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This analytical study demonstrates shear elastic wave propagation in stratified waveguide
with emphasis on wave localisation effects using the propagator matrix method. The
stratified waveguide consists of two-phase piecewise homogeneous periodically arranged
finite number sub-layers along waveguide thickness. Analytical solutions are carried out for
traction free waveguide. The existence of two modal types of guided waves is established:
i) a localised surface mode occurring in “stopband” and ii) normal modes arising in a
“passband” of frequencies.

CaBHroBbIe yIpyrue BOJTHBI B MHOTOCJI0HOM ABYX()a3HOM BOJIHOBOJIE
K. Ka3apsu, P. Kazapsn, C. Tep3san

KiroueBble cjI0Ba: TONEPEYHBIC YINPYrHE€ BOJHBI, MHOTOCIOWHBI BOJHOBOJA, MAaTPUYHBIA METO],
JIOKAJIM30BaHHBIC BOJIHBI.

JlaHoe aHAIMTUYECKOE WCCIENOBAHNE TOCBAIIEHO BONPOCY PAaCIpPOCTPAHEHHS CABHTOBOH YNPYroil BOJHBI B
CJIOMCTOM BOJIHOBOJIE C aKIIEHTOM Ha 3()()eKThI JIOKAIM3aIlX BOJIH C MCIIOJIb30BAaHHEM METO/ia TpaHC(hep MaTpHIL.
MHOTOCTIONHBIA BOIHOBOJ COCTOMT M3 KOHEYHOTO UHCNa JBYX(a3HBIX KyCOYHO-OJHOPOIHBIX TEPHOIMIECKH
pacripeieNIeHHBIX BJIOIb TOJIIMHBI BOJHOBOAA TozcioeB. [omydensl aHanUTHYECKHE PEIISHHs JUIs BOIHOBOAA,
MOBEPXHOCTH KOTOPOTO CBOOOAHBI OT MEXAaHMYECKHX HANpsDKCHHH. YCTaHOBJIEHO CYIIECTBOBAHUE [BYX
PA3IMYHBIX MOJ| HANpABJICHHBIX BOJH: 1) JIOKaTM30BaHHOW NOBEPXHOCTHOW MOJBI, BOSHMKAIONIEH B «I10J0CE
3a/Iep)KUBAHMS U 2) HOPMAIBHOMN MOJIBI, BO3HUKAFOIIEH B «I10JI0CE TIPOITYCKAHHSD) JacToT.
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Introduction
Recently much attention has been given to the propagation of elastic waves, called
Floquet-Bloch waves, which occurs in elastic periodic structures (phonon crystals) and
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consisting of an arrangement of coupled substructures with highly contrasting mechanical
properties (elastic stiffness and/or mass density). The most notable feature of phonon
crystals is the existence of finite “stopband” of frequencies in which elastic waves are
unable propagate in any direction [1-5]. This important feature makes possible to use such
crystals in the design of novel engineering material and structures.

The existence of a new type of surface SH wave which propagates along the free
surface of a periodically layered half-space was first demonstrated by Auld et al. [6]. They
have shown that harmonic wave can be exponentially attenuated in periodically layered
half-space in a finite “stopband” of frequencies. The detailed analysis of these SH waves
was given by Camley et al. [7] and further developed by Chen et al. and Jorge et al., which
studies are reported in [8,9], respectively. Boudouti et al. [10] studied the transverse surface
elastic wave in the semi-infinite N-layer super-lattices created by periodic repetition of N
different elastic slabs and the special case of a four-layer super-lattice was considered.
Shuvalov et al. [11] considered the SH surface wave in a periodically layered semi space
with an arbitrary non-homogeneous unit cell profile. The study has shown that the existence
and spectral properties of the SH surface wave is directly related to geometry and physical
properties.

An extensive overview of historical developments with an in-depth literature (more than
400 references) and technical review of recent progress in the field of dynamics problem of
elastic and acoustic wave motion in periodic structures is given by Hussein [12]. A review
of the most widely-used methods determining structure of eigenmodes propagating in
periodic materials was presented by Gazalet et al [13]. In one of the most recent papers on
waves in periodic structures Shmuel and Band [14] shows that the frequency spectrum of
periodic 1D two-phase laminates has a universal structure, independent of the geometry of
their unit-cell and specific physical properties.

