
ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ

ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

УДК 62-50

75, № 1-2, 2022 Механика 

  Doi-10.54503/0002-3051-2022.75.1-2-169

A HYDRODYNAMIC THRUST BEARING LUBRICATED BY A
NON-NEWTONIAN GIESEKUS FLUID

Ilya I. Kudish, Sergei S. Volkov, Andrey S. Vasiliev

Keywords: fluid with non-Newtonian nonlinear Giesekus model, hydrodynamic lubrication problem
for a thrust bearing, perturbation analysis, analytical approximate solution

И.И.Кудиш, С.С.Волков, А.С.Васильев
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Существует огромный объем исследований гидродинамических и упругогидродинамиче-
ских задач смазки для смазок с ньютоновской реологией. Смазочные материалы с ньютонов-
ской реологией не проявляют обычно наблюдаемого экспериментального поведения относитель-
но высокой вязкости при низких напряжениях и относительно низкой вязкости при высоких
напряжениях. В этой статье мы расширяем ранее проведенный анализ смазочных материа-
лов с неньютоновским поведением Гизекуса для случая моделирования упорного подшипника.
Основная цель статьи – получить аналитическое решение для упорного гидродинамического
подшипника, смазываемого жидкостью, с реологией Гизекуса. Эта цель достигается тщатель-
ным применением методов возмущений. Получено трехчленное приближенное аналитическое
решение и проанализирована его зависимость от входных параметров задачи.

Ի.Ի.Կուդիշ, Ս.Ս.Վոլկով, Ա.Ս.Վասիլև

Գիզեկուսի ոչ նյուտոնյան հեղուկով յուղվող հիդրոդինամիկական հենակային

առանցքակալ

Հիմնաբառեր՝ Գիզեկուսի ոչ նյուտոնյան ոչ գծային մոդելով հեղուկ, հենակային առանցքակալի յուղման

հիդրոդինամիկական նդիր, վերլուծություն գրգռումների եղանակով, մոտավոր անալիտիկ լուծում։

Նյուտոնյան ռեոլոգիայով քսանյութերով հիդրոդինամիկական և առաձգահիդրոդինամիկական յուղման

խնդիրների վերաբերյալ գոյություն ունի հետազոտությունների մի հսկա ծավալ։ Նյուտոնյան ռեոլոգիայով

քսանյութերը չեն ցուցադրում սովորաբար նկատվող փորձարարական վարքագիծ՝ ցածր լարումների դեպքում

համեմատաբար բարձր մածուցիկություն և բարձր լարումների դեպքում համեմատաբար ցածր մածուցիկություն։

Այս հոդվածում մենք ընդլայնում ենք Գիզեկուսի ոչ նյուտոնյան վարքագծով քսանյութերի մեր նախորդ վերլու-

ծությունը հենակային առանցքակալների մոդելավորման համար։ Հոդվածի հիմնական նպատակն է Գիզեկուսի

ռեոլոգիայով օժտված հեղուկով յուղված հենակային հիդրոդինամիկական առանցքակալի համար ստանալ
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անալիտիկ լուծում։ Այս նպատակը հասանելի է դառնում գրգռման մեթոդների մանրազննին կիրառմամբ։

Ստացված է եռանդամային մոտավոր անալիտիկ լուծում և վերլուծված է դրա կախվածությունը խնդրի մուտքա-

յին պարամետրերից։

There exists a huge volume of studies of hydrodynamic and elastohydrodynamic lubrication
problems for lubricants with Newtonian rheology. Lubricants with Newtonian rheology do not exhibit
the usually observed experimentally behavior of having relatively high viscosity for low stresses and
relatively low viscosity for high stresses. In this paper we extend the earlier conducted analysis of
lubricants with a non-Newtonian Giesekus behavior for the case of thrust bearing modeling. The
main goal of the paper is to obtain an analytical solution for a hydrodynamically thrust bearing
lubricated by a fluid with the Giesekus rheology. This goal is achieved by careful application of
perturbation methods. A three-term approximate analytical solution is obtained and its dependence
on the problem input parameters is analyzed.

