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Kanaynos 10./1., [Ipuka3zuuxos JI.A.
K Bomnpocy o BbIBO/Ie ypaBHEHHs CTPYHBI.

KarwoueBrble cioBa: YpaBHEHUE CTPYHBI, aCUMIITOTUYCCKUE METO/IbI, MATEMATHYECKasA CTPOTrOCTh.

B pabore mepecmaTpuBaeTCs BBIBOJ KJIACCHYECKOIO BOJHOBOTO YPaBHEHHMS, OMMCHIBAIOIICTO MOMNEPEYHBIC
KousiebaHus ynpyroit ctpyHsl. [Ipenaraemplii moaxon 6a3upyercs Ha MaTeMaTH4eCKd KOPPEKTHOM IPHUMEHEHUH
BTOpPOro 3akoHa HpiOTOHA B Ciydae Majoro y4actka CTpyHsl. [IOMHMO 3TOro, MPHUBOJHUTCS ACHMITOTHYCCKOE
pelIeHne MIOCKO# 3a4a4n TEOPHUH YIPYTOCTH s MPEeaBapUTEIbHO AeopMUpOBaHHOI moaockl. ITokaszaHo, 4To
o0cyx/aaeMoe 0JHOMEPHOE BOJIHOBOE YPaBHEHHE COOTBETCTBYET IIIaBHOMY JJIMHHOBOJIHOBOMY HH3KOYaCTOTHOMY
NpUOIIKCHUIO BYMEPHOIO pelieHHs. B To ke BpeMms, B CleAylOIieM HPHOIMKCHUN YPaBHEHHE ABIDKCHUS
CTPYHBI YK€ HE SBISCTCS TUMEPOOIHYECKUM, BCIICACTBHE MOSBICHUS ANUCIEPCHOHHOTO WiIEHA C YETBEPTOIt
TIPOU3BOTHOM.

Yuuyniung 8nt. %V, Mphijugshlyng .U
Lwuph hwjuwuwpdwb wpnwsdwb duuhb

Zpftwpuntp jwph hwjwuwpnid, wupdyuninhl dhpnn, dupbdunhulub punn o

Uphmunwiipmy  Jhpwbwpnid £ juph  juyuuljut munwtdwt Juuhl) hwuduwuwpnuditbph
wpunwdnidp: Unwowpljynn Uninkgnudp hhdtgnud k quph thnpp nbnudwunud Upnunnth pljpnpn
opkiph dwphdwwnhlnpt jphun Yhpundwl Jpu: Fwugh wyn phpynud b twhopnp nhdnpulwug]us
otipnh wrwdquijuinipjut nkunipjut hwpp juunph wuhdywunuhl psnwdp: 8nyg kb wpdus, np
putwpyyny dhwswth wihpughtt hwjwuwpnudp hudwywunwupwind bt Eplywt psdwt gusp
hwfwhnipjutt  dnnwpuwip: Uhlinyt  dwudwbwl hwenpy  dnwnwplydwt juph  wpddwul
hwjuwuwpnuip wpnkt hhwhppnhly sk snppnpn wswbigyuny nhuybpuhntt winudh wepwewguwl
wuwngwnny:

The traditional derivation of the wave equation for an elastic string is revised. The focus is on a rigorous
implementation and subsequent analysis of the Second Newton’s Law adapted for a small string element.
Asymptotic treatment of the plane strain problem for a pre-stressed elastic strip shows that the 1D classical wave
equation corresponds to the leading order long-wave low-frequency approximation. At the same time, the next
order approximation is not given by a hyperbolic equation supporting a dispersive transverse motion.