Vibration problems of finite periodic structures are closely related to the problems of
wave reflection and transmission by a finite periodic layer. The reflection and transmission
of electromagnetic waves through periodically stratified medium was considered by Yeh et
al. [15], where the analytical expression of the reflectivity of a finite multilayer two phase
dielectric reflector was presented. For semi-infinite periodic multilayer dielectric medium,
consisting of alternating layers of different indices of refraction, the existence of surface
electromagnetic wave was shown in finite “stopband” of frequencies. In the framework of
matrix analysis the implications of the band structure of an infinite periodic structure for
wave reflection by a finite structure are demonstrated by Lekner [16] for electromagnetic
waves in stratified dielectric media. Numerous problems of wave propagation in elastic
multilayered medium were considered by Brekhovskikh [17].

Shear wave transmission characteristics in elastic media that have periodic
microstructure over a finite spatial length were examined by Kobayashi et al. [18] for two
classes of such media, namely, one-dimensional multilayered media with finite-length
periodicity and two-dimensional composite media with square arrays of aligned fibers
within a finite length.

A few recently published studies were devoted to vibration problems of finite 1D
periodic rods and beams. In the framework of Galerkin method Ying and Ni [19, 20]
considered the vibration of finite length beam with arbitrary periodic modulation of beam
rigidity and cross-section parameters. By means of numerical analysis the relationship
between the natural frequencies of the non-uniform beams with finite periodicity and the
band gap boundaries of the corresponding infinite periodic beam was investigated. Xu et al.
[21] employed the transfer matrix method to study the natural frequencies of the two-phase
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beams with modulation by finite periodic uniform cells. The effects of the amounts, cross
section ratios, and arrangement forms of the periodic cells on the natural frequencies were
explored and the relationship between the natural bending frequencies of the beams with
finite periodicity and the band gap boundaries of the corresponding infinite periodic beam
has been discussed. Based on physical models of elastic rod and beam Hvatov and Sorokin.
[22, 23] compared the eigenfrequency spectra of finite periodic structures with the location
of the “stopband” for their infinite counterparts. Special attention was paid to
eigenfrequencies and eigenmodes of a single periodicity cell with appropriate boundary
conditions. The influence of the number of periodicity cells in a finite multi-layered
structure on its eigenfrequency spectrum was analysed.

Elastic wave localisation in waveguide caused by micropolarity properties was shown
by Ambartsumian, Avetisyan and Belubekyan. [24]. Avetisyan et al. [25, 26 ] have shown
that an unevenness of waveguide walls can be the reason of shear wave localisation in
layered elastic and piezoelectric composites.

To the best of the authors’ knowledge less attention was paid to wave localization
problem in finite periodically arranged structure. Hence, in the present paper, using the
well-known propagator matrix formalism suggested by Gilbert and Backus, [27] and
developed by Alshits et al. [28], an analytical formulation is provided for shear elastic wave
propagation in periodically stratified layers with emphasis on wave localisation effects. The
stratified finite layer consists from two-phase piecewise homogeneous sub-layers or
functionally graded elastic alternating sub-layers when layer plane surfaces are free from
mechanical tractions.

Multi-layered piecewise homogeneous waveguide
Let’s consider shear waves propagating along a multi-layered elastic waveguide
constituted by a finite number of repeated different two sub-layers consisting from different

elastic materials A and B, see Fig. 1. Each of these sub-layers of widths d,,d, , is
labelled by the index (S)=1, (S)=2 within the unit cell labelled by the index
n(n=1,2,3...N). Each of the two sub-layers is assumed to be perfectly bonded to the
adjoining sub-layers. The layer extends from the top surface X =0 to the bottom surface
Xx=Nd,and d =d, +d,, N is the number of elementary units.

Traction free surface 0

Traction free surface
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Figure 1: Geometry of the multi-layered elastic waveguide constituted by a finite number of
repeated different elastic sub-layers A, B

The elastic displacements and stresses obey to the anti-plane equations of motion and
Hooke’s law. Choosing the anti-plane deformation in the z -direction one has

J,0,, +0,6, =po,\,, 6,, =uoU,,c, =no U, (1)
where U, (X, y,t) is the displacement in z - direction.