Introduction

Over the years the modern automotive industry as well as various bearing and
gear setups demand more and more efficient lubrication to reduce friction losses,
contact energy losses, and to increase joint fatigue durability. Obviously, even a
small increase in lubricated joint efficiency multiplied by millions of cars and lots
of other moving mechanisms can be quite significant in reducing emissions, fuel, and
material required for joint manufacturing worldwide. Frictional losses are associated
with a number of specific components among which are engines, bearings, and gears.
Therefore, understanding tribological characteristics of lubricated contacts may help
in reducing frictional losses, increasing fluid economy and fatigue durability. There is a
large number of papers dedicated to studying hydrodynamic and elastohydrodynamic
lubrication contacts with Newtonian lubricants [1] - [25]. These paper cover problems
under isothermal and thermal conditions for smooth and textured surfaces etc.

Several decades ago lubrication industry started using formulated lubricants
represented by a base stock oils (described by Newtonian rheology) with some
polymeric additives. These additives make the rheology of formulated lubricants non-
Newtonian. Most of the existing and usually used non-Newtonian lubricant rheologies
[26] are linear rheological fluid models such as Maxwell, Jeffrey, various Oldroyd-B
models, etc. A review of such models is given in [41]. These models are designed
to introduce into consideration an important fluid parameter such as its relaxation
time related to the structure of the polymeric additive. Some studies of these kind
of lubricating fluids can be found in [27] - [32]. Various elastohydrodynamic and
hydrodynamic problems for lubricants with generalized Newtonian rheology were
considered in [33, 34]. Some other elastohydrodynamic lubrication problems for
functionally graded materials and hydrodynamic problems for solids without coatings,
with a single and double coatings and Newtonian lubricants were considered in [35] -
[37] and [38] - [40], respectively.

The main defect of these kind of models is their inability to adequately describe
fluid rheological behavior for low and high fluid stresses when usually lubricant
viscosity approaches to two different limiting values. The rheological fluid model that
is free of the just mentioned defect is the Giesekus model [26]. Specifically, besides
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introducing the fluid relaxation time this model provides for relatively high fluid
viscosity at low fluid stresses and relatively low fluid viscosity at relatively high
fluid stresses. This model is nonlinear and, therefore, it is much harder to analyze
lubrication problems involving lubricants with such a rheology. For a relatively simple
case of a Giesekus fluid flow between two parallel flat surfaces is considered in [42, 43].

There is a paper on lubrication of a two-dimensional model of a thrust bearing
with a fluid with the Giesekus rheological model [44]. The paper analysis is performed
with the help of a perturbation method. However, the paper contains a number of
shortcomings. For example, all convective terms in the equations of fluid motion and
fluid rheological equations are omitted, Reynolds equations solved are incomplete, the
perturbation analysis performed is not consistent in the case when the thrust bearing
is of the same order as the Giesekus fluid mobility parameter α, etc. One limiting
case of hydrodynamic lubricated contact for the case of two moving rigid cylinders
separated by a thin layer of an incompressible lubricant with the Giesekus rheology
is considered in [45].

In this paper, the Giesekus rheology is used for modeling friction between one
rigid surfaces moving over another rigid surface at rest. The surfaces are separated by
a incompressible fluid described by the Giesekus rheology. The problem is analyzed
using the regular perturbation method. The approximate solution is obtained in an
analytical form. Many applications of perturbation techniques to steady problems can
be founded in [46]. Also, it can be applied to dynamic problems, for example see [47].

The paper is organized as following. In the first section, the formulation of the
hydrodynamic lubrication problem for a line contact is presented. In the second
section, the proper simplification of the rheology equations and the equations of the
motion pertinent to the case of steady lubricant flow in a narrow long channel is
described. The third and fourth sections are dedicated to obtaining the components
of lubricant velocity and derivation of Reynolds equations of different order and their
analytical solutions, respectively. Some specific examples of the obtained solution
and their analysis are presented in the last section. In particular, some examples of
pressure distributions, energy loss etc. are provided.

1 Formulation of the Lubrication Problem

Let us consider a steady plane problem for a lubricated contact modeling a two-
dimensional hydrodynamic thrust bearing (see Fig. 1) lubricated by an incompressible
non-Newtonian Giesekus fluid [26] with constant viscosity µ and relaxation time λ1.
The coordinate system is introduced in such a way that the x−axis is directed along
the surface of the rigid runner moving with the linear velocity u1 while the z−axis
is perpendicular to it and directed upward. The y−axis is directed in the solids.
The fixed rigid pad (the linear velocity of which is u2 = 0) and the runner are
completely separated by the lubrication film. The components of the lubricant velocity
are represented by functions u(x, y, z), v(x, y, z) = 0, and w(x, y, z). The problem
parameters are independent of the coordinate y. The equations of the motion of such
a fluid are described by the solvent and additive rheology equations as follows [33, 34]
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Fig. 1: The general view of a lubricated contact.

u∂u
∂x + w ∂u

∂z = 1
ρ (

∂pxx

∂x + ∂pzx

∂z ),

∂pxy

∂x +
∂pzy

∂z = 0,

u∂w
∂x + w ∂w

∂z = 1
ρ (

∂pzx

∂x + ∂pzz

∂z ).

