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quwhwinwljutittp

“Yhunwplyws k jinnp we junnp hwiwubkn oppninpnyy uwy, npp nidbnugyws k ninhn waljub nuly
niplph pudwiidwt ghd nnipu Bynn Jepgudnp tphupnipjut ubywdlb tkpppulng b pipbwynpus &
ononthnny b tnpdw) nidtipny:Utuyhnhly $niuljghwibph nbunipjut dpnnubpny pughpp phipdus k&
dhjujws Lquijhmpjudp uhugnigup hunbgpn-nhddtptughw; hwjwuwpnidubph pisdwp: Uja
nhwypnud, tpp tkpppul-hkdwip niuh vhuyt sndwt Ynpnnipnit b pintwynpdws £ unpuwy nidbpny,
hintgpuy dhwthnjumpiniuubph dhgngny uinugquws t thdwh junhp, nph nusnudp ubpljuyugus &
pugwhuynn nbupny: Opnodws b Ynbunwluughtt gsh Jpuw wpwwgnn tnpdwy (wpnudubpp b
wupqjus EYntnwluuiht jupnudubph quppp kquih YEnkph opguluypnud:

H.H. llaBnakanze
ANre3noHHOE B3aMMO/IelicCTBHE KYCOYHO-0JHOPOAHOI OPTOTPONMHON MJIACTHHBI ¢ YIPYToii 6ankoi

KioueBble €/10Ba: KOHTaKTHas 3ajaya, OPTOTPOIHAs ILUIACTHHA, YNPYroe BKIIOYEHHME, HHTErpo-
muddepeHnnansHoe ypaBHEHNE, HHTErpajlbHOE peoOpa3oBaHue, 3a1aua PUMaHa, aCHMIITOTHYECKHE OLIEHKU

PaccmoTpena KycodHO-0AHOpO/HAS yIpyrash OpTOTPOIHAs IUIACTHHA, apMHPOBAHHAs KOHEYHBIM BKIIOYE-
HHEM KIMHOBH/IHOH (DOPMBI, BBIXOISIIAsHA TPAHULlY Pa3jieia MAaTCPHAOB MO HPSIMBIM YIJIOM W HArpy)XKCHHast
KacaTelbHBIMU ¥ HOPMaJbHbIMM cuiaMH. C TOMOIIBIO METOAOB TEOPUM aHAJINTHYECKMX (QyHKIMII 3anaua
CBOJIUTCS K CHHI'YJISIDHBIM MHTErpo-IuddepeHnnaibHpiM ypaBHEHHAM ¢ (UKCUPOBAHHOH ocobeHHocThI0. Korna
BKJIIOUCHHE-0aIKa HMEET TOJBKO H3TMOHYIO JKECTKOCTh W HArpy)KEHa HOPMAaJbHBIMH CHJIAMH, C MOMOLIBIO
HHTETPAILHOTO Mpeodpa3oBaHus Moiyvaercs 3ajadya Pumana, pelieHne KOTOpOH HPEACTABICHO B SIBHOM BHJIE.
OmnpeneneHbl HOPMajbHbIC KOHTAKTHBIC HAINPSDKEHHS BJOJb JIMHMH KOHTAKTa M YCTAHOBJCHO IIOBEJCHHE
KOHTAKTHBIX HANPSDKEHUH B OKPECTHOCTSIX OCOOBIX TOUCK.

A piecewise-homogeneous elastic orthotropic plate, reinforced with a finite inclusion of the wedge-shaped,
which meets the interface at a right angle and is loaded with tangential and normal forces is considered. By using
methods of the theory of analytic function, the problem is reduced to singular integro-differential equations with
fixed singularity. When the inclusion-beam has only bending stiffness and is loaded with normal forces, using an
integral transformation a Riemann problem is obtained, the solution of which is presented in explicit form. The
normal contact stresses along the contact line are determined and the behavior of the contact stresses in the
neighborhood of singular points is established.
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Introduction

The solutions of static contact problems for different domains, reinforced with
elasticthin inclusions andpatches of variable stiffness were obtained, and the behavior of the
contact stresses at the ends of the contact line has been investigated, depending on the
geometrical and physical parameters of these thin-walled elements [1-10]. The first
fundamental problem for a piecewise-homogeneous plane was solved, when a crack of
finite length arrives at the interface of two bodies at the right angle [11], and also a similar
problem for a piecewise-homogeneous plane when acted upon by symmetrical normal
stresses at the crack sides [12, 13], as well as the contact problems for piecewise-
homogeneous planes with a semi-infinite and finite inclusion [14].