Introduction. An elastic string is seemingly the most popular example in the textbooks
on PDEs and mathematical physics, see e.g. [1,2,3,4], illustrating the derivation of the
canonical hyperbolic wave equation. At the same time, even the best mathematicians, e.g.
see the correspondence between A.D. Myshkis and O.A. Oleynik [5], are not quite
comfortable with string analysis. Apparently, the point is that the underlying physical
framework, including the assumption on a prescribed uniform tension, with its orientation
varying in time and space, as well as peculiarities of the implementation of anintegral form
of the Second Newton’s Law, needs to be fully appreciated. It is also worth noting that the
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famous introductory texts on linear elasticity, see e.g. [6-9] usually do not consider a string,
which is governed by a more elaborated linearized theory for pre-stressed elastic solids. On
other hand, more specialized applied books on elastic waveguides, e.g. [10,11] oftenlack a
mathematical rigour when dealing with a string.

Another fundamental issue is that a string as a physical object has a small but finite
thickness, similarly to thin elastic rods, plates and shells. For the latter, the equations of
motion are always established by the reduction of the original 3D equations of motion to
lower dimensional models, e.g. see [12,13]. For a string, such reduction was developed for
plane-strain deformation [14] and later extended to a membrane in [15]. The cited papers
start from linearized equations for pre-stressed incompressible elastic solids [16].

Below we start from the “exact” formulation (within 1D context) of the equation of
motion for a small string element. All the steps of the limiting process, including the
evaluation of the curvilinear integral associated with the inertial term using the mean value
theorem, are addressed in detail. In this case, the linearization leading to the sought for
wave equation is performed at the very last stage.

In addition, we presenta brief revisit of the string problem, along with the lines of the
consideration in [14]. It is demonstrated that the classical wave equation in case of a string
is just the leading order long-wave low-frequency approximation of the associated plane-
strain problem. A dispersive term with fourth-order derivative, arising at next order, enables
smoothening the discontinuity at the characteristics of the leading order hyperbolic
operator.

1. One-dimensional derivation. First, consider a traditional 1D model in the variables
x and t, assuming that the tension T is uniform, and is always oriented along the tangent to
the string profile given by the functionu = u(x,t). Another problem parameter is mass
density per unit length p. Consider a small but finite string element of length Ax, see Fig. 1,
where 0(x, t) is the angle formed by the tangent with the horizontal axis x. The element is
assumed to be stretched by the tension T at its ends.
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Fig. 1. String element under tension.
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According to the Second Newton’s Law, the equation of transverse motion of the
chosen string element is given by

aZ
AF=p | a—t;‘ds, (1)

where C is the curve in (x, 1) coordinate frame defined by x < ¢ < x + Ax, with
AF = F(x + Ax, t) — F(x,t) = T{sin(6 (x + Ax,t)) — sin(6(x, 1))} )

Here we emphasize that the tension T is the only force arising in the string. At the same
time, its vertical projection varies in space and time, supporting transverse wave
propagation.

The inertial term in (1) is expressed through a curvilinear integral of the first kind over
the line segment of the string profile, hence we have from (1) and (2)

x+Ax —2
T{sin(6(x + Ax, 1)) — sin(0(x, 1))} = p f 0 L(;g' 2 \/1 + <6u§g; t)) dé. 3

X
The formulation (3) is exact within the current 1D setup. To the best of authors’
knowledge, this equation specifying the Second Newton’s Law for a string does not usually
appear in standard textbooks [1,2,11].
Let us simplify this equation for small Ax, assuming for the sake of definiteness that the
function u = u(x, t) is twice differentiable in x and t. First, we have in the left hand side of

)

AF = 2Tsin <9(x + Ax, ;) - 0(x, t)) cos <9(x + Ax, ;) +0(x, t))
= 2Tsin <% 695’; 2 Ax) cos(8(x, 1)) ~ TAx 66;;;, 2 cos(0(x,1)). (4)

Here we neglected the quantities of order O((Ax)?), since the function 8(x,t) is
differentiable with respect to x.
Now recall that

0 =tan ! (Z—Z), Q)

according to the definition of the tangent. Then, we have in the right hand side of (4)

-1 -1/2

00 9%u au\? au\?
$=ﬁ<1+(5)) , and cosf = (1+(5)) . (6)
As aresult,
22
0%u ou 2
AF ~ ﬁ<1 + (5) ) Ax 7)

Next, we have from the right hand side of (3), using the mean value theorem
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x]Ax 92u(%,t) jl . <au(§, t)>2 d = d%u(x’,t) (1 N <au(x', t))zf px m
at? 0¢ at? ox’

) 1

[P (o () )

where x' =x+nAx, 0 <n < 1. On substituting (7) and (8) into (3), we obtain a
nonlinear equation given by

Ax, 3

%u 1 9%u
Pl ©
where ¢ = T/p is the conventional squared speed within the string.

