)y]

and the wave number in the interlayer is determined from the dispersion equation

tanh[2e, (@) -k (@)h] |
0.’1(6())’|:a1(a))' tanh[2k1(60)h] 4 :| =0 (27)
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Solutions (2.5) and (2.6), as well as the dispersion equation include the wave coefficient

afl(a))=\/1—[a)2C1}2]/k12 (w) of shear oscillations for slow waves of antiplane

deformation, for the phase velocities of the forms of which o/k, (@) <C,, .

Y&

003
002§

ooy

0.00

Fig.2 The shear displacement distributions along the thickness of the interlayer Q.,(X,y), in
the case of different electrical surface conditions on the waveguide surfaces
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Fig.3 The electric field potential distributions along the thickness of the interlayer Q.,(x,y),

in the case of different electrical surface conditions on the waveguide surfaces
From the dispersion equation (2.7), it follows that in the piezoelectric waveguide with
different surface conditions, the Gulyaev-Bluestein-type waves become highly dispersive.
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In the case of identical surface conditions of the electric field (1.4), at the oscillation

frequency @ > Clth’l\ll— #le, / (€Y +&,)], the same localization of the wave energy of
high-frequency electroacoustic waves of the Gulyaev-Bluestein type occurs near
mechanically free surfaces (Fig. 2).

In the case of different surface conditions on the electric field (1.5) and (1.6), near the
surfaces y=h andy=-h the wave energy localization of the Gulyaev-Bluestein type

electroelastic waves occurs in different ways (Fig. 3). Near the electrically open surface
y =h, there will not be a localization of wave energy. Near the electrically closed surface

y =-h, at high frequencies @ > Clth’1 1—;(14 , there will be a localization of the energy

of electroacoustic waves.
Due to the conjugation of the electric fields (1.17) and (1.18) on the mechanically free end
surfaces of adjacent interlayers, the electroelastic wave of plane deformation arises in the

second interlayer € ,(X,y) [11, 25]. The four-component normal electroelastic wave of

plane deformation induced in the interlayer Q ,(X,y), as solutions of the system of
equations (1.7)+(1.9) with surface conditions (1.10), (1.12), (1.13), can be represented as

u,(X,y) = i[Am €0S(By Ky Y) + By, SIN( B, Ky, Y)[Car €OS(KyX) + Dy SiN(K,X) ] (2.8)

V, (% y) = i[ﬂw COS(ByKyn Y) + By, SIN( Bk, ¥)[Cap €OS(KyX) + Dy SiN(K,,X) | (2.9)

[ A c08(Ky ¥) + By, sin(k,, y) |+
2 (X' y) = nzzll +(e1(12)/gl(2)) y |:Am Coé(ﬂun an y) +:| [CZn COS(anX) + DZn Sin(anx)] (2.10)
+Bun Sm(ﬂunkZH y)

Solutions ~ (2.8) +  (2.10) include S, (a;)zx/[wZC;ﬁ]/kjn (w)-1  and

Boi(@) = \/[wzcgf]/ k2 (w)—1 wave coefficients for longitudinal and shear oscillations of
plane deformation swift waves, for the phase velocities of the forms of which
/K, () = max{C,;C,}.

Generally, swift waves correspond to long waveforms (low oscillation frequencies), for
which 4, (w) =h or k,,(w)-h=1.

Satisfying the surface conditions (1.10), (1.12), and (1.13), for determining the wave
number, we obtain the dispersion equations of the generated waveforms

sin(2k,h) -sin(23,k,h) - sin(25, k,h) =0 (2.11)
BB = 2B (20 = BB )-SIN(2K,1) - €t (2B, k1) + (L+ 22) - (6],)° (2.12)
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Dispersion equations (2.11) and (2.12) include the wave coefficients £, (@,k,,) and
P (@,K,,) for longitudinal and shear oscillations of plane deformation swift waves. And
here we also have the dimensionless material anisotropy parameters 6, =c? /c? and
6, =c?/e? with the given piezoelectric effect of material, with the stiffness coefficient
&Y =c I+ ) and z =7 /(U+ 23). 7 =€) /(&) - the electromechanical
coupling coefficient for the second piezoelectric.

Dispersion equation (2.11) describes the formation of eigenmodes of bulk oscillations of
the electric potential, longitudinal and transverse displacements, which do not decay over

the thickness of the waveguide. Their wave numbers are defined as k{ =nz/2h,

k) (@) = \/(a)/CZ, )’ —(nz/2h)? and k) (w) = \/(a)/CZt)z —(nz/2h)* | respectively, where

neN",
Dispersion equation (2.12) describes coupled electroacoustic oscillations of plane strain.