Problem statement and its solution
Suppose an elastic body S occupies the plane of a complex variable z = x + iy, which

contains an elastic patch along the segment ll =(0,1) and consists of two half-planes of
dissimilar materials

SV ={z|Rez>0,z¢[0,1]}, S?®={z|Rez<0}
joined along the Oy axis. In particularly, we will consider a piecewise-homogeneous

orthotropic plate in the condition of plane deformation, which consists of two half-planes of
dissimilar materials and reinforced with a finite patch (inclusion) with modulus of elasticity

E,(x), thickness /,(x) and Poisson’s coefficient V,. It is assumed that the horizontal
and vertical stresses with intensity T,(Xx) and p,(x) acts on the patch along the OX axis

(the functions T,(x) and p,(x) are bounded functions on the finite interval). The patchin

the vertical direction bends like a beam (has a finite bending stiffness) and besides in the
horizontal direction the patch compressed or stretched like rod being in uniaxial stress state.

The contact between the plate and patch is realized by a thin glue layer with width /4, and

Lame’s constants 7»0 ,Hy- The contact conditions has the form [15]
u, (x)—u (x,0) = k,t(x), v,(x) v (x,0) =m,p(x), 0<x<]1 (1.1)

where 1" (x,y), v""(x, y)are displacement components of the plate points and
u,(x), v,(x) displacements of the patch points along the Ox axis, k, =/, /p, and
my =hy /(L +21,)-

We have to define the law of distribution of tangential T(x) and normal p(x) contact

stresses on the line of contact, the asymptotic behavior of these stresses at the ends of the
patch.
According to the equilibrium equation of patch elements and Hooke's law we have:
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du(x) 1 7 B

T j ()~ T, (1),
&P = - plo, 0<x< 12
X dx

and the equilibrium equation of the patch has the form

1

[z =7, 01de =0, [[p(t)= py ()1t =0, [1Lp(t) = py(1))de =0,  (1.3)

0

E (x)h(x E (x)h°,(x
whereE(x)——( ) (%) D(x )——( ), (x)
1-v 1-v
At the interface of the two materials we have the continuity conditions
O _ ~(2) @ _ (2) @O _,,@2) o _,,@)
G, =0, Ty =Ty » u’'=u’, v=vy (1.4)
where G( ) ‘c(k) are the stress components andu®™ , v are the displacement components.

xy
The boundary conditions ofthe components of the stress and displacement fields in the
half-plane S " has the form

O+ - (1)+ 0]

- -_ )+
6, -0, =px), 1, -1, =Ux),u

=y Vv =907 0<x <1 (1.5

Using Lekhnitskii’s formulae [16] the components of stress and displacement are
represented in the form

= —2Re[B; D, (z,)+7; ¥, (5,)]
ol = 2Re[®, (z,)+ ¥, (5,)]
w9 = 2Tm[B, D, (z,) +7,¥, (5] (1.6)
=2Re[p, 9 (z;) + 1w, (6)]
= 21m[B, 19, (2) + 7, W, (S0)]

z, =x+iBy, g, =x+iy,y, ®,(z)=0¢,(z), Y, (c)=wv,(z), k=12

Here %if3,, £iy, are the roots of the characteristic equation

E, E,
u +[G__2VkJ“ +E* 0, (Be>vs)>

k k
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(Ek,EZ= ) are the Young's modulus with respect to the principal (Ox, Oy)direction

respectively, G, are the shear modulus, V, are Poisson’s ratios of the plane materials,

respectively.
The problem with conditions (1.1)-(1.5) reduced to finding the functions

®,(z,), 'Y, (c,), (k =1,2) which are holomorphic in the regions S® respectively, and

satisfies the following boundary conditions:
2Re[@; (x) =@y (x)+ ¥/ (x) - ¥, ()] = p(x)
2Im[B, (D, (x)— D, (x))+7v,(¥, (x) =¥, (x)] =1(x) 0<x

<1 (1.7)
Re[p, (D (x) =D, (x)) + 1 (¥] (x) - ¥, (x)]=0
Im([B,7 (@ (x) = D, (x)) + 7,0, (¥} (x) =¥ (x))] =0
Re[quD1 1)+ Y121P1 (o)]= Re[Biq)z () + 'Yg\Pz(Gz )]
Im[B,®,(#,) +7,¥,(c,)] = Im[B,D,(t,) +v,¥,(c,)] (1.8)

Im[p,$,®,(¢,)+ry,¥ (0,)] =Im[p,B,D, () +1Y,¥,(c,)]
Re[Blzrl(Dl )+ YIzpllPl (o)]= Re[Bgrzq)z(tz) + Y;pijz (c,)]

2 2

+ +

where ¢, =if3,y, G, =1y, ¥, p, Z—Bk—vk, 7, Z—M, k=12
E, E,

System (1.7)has the unique solution

O (x)—D; (x) = -1, p(x) +ip,T(x)