Finally, assuming the displacement gradient is small, i.e.|0u/dx| << 1, we obtain the

classical linear equation of string motion

2 2
0u=16u (10)

axz 2 9t?’

2. Asymptotic derivation in two-dimensional case. We start from plane-strain
equations for a pre-stressed, incompressible elastic strip —o0 < x < 00, —h <y < h, see
Fig. 2,

¥
h
) 0 )
Q g ( x
Fig. 2. Schematic of an elastic strip.
written in a symbolic form as
%u

where L is a 2x2 second order matrix linear differential operator and u = (u,,u,) is the
displacement vector, satisfying the linearized measure of the incompressibility condition
divu = 0. Here and below see [14] for more specific details. The pre-stress is assumed to
be in the form of horizontal tension T, uniform across the strip thickness. It should be noted
that the parameters T and p have different dimensions than their counterparts in Section 1,
which however does not affect the observations in the paper.

The homogeneous boundary conditions at traction-free facesy = t+h are given by

Lul=0, i=12, (12)
where [; are appropriate first-order differential operators.
Consider long-wave low-frequency motion of the strip, for which

x=2&, y=hé&, t=2 (13)

)
c

166



where A— typical wave length, c = ,/T/p . Here the ratio n = h/1 < 1 is assumed to be
small. Next, the displacements are expanded into asymptotic series in terms of this
parameter as

Uy = NYZoun®, Uy = TiZo Uy (14)
On substituting these series into the equations of motion and boundary conditions (11),

(12), and the aforementioned incompressibility condition, expressed in the dimensionless

variableséy, §,and T, we arrive at leading order to the wave equation (10), for u = u,,.

Thus, 1D approach exposed in the previous section appears to be asymptotically justified.
At next order, we have for u = U,y + n?u,, a refined equation given by

L

ax?  c%ot? = c?

=0 (15)

37 1) ez = O
in which the coefficient at senior derivative cannot be expressed only through the basic
problem parameters T and p, but also involves a more specific characteristic of pre-stress,
denoted for brevity by &. The presence of such fourth-order dispersive term results in
smoothening of the discontinuities predicted by the classical string equation (10). In this
case, depending on the sign of the coefficient, the associated wave front can be either
receding (T > 38) or advancing (T < 36), e.g. see Fig. 3 a) and b), respectively.

au — e ou
x | dx |
i) A | \
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a) b)
Fig. 3. Dispersive behaviour near the wave front x = ct: a) receding; b) advancing.

3. Concluding remarks. The 1D derivation presented in Section 1 starts with a rigorous
formulation of the Second Newton’s Law within adapted physical assumptions. Each step
of the limiting process, as the size of the chosen string element tends to zero, is addressed
in detail. Nevertheless, the initially nonlinear problem for a string does not seem to be the
best example for illustrating the derivation of the wave equation. In particular,a simpler
problem for the longitudinal waves in an elastic rod looks more preferable. Indeed, the
latter does not involve relatively elaborated geometrical consideration, along with a
nontrivial hypothesis regarding uniform tension tangent to the string profile, but operates
with a lucid Hooke’s Law instead.

The 2D analysis in Section 2 demonstrates that the fundamental wave equation (10) is
not exact, but corresponds to a specific leading order long-wave approximation for
transverse low-frequency motion for a thin pre-stressed elastic strip. In this case, the refined
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equation (15) involves a term with a fourth-order derivative resulting in dispersive wave
propagation.
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