In the case of high-frequency (short-wavelength), when @/ k2n(co)£,/cé§) / p, the slow
wave signal is converted into an equation of the form

0l = 2ty (20 + atyaty, ) -sinh(2k,h) - coth(2a, k) + A+ 23) - (6),)° (2.13)
Vi
OO0 pr

O o0onE

0.000

O 005

ooor
0.000 0002 0.004 0.0086 0. 008 0010

Fig.4 The planar and shear displacement distributions along the thickness of the interlayer
Q,,(x,y), in the case of different electrical surface conditions on the waveguide surfaces
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In this case, the four-component normal electroelastic wave of plane deformation induced
in the interlayer, as solutions of the system of equations (1.7)+(1.9) with surface conditions
(1.10), (1.12), (1.13), is represented as

u, (X, y) =[ A, cosh(az, K, y) + B sinh(ez, k, y) |[C, cosh(k,X) + D, sinh(k,x)] (2.14)
v, (%, y) =[ A cosh(ayk,y) + B sinh(a,k, y) || C; cosh(k,x) + D; sinh(k,x) | (2.15)
[ A cosh(k,y) + By sinh(k,y) | +
P, (X, y) = +(eff) /81(12)){:5{: (EO?h((Zz,kz y) +} [Cz cosh(k,x) + D, Sinh(kzx)] (2.16)
+B, sinh(a,k,y)

Y&
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o010 ¢ . |
0.000 0.002 0.004 0.006 0.008 0.010

Fig.5 The electric field potential distributions along the thickness of the interlayer Q, (X,y), in
the case of different electrical surface conditions on the waveguide surfaces

Solutions  (2.14) = (216) include @ (@)=1-[0’CI/K (@)  and

ay (@) = \/1—[60202}2]/ k? (w) wave coefficients for longitudinal and shear oscillations of
plane deformation slow waves, for the phase velocities of the forms of which
ok, (@) =min{C,;C,}.

If the piezoelectric effect in the second piezoelectric is zero 2 =0, from (2.13) we obtain

the dispersion equation for Rayleigh waves in the isotropic medium o a2 =65 .

In the case of different surface electric conditions (1.12) and (1.13) on the surfaces of the
waveguide the distributions of both planar and shear displacements, as well as of potential
of the electric field over the thickness of the interlayer Q, (x,y) are shown in Fig. 4 and
Fig. 5.
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2.2. Propagation of waveforms localized near the surfaces of the waveguide in the
periodically longitudinally inhomogeneous composite layer.

Taking into account the nature of the periodicity of the structure of the inhomogeneous
waveguide, to determine the patterns of propagation of forms of electroelastic waves
localized near the surfaces of the waveguide (2.5) and (2.6), as well as (2.14) + (2.16) we
will use the Floguet-Lyapunov theory for periodic structures. Non-acoustic contact on the

face surfaces of the periodic structure X=-a, and X=a,, simplifies the corresponding

surface conditions according to the Floquet-Lyapunov theory. It makes it possible to use the
conditions of the mechanically free surface on the frontal surfaces of visible interlayers
(1.14) = (1.16)

o Uy, (W) + 0 v, ()], =0
0 (2.17)

oDy, )+ v, (xy)] =0

Uy, (X V) + V5, (X Y) + (€2 /¢8) - 05, (X, V)] =0
2 (2.18)

Uy, (6, V) + V5, (%, Y) + (& /¢2) - 0, (. y) | =0
Cﬁ) "W, (X y)+ eJ%) "Dy (% y):|X:0 =0

Cﬁ) "W, (X y)+ el(els) "Dy (% y)l(:al =0

On the face surfaces of the composite waveguide, the conjugation conditions for the electric
field are satisfied. On face surface X =0 these conditions can be written as

A% Y)| _, =P(%Y)
|:e1(é) ' Wl,x (X1 y) - {;‘1(? ' ¢1,x (Xl y):|x:0 =

= [eff) : UZ,X(X; y) - e]f) : VZ,y(X1 y) - Sff) : ¢2,x (X, y):|x:0

(2.19)

[
[
[
[
[
[

(2.20)

(2.21)

On the face surfaces X=-a, and X=a,, according to the Floquet-Lyapunov theory, the

periodicity of the longitudinal inhomogeneity of the composite waveguide allows the
conjugation conditions for the electric field to be written as

ey |, =u ey (2.22)

|:el(é) "Wy, (X’ y) - 81(1) “Pux (X’ y):|x:a1 -

(2.23)
= [ e Up (6 Y) -V, (X ) &2 - 0, (X, V)]

In the boundary conditions (2.22) and (2.23), the multiplier x =exp[iL-k(w)] is Floquet

X=—ay
periodicity coefficient and L =a, +a, is the linear periodicity parameter, k(@) =27/ A(w)

is the Floguet wave number (the wave number of the generated wave), corresponding to the
resolvable wavelengths A(w) in the layered waveguide.
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Substituting the solutions (2.5), (2.6) and (2.14) + (2.16) into the boundary conditions of
the mechanically free surfaces (2.17) + (2.19), as well as into the conditions of the electric
fields conjugation (2.20) and (2.23) on the face surfaces of the piezoelectric layers, we
obtain the algebraic system of linear equations with respect to amplitude functions. From
the condition for the existence of nonzero amplitude functions, we obtain the dispersion
equation for frequency filtering for the hybrid of electroelastic waves

k(@) = —~—x
a +a,
2 (2.24)
< Arccos| K4.(@)- cos”Tky(@)ai] + k; (@) -[4 coslk, (@)a,] — cos[k, (@)a,]]
2k, (w)k, (w) - cos[k, (w)a,]- [4 cos[k,(w)a,] - cos[kl(a))al]]