2B1(pl_.7]) (1.9)
lPIr(X)—lP;(X) — plYlp(x)_l’/‘lT(x)’ 0<x<1
2y,(p, —1)

In view of the fact thatT(x)=0, p(x)=0whenx >1, the general solution of
problem (1. 9) can be represented in the form:

D, (z)=

+w(z) =inw,(z)+w(z),

ir, j N, (t)dt
dn(p,—n)y t—z
(N, (t)dt

_ ip,
File)= 4n(pl—n)£ t-¢,

(1.10)

+w, () =—ip,w,(G) + w,(S))s

N = p)—iLor(r),  N,(0) = p(t)—i——(),
”131 Py
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where W, (z,)and w,(C,) are unknown analytic functions in the half-planes
Rez >0, Reg, >0 respectively, which will be defined by using the conditions (1.8).

We will now introduce the boundary values of functions ®,(z,) and ‘¥, (c,),

expressed by formulae (1.10), into equalities (1. 8) and multiply expressions obtained by
1 dt

2mit—z
fact that if D(z) is a holomorphic function in the half-plane Imz >0 (Imz < 0), then

t =iy, z=x+1iy, x>0 we integrate along the imaginary axis and use the

®(iy) is the boundary value of the function ®(—Zz), holomorphic in the half-plane

Imz <0 (Imz >0). As a result, using Cauchy’s theorem and formula, we obtain the
following system

B12W1 B,2) + 'Y12W2 (v,2) - B; O,(—B,2)- Y; ¥, (-v,2)=
= —irlf)lz w,(—B,2)+ ip]Yl2 wo(=7,2)

B1 w (B1Z) +y,w, (y]Z) + Bz ch(_BzE) + Yz\l"z(_Yzf) =
:irlﬁl Wo (_B1E) —Ip, Y\ W, (_Y1E)

plBl w (BIZ) + nw, (Y1Z) + szzq)z (_Bzf) + 7272\P2(_Y2E) =
= l.rlplﬁl Wo (_B1E) —IpKY W, (_712)

Blzrlwl (Blz) + Yfplwz (ylz) - B;rzq)z (_Bzf) - Y;pz qu(_YQE) =
= i B wy (=B,Z) +ip vy Wy (—1,2)

Solving this system for functions W, (3,z) and w,(y,z), and replacing z by%

1
and % respectively, one obtains
1

wi(z) = i w, (-2 1)+ w, (= Z1)

By

wz(gl)— (—&g1)+xwo( Q) (111)
For functions ®@,(—f,z) and W¥,(—y,z) with this notation—3,z = z,,— Y,z =¢,,
we have
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Bl _i[
) )

By

CDz(Zz)Z A ()(

)__Wo L§2)a
2

lP2(@2):_ 0(

where
L ==AyrBr + Ay By + Ay 5 By — AR,
L=Apyy) = Aupyy, —Aypiy, + A41p1 vl ,
I} ==ApnBy +Ay,rB, +Aynp B — A B,
L =Aup Y = Aupyy, —Aypry, + A4zpl T
I = _Alsrlﬁlz +AKB, +Agunp B — A43[312”12
L= Aupy; = Apupyyy — APy, +Agpry;

I ==A By +AyrBy +Ayrip B — AR

Iy = Aupv; —Agpryy —Aupiiy, + Aypiy;

Bov B m
A= B, Y1 B, T2 ’
1 T P Y S Y
Bin vie B —vap
A i (i, j =1,2,3,4)are the cofactors of the corresponding matrix elements.

Boundary conditions (1.2) are equivalent to the relations:

%f[rm—r?(z)w Hp.®,(x)+p, @, () + ¥, (1) + 7 T, (0] = £, ()
X 0

[ dtj[pfm—pl(r)]dr—

0 0 (1. 12)

—1 %[BIVI (q)l (x) _m)+ Y1P1 <\P1 (x) _m)} = mopl"(x)

D(x)

Substituting expressions (1.10) and (1.11) into (1.12) we obtain the integro-differential
equations on the interval 0 < x <1
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y(x) "
E) 2n jQ(z X)W ()t = kyy"(x) = £,(x), (1.13)

o) .
D(x) 21 dx
y()=0, ¢1)=0, ¢'1)=0

where

o P L ———
t—x t+x Pr+yx yr+PBx

k, k, k, k,
+ + +
t—x t+x Pt+yx yt+PBx

() = [[2(0) =y (0)]de, o(x) = [t [[ py ()~ p(v)ldr

IR(z X)Q"(0)dt +mye” (x) = f,(x), (1.14)