(1.1)

In addition to that for an incompressible fluid with the fluid density ρ(x, z) = constant
we have the continuity equation

∂u
∂x + ∂w

∂z = 0. (1.2)

In this case the stress tensor components are as follows

pxx = −p+ τxx, pxy = τxy = 0, pzx = τzx,

pzz = −p+ τzz, pzy = τzy = 0,
(1.3)

where p is the pressure and τxx, τxy, τzx, τzz, and τzy are additional stress components
acting in the corresponding directions. These tensor components satisfy the Giesekus
fluid model which is a nonlinear model and takes into account the degree to which the
additive polymeric molecules are aligned with the lubricant flow which is characterized
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by the mobility parameter α, 0 ≤ α ≤ 1. The rheological equations are as follows [26]

τ = τs + τp, µ = µs + µp,

τs = µsγ̇,

τp + λ1τp(1) − α λ1

µp
{τp · τp} = µpγ̇,

(1.4)

where τ is the full stress tensor while τs and τp are the solvent and polymer stress
tensors, respectively, µs and µp are the constant solvent and polymer dynamic
viscosities, γ̇ is the deformation tensor [26], and λ1 is the constant relaxation time.

In (1.4) we used the the definitions of the tensor operators τp(1) and {τp · τp} from
[26].

Assuming that we have no slip and no penetration conditions on the solid surfaces
for u and w we have the following boundary conditions on the lubricated surfaces

u(x, 0) = u1, u(x, h(x)) = 0, (1.5)

w(x, 0) = w(x, h(x)) = 0. (1.6)

The gap between the runner and pad is described by the function

h(x) = hi +mx, m = he−hi

L < 0, m = m0ϵ, m0 = O(1), ϵ ≪ 1, (1.7)

where L is the actual length of the bearing, hi and he are the gaps between the runner
and pad at the inlet and exit from the contact, respectively, and ϵ = hi/L ≪ 1 is a
small parameter of the problem.

As outside of the bearing the lubricant pressure is atmospheric which is much lower
the pressure in the lubricated contact for pressure p we have the following boundary
conditions

p(0, z) = p(L, z) = 0. (1.8)

It is assumed here that the inlet point in the lubricated contact is located at x = 0
while the exit point from the lubricated contact is located at x = L.

Our goal is to determine such components of the solution as contact pressure
p(x, z), the components of the tensor τ(x, z) in the fluid and its velocity components
u(x, z) and w(x, z). We will find a three-term perturbation solution of the above
determined problem in the case when ϵ ≪ 1. We will assume that

α = α0ϵ, α0 = O(1), ϵ = hi

L ≪ 1,

λ1 = λϵ, λ = O(1), ϵ ≪ 1.
(1.9)

Here α0 and λ are nonnegative constants. Also, we will assume that

Re0 = ρu1hi

µ∗
= O(1), α ≪ 1, (1.10)

were Re0 is the effective local Reynolds number in the lubricant flow and µ∗ is the
ambient lubricant viscosity.
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2 Asymptotic Analysis of the Rheological and
Motion Equations

Let us introduce the following dimensionless variables

λ′
1 = u1

L λ1, x′ = x
L , {z′, h′

i, h
′
e} = 1

hi
{z, hi, he}, p′ = p

h2
i

µ∗u1L
,

u′ = u
u1
, w′ = w

Uz
, {µ′, µ′

s, µ
′
p} = 1

µ∗
{µ, µs, µp},

{τ ′xx, τ ′sxx, τ ′pxx, τ ′zx, τ ′szx, τ ′pzx, τ ′zz, τ ′szz, τ ′pzz}

= hi

µ∗u1
{τxx, τsxx, τpxx, τzx, τszx, τpzx, τzz, τszz, τpzz},

(2.1)

where Uz is the characteristic velocity of the lubricating fluid in the direction of the
z−axis.