Considering a steady SH-wave propagating with

u, (X, y,t)=u(x)exp[i(ky —wt)] )
where Kk, are wave number and frequency, the solutions for functions uf) (X) within
each material A, B domains of the sub-layer material can be found as the sum of incident
and reflected plane waves

ul? (x) = o exp(ig,x) + oy exp(-ig,x) 3)

Here g, =4 ®’/c?—k®,cZ=p,/p,, and correspondingly, o', o’ are the

complex amplitudes of the incident and reflected plane waves, respectively.
(s)

According to Eqg. (2) one can define o,/ as
ol =18 (x)exp[i(ky —ot)] , 4)
™ (x) =i, [ o exp(io,x) — o exp(-ia,x) | (5)

Enforcing the continuity of tractions and displacement jump boundary conditions at the
interfaces of two materials that is

u® (x)=ul? (x), 7 (x) =12 (x);  x=(n-1)d +d,
(2) @ (2) () . _
up? (x) =ul (x), 77 (x) =14 (x); x=nd (6)
n=12,..,N
Since the interface continuity conditions are imposed on functions uf) (X),Tf) (X) it
is convenient to introduce the following column field vectors

ol
U(s)(x) ((s)) AES) ( (s)) )

In matrix form the solutions Egs.( 3-,5) can be cast as

U (x)=F(x)-A®, ®)
where
£ (x)=| eXp(lqsﬁ), | eXp(-lqu_) o
in g, exp(ig.x), —ip,q,exp(-ig,x)
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Let note that the transmission conditions reported in Egs. (6) lead to the conditions of
continuities of the field vectors U f’ (X) at separation interfaces of the sub-layers.

Statement of the problem, propagator matrix method
With the view of linking the field values of the vectors U" (X),U,(f) (X) between

top X =0 and bottom X = Nd surfaces of the waveguide, a propagator matrix method
[26] will be used.

The method considers two neighbouring points X%, x{¥ within each material in
domains of the sub-layers A, B, of the N -th cell. For values of field vectors Jrfs)(x) in
these points the following conditions hold valid

T6) (Y — E6) (). A TG () —_ E6) (Y. A
Un (Xin )_Fn (Xln )A} ’ Un (XZn)_Fn (XZn)'A\w (10)

Eliminating vectors A(® from Eq. (10) the relation linking U vector field values

within each material can be found. This is:

FION R OA T JONRVORVORNION VO

Un (X2n )_Tn (Xln + Xon )Un ( n )’ (11)
F (s s s (s $)\( (s 9\

Herein T )(Xi(n),xén)) =F )(Xén))(F,f )(Xi(n))) is the transfer matrix in each sub-

layer.

-1 .
Cos(qs (X;) - (rf) )) (qus) sin (qs (XS]) - (:) ))
T ( (5) y(s) ) — (12)
oA\t - (5) _ () (5) _ ()
—HgsSin qs(XZn ~ Mn ) Cos| Qs (X2n ~ MMn )
Let now consider the N -th cell of the structure. Using the continuity conditions of field
vectors U ¥ (x) at interfaces X, = (N—1)d +d, one obtains

Uy () =U? (%), (13)
while Eq.(11) leads to the matrix equations

U® (nd)=MUL ((n-1)d), (14)
where M =T.® (dy,nd)T® ((n-1d,d;), dy=(n-Dd+d,, (15)

Herein M is the unimodal propagator matrix for SH wave field, which links the field
vectors at the top and bottom of the n-th cell.

The explicit expressions of the unimodal propagator matrix M elements can be derived
as
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m,, = cos(d,q, )cos(d,q, )— Gy, sin(d,q, )sin(d,q, )

0.1,
_ cos(d,q, )sin(d,q,) .\ sin(d,q, )cos(d,a,)
. 0,1, Qw1 (16)

m,, =—Q,u, Cos(d1q1)5in (dzqz ) — Oy Cos(dzqz )Sin (dlql)

m,, = cos(d,q, )cos(d,q,)— ?;ﬁz sin(d,q,)sin(d,q,)

1M1

Let note that elements of matrix |\7| do not depend of cell number N. Repeating this
procedure the n-th times the propagator unimodal matrix M” can be found. The matrix
M" links the field vectors at X =0 and X = nd surfaces of the waveguide.