If we take into account that the hybrid components in the interlayers of the inhomogeneous
waveguide are  Gulyaev-Bluestein and Rayleigh-type  waves, for  which

k (@) =kgg(0) =®/Cqy  andk,(w) =kg(®) =w/Cy , respectively, then the dispersion
equation for frequency filtering can be written as

k(@) = ——x
at+a,
2 2 2 (225)
(0/Cgg)” -cos’[wa, /Cez]+(w/Cy ) - [4cos[wa, /C,]-cos[wa, /Cqg]]
x Arccos
Z(w/CGB)’(W/CR)‘COS[wai/CGB]'[4005[0)a2/CR]_COS[wai/CGB]]]

The allowable wavelengths in the Floquet-type hybrid wave are determined from the
equation
Mw) =
2r(a, +a,)
(W/CGB )2 . 0052[a)a1/CGB] + (a)/CR )2 . [4COS[(08.2/CR] _ COS[&)ai/CGB]]Z :l (2.26)

Arccos

2 (w/CGB ) : (a)/CR ) -cos[way, /Ceg]- [4 cos[wa, /Cq] - COS[QQ/CGB]]]

The filtration equation, with different combinations of the selected pairs of piezoelectric
materials, the zones of permissible frequencies for localized and non-localized
electroelastic waves propagating along the composite waveguide are determined. The
filtration equation also gives bands of forbidden frequencies, at which the composite
waveguide of certain piezoelectrics and linear dimensions does not allow the propagation of
localized electroelastic waves, or waves in general.

Consequently, by the proper choice of materials and linear dimensions of the interlayers, it
is possible to achieve optimal transfer of wave energy from one interlayer to another, or
vice versa. Thus, the inhomogeneous waveguide can become a kind of electromechanical
filter or resonator.

Let us consider a particular case when, in the interlayers, the velocities of localized
electroacoustic ~ Gulyaev-Bluestein  and  Rayleigh  waves are equal to

Ces =2574x10° m/sec  andC, =2.752x10° m/sec,  respectively. ~ And the
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electromechanical coupling coefficients of these materials are respectively 5 = 0.9013 and

77 =0.1021.

Kk/10° o

20} r 7
|
-0.1 | e [

-0.2

-04

Fig. 6. Permissible frequencies and wavelengths of the Floquet type in the case of piezo
layer thicknesses a, =1x10°m and a, =2x10°m.

Fig. 7. Permissible frequencies and wavelengths of the Floquet type in the case of piezo
layer thicknesses a, = 2x10°mand a, =1x10°m .
In different cases of choosing the thicknesses of the piezoelectric interlayers, when the
thickness of the waveguide is h=1x10"°m, from the relations (2.25) and (2.26) for the

allowable frequencies and wavelengths of the Floquet type waves are given in Figures 6, 7,
8. From all the above graphs, it is clear that at relatively low frequencies, when

0<w<1x10° Hz, there can be rapidly decaying electroacoustic wave signals, since in this
case 0< Im[k(w)] <5x10° m.

In all the above cases, when the allowable frequency of wave hybrid propagation changes
in the segment2x10®° Hz<w<2x10°Hz (Fig. 6), or in the segment
2x10° Hz < w<5x10° Hz (Fig. 7), or in the rendition 4x10° Hz < @< 4,43x10° Hz
(Fig. 8), a hybrid of localized normal waves propagates with wavelengths
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0 < Re[A(@)] <0.06x10*m, 0 < Re[A(w)] <0.08x10™*m, or 0 < Re[A()] <0.04x10*m

, respectively, or a rapidly decaying wave signal, for which 0 < Im[A(®)] <0.038x10*m .

Kk/10° Ax104

1o 0.05
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-0.05 y
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5l -0.20 \1 //
-025 /

-0.30 1

Fig. 8. Permissible frequencies and wavelengths of the Floquet type in the case of piezo
layer thicknesses a, =1x10°mand a, =1x10°m .
Conclusion.
An electroacoustic wave signal propagating in a transversely periodically inhomogeneous
piezoelectric waveguide is converted into a hybrid of electroactive waves of plane and
antiplane deformations, when the inhomogeneous periodic cell in the waveguide consists of
different piezoelectrics that are in non-acoustic contact. In the case of propagation of a
high-frequency wave signal, it forms a hybrid of electroactive waves of the Gulyaev-
Bluestein and Rayleigh types localized near the outer surfaces of the waveguide. The zones
of permissible frequencies for the propagation of the formed hybrid of waves of the Floquet
type are determined. The zones of the corresponding lengths of the propagating wave are
also determined. Rapidly decaying localized waves were also found in the allowable
frequency zones.
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