For simplicity in the further analysis the primes at the dimensionless variables are
dropped. Then the dimensionless hi = 1 and the problem solution is searched within
the interval 0 ≤ x ≤ 1.

Due to nonlinearity and complexity of the problem it is impossible to develop any
analytical solutions except the perturbation ones which will be used in this analysis.
We will search the problem solution in the form of the following series in ϵ

{τsxx(x, z), τsxz(x, z), τszz(x, z)} = {τsxx0(x, z), τsxz0(x, z),

τszz0(x, z)}+ ϵ{τsxx1(x, z), τsxz1(x, z), τszz1(x, z)}

+ϵ2{τsxx2(x, z), τsxz2(x, z), τszz2(x, z)}+ . . . ,

(2.2)

{τpxx(x, z), τpxz(x, z), τpzz(x, z)} = {τpxx0(x, z), τpxz0(x, z),

τpzz0(x, z)}+ ϵ{τpxx1(x, z), τpxz1(x, z), τpzz1(x, z)}

+ϵ2{τpxx2(x, z), τpxz2(x, z), τpzz2(x, z) + . . . ,

(2.3)

p(x, z) = p0(x, z) + ϵp1(x, z) + ϵ2p2(x, z) + . . . ,

u(x, z) = u0(x, z) + ϵu1(x, z) + ϵ2u2(x, z) + . . . ,

w(x, z) = w0(x, z) + ϵw1(x, z) + ϵ2w2(x, z) + . . . ,

(2.4)

where p0(x, z), u0(x, z), w0(x, z), τsxx0(x, z), τsxz0(x, z), τszz0(x, z), τpxx0(x, z),
τpxz0(x, z), τpzz0(x, z), p1(x, z), u1(x, z), w1(x, z), τsxx1(x, z), τsxz1(x, z), τszz1 (x, z),
τpxx1(x, z), τpxz1(x, z), τpzz1(x, z), p2(x, z), u2(x, z), w2(x, z), τsxx2(x, z), τsxz2(x, z),
τszz2(x, z), τpxx2(x, z), τpxz2(x, z), and τpzz2(x, z) are the unknown main, first-,
and second-order approximations of the corresponding functions while the gap h(x)
between the runner and pad and functions h0(x0) and h1(x0) are described by the
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equations (see (1.7))

h(x) = 1 +mx = h0(x) + ϵh1(x),

h0(x) = 1, h1(x) = m0x.
(2.5)

As it will be shown below functions p0(x, z) and p1(x, z) are independent of z (i.e.
p0(x, z) = p0(x) and p1(x, z) = p1(x)) while functions pk(x, z) for k ≥ 2 may depend
on both x and z.

It is important to realize that the boundary conditions on the terms of the
expansions of u, w, and p in ϵ ≪ 1 are

u0(x, 0) = 1, u0(x, 1) = 0, u1(x, 0) = 0, u1(x, 1) = −h1
∂u0(x,1)

∂z ,

u2(x, 0) = 0, u2(x, 1) = −h1
∂u1(x,1)

∂z − h2
1

2
∂2u0(x,1)

∂z2 ,

(2.6)

w0(x, 0) = 0, w0(x, 1) = 0, w1(x, 0) = 0, w1(x, 1) = −h1
∂w0(x,1)

∂z ,

w2(x, 0) = 0, w2(x, 1) = −h1
∂w1(x,1)

∂z − h2
1

2
∂2w0(x,1)

∂z2 .

(2.7)

Also, from (1.8) we have

p0(0) = p1(0) = p2(0) = 0, p0(1) = p1(1) = p2(1) = 0. (2.8)

Using expansions (2.2)-(2.5) in equations (1.1)-(1.6), and (1.8) taking into account
(1.9) and (1.10), and equating terms of the same order of ϵ these equations can be
simplified and reduced to solution of the problems for Reynolds equations of order
zero

d
dx

1∫
0

u0(x, z)dz = 0, (2.9)

of order one
d
dx

h0∫
0

u1(x, z)dz = 0, (2.10)

and of order two

d
dx{

h0∫
0

u2(x, z)dz +
h2
1

2 ( 1
h0

− h0

2µ
dp0

dx )} = 0, (2.11)

where
u0(x, z) = 1− z + (z2 − z) 1

2µ
dp0

dx . (2.12)

Keeping in mind that h0(x) = 1 the above mentioned problem for the Reynolds
equation of order zero has the form

d
dx{

1
6µ

dp0

dx − h0} = 0, h0(x) = 1, p0(0) = p0(1) = 0, (2.13)
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and its solution is
p0(x) = 0. (2.14)

It can be shown that w0(x, z) = 0.
Taking that into account we have

u1(x, z) = (z2 − z) 1
2µ

dp1

dx + zh1,

w1(x, z) = z2( 12 − z
3 )

1
2µ

d2p1

dx2 − z2

2
dh1

dx .