MU (0)=U% (nd), n=12,...N )

According to Sylvester's matrix polynomial theorem [28] for 2x2 matrices the elements
of the n-th power of an unimodal matrix M" can be cast as

Mn :(Mll Mle (18)

MZl M22

and can be simplified using the following matrix identity

M, =m;,S, (n)_ Snz (n); M, =m,S, (n)

(19)
M, = m215n_1(ﬂ)i M,, = mzzsn—l(n)_sn—z (n)
where Sn (n) are the Chebyshev polynomials of second kind, namely
sin((n+1
- L
(20)

1 n 1 .
n :ETr<M):E(mn+m22),
The first Chebyshev polynomials are

Ss(n)=1  S(n)=2n; S,(n)=4n"-1
Subsequent polynomials may be obtained from the recurrence relation of Chebyshev
polynomials [29]

Su(M) =2nS,,,(M) =S, ,(M) (21)
The matrix trace Tr(l\?l ) namely the condition ‘TI‘(I\?I )‘ > 2, defines the “stopband”

of frequencies [15], ranges of eigenfrequencies in which waves cannot propagate in the
infinite periodic medium consisting of periodically repeated sub-layers of materials A and

B. The “stopband” edges are given by ‘Tr(l\?l )‘ =2.
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By drawing an analogy with an infinite periodic medium the “stopband” is the ranges of
finite layer eigenfrequencies satisfying to condition |n| >1 and “passband” the ranges

where |n| <1.

Consider now a boundary value problem for the top X =0 and bottom X = Nd
surface waveguides free from mechanical tractions.
In this case the following matrix equation can be imposed

M (Uf”o(o)]_[U‘N” (0 Nd)j 0 22)

From the non-trivial solution of Eq. (22) one can find that M,, =0 and therefore the
two alternative equations must be considered
m,, (®)=0 (23)

Sna (11(0))) =0 (24)

Alongside Eqg. (22) one can consider the matrix equation such as

ARNIEER

and the relation between field vector values can be found as

u?(nd) =(m,S,; —S,,)u’(0);  n=123..N (25)
Based on Egs. (16, 23) we have
ObM, tan(d,q, )+ yu, tan (d,q, ) =0; (26)

This is the dispersion equation for the single bi-material unit layer, walls of which are
free from mechanical tractions. This equation was also discussed in [30].

The roots of Eq. (26) are curves in the phase-plane (w,k), each point of which
corresponds to a wave freely propagating in the waveguide.
From Eq. (23), since the matrix M is an unimodular matrix it follows that ;

m,, (@) my, (0) =1, n(m#%[vﬁj (27)

where Yy =M, (03)

Equation (25) can be written now as
u? (nd) = (vS,.,(M) —S, (M) u” (0) (28)

Using the recurrence relation S, (n)=2nS,,(Mm)—S, ,(m) for the Chebyshev
polynomials of the second kind the following relation is obtained

¥S, (M) =S, ) =v((v+v")S,1(n) =812 (n) )=S,.(n) =
=7(v8,4(n)-S,.(n))
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which can be rewritten as P, , (n) =yP (n) where P, (n) =vS,,(M)-S,.,(M).

Taking into account that F:i (1’]) =, the following identity can be obtained valid for all
integers starting fromn =1
P.(n)=7" (29)

Hence it follows from (28) that for for the eigenfrequencies satisfying to dispersion
equation (26)

u@(nd)=y"u®@©), n=12...N (30)
In “stopband” range defined by |r||>1, for the eigenfrequencies satisfying to

dispersion equation (26) in the finite range where |y| <1, the guided wave are localised in
the neighbourhood of the waveguide top surface and decayed at the waveguide bottom
surface with increasing of cell numbers. If |y|>1 the localisation takes place in the

neighbourhood of the bottom surface waveguide.

Similar localisation effects have been obtained in [7-11] for semi-infinite periodic
piecewise layered, inhomogeneous structures, where was shown that semi-infinite periodic
elastic medium can support propagation of shear surface waves.