R(t,x) =

fix)= Lj‘ O(t, x)t, (t)dt + kyty (%),
2y

1 d |
S0 = mypi(x0)+——— j R(t,x) p,(t)dt

P TRt T P10 P £ W 1/
2 > 3 b 4 s
(pr=r)By” Ay (pi—ri) " Anlp—n) T Ap(py )

o Byl _Brlhtved, o Binh _ vipd)
1 4 2 s 3 ) 4 .
P —h A(pl_rl) A(pl_rl) A(pl_rl)

Exact solution of equation (1.14)

Under the condition, when the inclusion-beam is loaded only with normal forces and
bending stiffness of the inclusion varies linearly, i.e. D(X)Zdo x3, m, (x)zmox ,the
equation (1.14) and the corresponding boundary conditions take the form

o(x) 1 d ¢

D(x) 21 dx

eM=0 ¢1H=0

j R(t,)Q"(0)dt +[my ()" ()] = fo(x),  0<x<l (1)
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filx )———j”“’)‘” ()P,

The solution of equation(2.1) is sought in the class of functions [17]
¢, ¢,9",9" € H([0,1]), " € H((0,1)).

The change of variables x = ea, t = €°in equation (2.1) gives

1 d§
1 o
de> 2me* df

+mee [9," (&)~ 497(E) + 505 ()~ 20, ()] == f3 ("), -0 <x<0,

where @, (&) = ¢(e®)

Subjecting both part of this equation to generalized Fourier transform [18] we obtain the
following Riemann boundary value condition:

¢ )[04 (9) — 9} (S)ldg +

O ()G(s) =¥ ()+F(s),  |s|<oo 22)
where
isp —isp
G(s)=l+%[k1scothns+kzi+k ¢ S k& al (s—i)+

shms v, shns B, shsms
+AS (st —4dis® — 557 + 2is), uzln%, Ay =myd,
1

0

D () T_J. (eg)eisgdg, F(s)= \/%j:oezgfz (eg)eis‘gd&’

¥ (s)= T [w©ede

0, y<0

v(y) = o di je_ZSR(L ENoN(s) - (s)lds,  y>0

—o0

The condition (2.2) can be represented as

. . o P (s)
1+ih, )1+ ik, $)G. (s) = .
O (5)(1+ ik, )1 +i"fih,5)G, (5) TN ﬁk2s)+H(s) 2.3)
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where

G(5)=—28) i) 1-inis’) =
1+ A,s
= G, ()1 =~/ih,5)(1 = inJid, )1 +~it )1+ iNiN,s)
_ F(s) _ G
H(s)= (1=~irys) (1= inikys) G =1y Ast

By virtue of functions @ (s)and W () definition, they will be boundary values of

the functions which are holomorphic in the upper and lower half-planes, respectively.
The problem can be formulated as follows: it is required to determine the function

Y7 (z), holomorphic in the half-plane Im z > 0 and which vanishes at infinity, and the
function @~ (z) , holomorphic in the half-plane Im z < 1, (with the exception of a finite

number of zeros of function G(2)) which vanishes at infinity and are continuous on the
real axis by condition (2.3).

Since Re G (s) > 0and G,(0) = G,(—©) =1, we have IndG (s) =0.
The solution of this problem has the form [17]

i X(z)

O (z)= Imz <0;

@ (A+~ir,s)(1+inik,s) mz=0
¥ (2) = X(2)1=irs)1—infik,s), Imz>0
O (2)=(Y(2)+F(2))G'(z),0<Imz <1 (2.4)

where

o\ 1T H(ndt B 1 ¢ InG,(t)dt
= X(Z){ ) X+(t)(t—z)}’ = eXp{2ni-!; -z }

(here the integral should be understood in the sense of the Cauchy principal value).

[0} (lnx) -0, (lnx)

2
X

Using the formula (p"(x) = and applying the inverse Fourier

transformation

; (In x) =—ﬁ [ s~ (s)e "™ ds, ¢fj(Inx) =ﬁ [ 5@ (s)e ™" ds
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we will investigate the behavior of the function p,(x)— p(x)=y"(x) in the
neighborhood of the points z=0 and z =1.

We obtain by an inverse transformation: p,(x)— p(x)=0(1), x —>1-.

The poles of the function @~ (z) in the domain D, = {z:0 < Im z <1} may be zeros
of the function G(z). It can be shown that the function G(z) has no zeros in the strip
0<Imz<2. Then, applying Cauchy’s theorem to the functions e_iizizq)_(z) ,

e ¥ z°® " (z) we obtain the following estimate
Po(x)— p(x) = O(x" "), x>0+  y,>2 (2.5)

where z, = X, + iy, is zero of the function G(z) with a minimal imaginary part and with

x, # 0, consequently we have oscillating stress singularities.
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