(2.15)

Here we took into account that h0 = 1, dh0

dx = d2h1

dx2 = w0 = p0 = dp0

dx = ∂u0

∂x = 0.
Then using (2.11), (2.15), and (2.8) we obtain the problem for the Reynolds

equation of order one the solution for which is

p1(x) = 3µm0(x
2 − x). (2.16)

Obviously, u0(x, z) from (2.15) and p0(x) from (2.14) is as a solution of a Couette
fluid flow problem through a channel with a constant cross section with zero pressure
gradient. Due to the fact that p0(x) = 0 and p1(x) takes into account only the
varying channel cross section via function h1(x) (the pad slope m0) and fluid viscosity
µ pressure p2(x) simultaneously takes into account the fluid viscosity, relaxation
time, and polymer mobility factor, i.e. parameters µ, λ, and α0. In other words,
the nonlinear non-Newtonian rheology gets incorporated in the problem solution only
on the order level of ϵ2.

The equations for the second order term p2(x, z) from the rheology and motion
equations have the form

Re0{u0
∂u1

∂x + u1
∂u0

∂x + w0
∂u1

∂z + w1
∂u0

∂z } = −∂p2

∂x + ∂τxx1

∂x + ∂τzx2

∂z ,

−∂p2

∂z + ∂τzz1
∂z + ∂τzx0

∂x = 0.

(2.17)

Integrating the second equation in (2.17) we get

p2(x, z) = τzz1 + µ∂u0

∂x + P2(x), (2.18)

where P2(x) is an arbitrary function of x. Taking into account solutions (2.14), (2.16)
and the fact that h0(x) = 1 the expression for u2(x, z) and the Reynolds equation
of order two (2.11) can be significantly simplified and the problem for P2(x) can be
presented in the form

d
dx{

dP2

dx + 3h1
dp1

dx − Re0
120 (

11
µ

d2p1

dx2 − 42dh1

dx )− µpλ
µ [9λα0

dp1

dx

−µdh1

dx − 1
2
d2p1

dx2 ]} = 0, P2(0) = P2(1) = −µpα0λ.

(2.19)

The solution to this problem is

P2(x) = 3m0{9µpλ
2α0 − µm0(2x+ 1

2 )}(x
2 − x)− µpλα0. (2.20)
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Using (2.18) and (2.20) we obtain

p2(x, z) = 3µm0{−m0(2x+ 1
2 ) +

9µpλ
2α0

µ }(x2 − x). (2.21)

After that we can easily calculate the tensor components in the form

τxx = τsxx + τpxx, τzx = τszx + τpzx, τzz = τszz + τpzz,

τsxx0 = τsxx1 = 0, τsxx2 = 2µs
∂u1

∂x , τszx0 = µs
∂u0

∂z , τszx1 = µs
∂u1

∂z ,

τszx2 = µs[
∂u2

∂z + ∂w0

∂x ], τszz0 = τszz1 = 0, τszz2 = −2µs
∂u1

∂x ,

(2.22)

τpxx0 = 2µpλ(
∂u0

∂z )2, τpzx0 = µp
∂u0

∂z , τpzz0 = 0,

τpxx1 = µp{10λ3α0(
∂u0

∂z )4 + 4λ∂u0

∂z
∂u1

∂z + λα0(
∂u0

∂z )2

τpzx1 = µp{3λ2α0(
∂u0

∂z )3 + ∂u1

∂z }, τpzz1 = µpλα0(
∂u0

∂z )2,

(2.23)

τpxx2 = 2µp{−3λ2 ∂3u0

∂z3 w1 + 42λ5α2
0(

∂u0

∂z )6 + 7λ3α0(
∂u0

∂z )4

+20λ3(∂u0

∂z )3α0
∂u1

∂z + λ∂u0

∂z (α0
∂u1

∂z + 2∂u2

∂z ) + λ(∂u1

∂z )2 + ∂u1

∂x },

τpzx2 = −µpλ
∂2u0

∂z2 w1 − µpλ{u0
∂2u1

∂x∂z − 22λ3α2
0(

∂u0

∂z )5}

+µpλ
2α0{2α0(

∂u0

∂z )3 + 9(∂u0

∂z )2 ∂u1

∂z }+ µp{−2λ∂u0

∂z
∂u1

∂x + ∂u2

∂z },

τpzz2 = µp{6λ3α2
0(

∂u0

∂z )4 + 2λα0
∂u1

∂z
∂u0

∂z − 2∂u1

∂x }.