Besides of the dispersion equation (26) defining the localisation mode the following
dispersion equation should be considered as well

Sua(n)=0 (31)
This equation has (N —l) roots on the range N € (—1, 1) and its zeroes are given by
N =cos(mnN‘1), m=12....(N-1) . (32)

Taking into account that S, (nm) = (—1)m+l, from the relation Eq. (25), one obtains

—1)m+l . (mzn . (mmn
u?(nd :(— m,, sin| — (N —n) |-sin| — (N —n+1) | [u® (0
 (nd) _(mn) ysin| == (N=n) n )| U ©)
SIN| —
N
u®(Nd) =(-1)"u®(0) (33)
From Egs. (32) and (33) one can state that, in the eigenfrequency “passband” ranges

|n| <1, there exist the (N —1) wave normal modes where guided wave are distributed

along the waveguide height according to the first correlation of Eq.(33) and having the
same magnitude at the top and the bottom surfaces.

The analysis of this problem has shown that in the stratified waveguide with the
piecewise homogeneous finite number unit periodic cells there exit two guided waves

modes: 1) a localised mode occurring in the “stopband” frequency range and 2) (N —1)
normal modes occurring in the “passband” frequency region.
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Results and Discussion
We now illustrate the obtained theoretical results providing analytical and numerical
analysis of the equations and relations defining the localized mode of the guided wave in

piecewise waveguide. Numerical calculations have been carried out for materials: A made
from Cu material with the following properties (p, =8960kgm~>,u, =47.7GPa),

while B made from Al material with the properties (p2=2720kgm_3,

1, =26.2-GPa)

First note that for piecewise waveguide all roots of the dispersion equation Eq. (26) of
the localized mode are in the “stopband” range. The equation Eq. (26) has no solution when

both ¢,(w) and g,(w) are imaginary. Other types of solutions are possible: ql(o))
imaginary and d, (0)) real and visa verse, and ql(oo),q2 (CO) both real.

Since for the given materials C, <C, we consider the specific “stopband” frequency

range where KC, < @ <KC,. In this range ], (@) =i, (@), Gy (@) = k* —?/c |,

ql(co) is real and instead of Eq. (30) the following relation can be obtained when ® are
roots of the Eq.(26)

0@ (ndy <[ 2% | o) not2 N
cosh(dzqzo)

On the other hand, using relation Eq.(11,12), within sub-layers of material B we have
that

U@ (nd)=—
cosh(d,0, )

Therefore in this specific eigen frequencies range, in addition to displacement
attenuation due to the cell number N increasing, it is found that the attenuation takes place
also in within the material B bodies. This type of localisation was also reported in [30]
where the theory of Love waves was generalized to a single bi-material layer consisting
from a finite-thickness substrate covered by a finite-thickness slap having a lower shear
elastic speed.

For a waveguide for any value of dimensionless wave number k =kd there are
infinite number of discrete spectrum of eigenfrequencies which correspond to localised
vibrations. Mode of these eigenfrequencies shown in Figure 2 are the solutions of
dispersion equations Eq.(26) which in dimensionless notations can be written as

B SZ—KZSin(S\/ﬁ)cos((l—S)m)+
—hWCOS(S 92_K2)sin((1—6)\/[3282:—1<2)=0

9=wd/c;6=d,/d;k=kd;p=p,/n,;B=c/c, (34)

u® ((n-1)d +d,);
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1 2 3 4 5 6
Fig.2 The dispersion curves of the localisation modes

In Figure 3 graphs of localisation coefficient "Y(K, 8)‘ corresponding to the localised

modes are presented.
vl
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Fig.3 Localisation coefficient curves defining
the guided wave amplitude localisation

As it follows from Figure 3 the strong localization takes place for the first and third
modes. All the curves in Figures 2,3 correspond to the case 6 =0.4.

Conclusions

The paper is devoted to the localisation problem of the shear elastic wave in stratified
waveguide with plane surfaces free from mechanical tractions. The stratified waveguide
constitutes from a finite number of periodically repeated perfectly bonded sub-layers. The
main results of this paper are as follows: first, it is shown that in stratified piecewise bi-
material waveguide with surfaces free from mechanical tractions, there exist two modal
types of guided waves: i) a localised surface mode occurring in a “stopband” range and ii)
normal modes arising in a “passband” range of eigenfrequencies. The guided wave may be
localised at the neighbourhood of the waveguide top surface and decays at the waveguide
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bottom surface with increasing cell numbers; the localisation can take place at the
neighbourhood of the bottom surface waveguide and that depends on the eigenfrequencies
and mechanical properties of piecewise materials.

This study opens up new opportunities into the use of stratified waveguide in the design
of novel engineering material and structures.
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