(2.24)

After that we can easily calculate the additional pressure created in the contact

N1(x, z) = τxx(x, z)− τzz(x, z). (2.25)

The above expressions are simplified using the fact that w0 = ∂u0

∂x = ∂2u0

∂z2 = 0.

3 Examples of Some Specific Lubrication Problem
Solutions and Discussion

Now, let us consider some results which can be extracted from the obtained
approximate solution. We will assume that always µ = 1. We will take as the basic
set the following values: ϵ = 0.05, Re0 = 5, µp = 0.25, λ = 1, α0 = 2, and
m0 = −0.5. The pressure distributions p(x) versus parameters µp, λ, α0, and m0

while in each case the rest of the parameters are fixed and equal to their basic values
are presented in Fig. 2. It is clear that in each case the pressure distributions p(x)
are very close to a parabola. That can also be seen from the ratios prel(x) of pressure
p(x) divided by the pressure for a lubricant with the Newtonian rheology coinciding
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Fig. 2: Curves of the dimensionless pressure p(x) as functions of x for different
values of µp, λ, α0, and m0 as shown in figure legends. In Fig. 2d curves without

circles correspond to the case of the dimensionless pressure pN (x) for a Newtonian
fluid (µp = λ = α0 = 0). The calculations were made for the following basic set of

parameters: ϵ = 0.05, µp = 0.25, λ = 1, α0 = 2, and mu0 = −0.5.

with pN (x) = 3µm0ϵ{1− ϵm0(2x+ 1
2 )}(x

2 − x)

prel(x) =
1+ϵ[−m0(2x+

1
2 )+

9µpλ2α0
µ ]

1−ϵm0(2x+
1
2 )

+ . . . = 1 +O(ϵ), ϵ ≪ 1. (3.1)

which is obtained for µp = λ = α0 = 0. Moreover, for µp > 0, λ > 0, and α0 > 0
the contact pressure p(x) is higher than the pressure pN (x) for the case of a lubricant
with Newtonian rheology and for higher µp, λ, and α0 pressure p(x) is higher.

For non-Newtonian fluids with polymeric additives described by the Giesekus
model it makes sense also to consider some anisotropic fluid properties such as the
first stress invariant which being scaled the same way as stresses (see (2.1)) in the
dimensionless form is

N1 = τxx − τzz. (3.2)

Obviously, the value of N1(x, z) can be easily calculated using (2.22)-(2.24). A typical
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Fig. 3: A typical distribution of stress N1(x, z) obtained for
ϵ = 0.05, Re0 = 5, µp = 0.25, λ = 1, α0 = 2, and m0 = −0.5.

graph of N1(x, z) is presented in Fig. 4. The value of N1(x, z) is positive for all x
and z values which means that the carrying load of a bearing lubricated by a fluid
with the Giesekus rheology is higher than that for the same bearing lubricated by a
Newtonian fluid.

In addition to that one can easily calculate the energy loss in the lubricated contact
and the friction force created by the lubricant flow by using the expressions for the
stress component τzx(x, z) and and the lubricant velocity distribution u(x, z) obtained
above.

4 Closure

A new relatively simple asymptotic modeling of the behavior of the Giesekus
lubrication parameters in the line contact of a rigid thrust bearing was developed. The
rheology equations of the lubricant were simplified using the scale analysis assuming
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that the size of the lubricant layer across it is much smaller than along it. The solutions
of the simplified rheology equations were obtained in the form of power series in
small parameter ϵ. That allowed for derivation of the Reynolds equations of the zero,
first, and second orders and the application of a regular perturbation method which
simplified the problem. The lubrication problems based on the Reynolds equations
of the zero, first, and second orders were solved analytically. All hydrodynamic
parameters of the contact such as pressure, shear stress, coefficient of friction, energy
loss etc. were determined analytically.
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