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Նվիրվում է պրոֆեսորՄելսԲելուբեկյանիհիշատակին 

Կ. Ղազարյան, Պ. Մարզոկա 
Տեղայնացվածալիքներըառաձգականբարակապատկառուցվածքներում 

Հիմնաբառեր. Սալ, թաղանթ, ծռման եզրային ալիք, տեղայնացում, թաղանթների մեմբրանային 
տեսություն 

Տվյալ հոդվածում հեղինակները ներկայացնում են բարակապատ կառուցվածքներում տեղայնացված 
ծռման ալիքներին առնչվող իրենց աշխատանքների ընդհանուր ամփոփումը: Հեղինակները 
ներկայացնում են նաև երկու նոր խնդիրների դրվածքն ու անալիտիկ արդյունքները՝ 
պայմանավորված ներդրակներով ամրանավորված համասեռ անվերջ սալում ծռման եզրային ալիքի 
տարածումով: Ամրանավորված ներդրակները մոդելավորված են որպես առաձգական հեծան, կամ 
առաձգական սալ: 

Посвящается памяти профессора Мелса Белубекяна 

Казарян К, Марзокка П. 
Локализованные волны в упругих тонкостенных конструкциях 

Ключевые слова: Пластинка, оболочка, изгибная краевая волна, локализация, мембранная теория оболочeк 

В данной статье авторы представляют обзор своих исследований, касающихся локализованных 
изгибных волн в тонкостенных конструкциях. Авторы также представляют постановку и аналитические 
результаты для двух новых задач, связанных с распространением изгибной краевой волны в однородной 
бесконечной пластине, армированной включениями, моделируемые как упругая балка или упругая 
пластина. 

In this paper the authors provide a review of our investigations pertaining to localized bending waves in thin-
walled structures. The authors also present the statements and analytical results fortwo new problems related to 
bending edge wave propagation in homogeneous infinite plate reinforced by inclusions, modelled as elastic beam 
or elastic plate. 

1. Localized bending waves are perturbations concentrated in the vicinity of the free edge
of thin plates and shells and decaying within a short distance from the edge. These bending 
localized waves are also called “edge waves” or “edge resonance waves”.  Based on the 
Kirchhoff theory of isotropic elastic thin plates, the existence of a bending wave localised 
near the free edge of a semi-infinite medium was first demonstrated by Konenkov in [1]. 
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The first edge waves’ results published in English were documented in [2,3], where was 
rediscovered the same phenomenon concurrently and independently, without being aware 
of Konenkov’s contribution. 

From a mathematical point of view, the edge wave resonance eigenvalue problem is 
similar to the eigenvalue problem for the local stability of plate [4] which was firstly 
reported in [5].  

The problem of bending waves localized near the free edge of a transversely isotropic 
plate is investigated in [6] using the Ambartsumian’s higher-order plate theory which takes 
account of the transverse shears generated by flexural deformation. Unlike the first order 
Reissner–Mindlin theory, which also takes account of transverse shears, Ambartsumian’s 
theory does not demand that plane normal cross-sections remain plane during bending. 
Within this analysis the existence of localized bending waves in transversely isotropic 
plates is established, and solutions of the dispersion equation obtained for different values 
of the elastic parameters. The analysis of frequencies of localized bending waves shows 
that for thick plates the effect of anisotropy can be considerable. For the case of vibrations 
of a narrow plate, from the long wave approximation a new beam vibration equation of the 
Timoshenko type is obtained for a transversally isotropic plate. 

Within the framework of the Ambartsumian’s higher-order plate theory, in [7] the 
existence and propagation problems of electro-elastic bending waves localized at the free 
edge of a 6mm hexagonal symmetry piezoelectric plate was established. The condition for 
existence of a localized bending wave is obtained, and the dispersion equation solved with 
respect to a dimensionless frequency. It is shown that the piezoelectric effect can increase 
the attenuation coefficient for a localized wave by up to 70% compared with that for a 
purely elastic plate, thus significantly decreasing the depth of penetration. The problem is 
also solved within the classical Kirchhoff theory. A comparison of results is carried out 
between two theories.  

The study of planar and bending magnetoelastic vibrations of a perfectly conductive flat 
plate immersed in a uniform external magnetic field is presented in [8]. The Kirchhoff’s 
plate theory and the model of a perfect conductive medium are used. The conditions for the 
existence of localized bending vibrations in the vicinity of the free edge of the plate are 
established. It is shown that the localized vibrations can be detected and can be eliminated 
by means of an applied magnetic field.  

The problems of localized bending waves for elastic isotropic and orthotropic cantilever 
plates with a rib reinforcement were studied in [9,10]. Herein the effect of inertial and 
elastic contributions due to the rib have been separately analysed. These investigations 
revealed that the presence of a reinforcement rib can suppress localized bending waves. 

In the framework of the membrane theory of cylindrical shells [11,12], the localised 
vibration near free edges of finite and semi-infinite cylindrical shell is considered. The 
derived dispersions equations lead to the localised membrane vibration conditions which 
are analysed and the appropriate recommendations are offered.  

 
Localized magnetoelastic bending vibration  

of an electroconductive elastic plate [8] 
 

The study of bending magnetoelastic vibrations of a perfectly conductive flat plate 
immersed in a uniform external magnetic field is presented. Kirchhoff’s plate theory and 
the model of a perfect conductive medium are used. For this system it can be shown that 
localized bending vibrations exist in the vicinity of the plate free edge and can be detected 
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and eliminated by means of changing the intensity magnitude of  the magnetic field.  
An elastic electroconductive plate is 

considered and is immersed in an external 
longitudinal magnetic field parallel to the 

( , )x y  plane, (Fig. 1). 01 02H H 0 x yH i i  

of constant intensity  01H const ,

02H const . 

In framework of the Kirchhoff’s theory and 
the model of a perfect conducting medium the 
plate vibration equation can be defined as 

2 2 2 2
2 2 2

01 02 01 022 2 2
2 2 0

2

h w w w w
D w H H H H h

x y x y t

    
             

 (1) 
where w is the plate normal deflection.  

Next the localized bending vibrations of a semi-infinite plate occupying the domain 
0 x   , y    , h z h    is considered. It is assumed that the localized 

waves are propagating along the y  axis.  

The associated boundary conditions at the edge 0x   are: 
2 2

2 2
0

w w

x y

  
     

;    
22 2
01

2 2
2 0

2

hHw w w
D

x x y x

    
          

 (2) 

At x   the vibration damps out, implying that lim 0
x

w


 . 

The two special cases of a magnetic field are considered:  
Magnetic field perpendicular to wave propagation 

In this case 01 020, 0H H  . The solution of Eq. (1) can be written as: 

     
0 1 2, i t kyk px k qxw x y w C e C e e      (3) 

where k  is the wave number and ω  is the frequency of vibration, 

 2 21 2p        ,   2 21 2q          , 

2
2

4

2 h

Dk

 
  ,

2
0

24

hH

Dk
 


  

The dimensionless parameter   is related to the frequency of localized vibration, and 

according to the condition of damping it should satisfy the inequality 20 1   . The 

roots of the dispersion equation can be cast in the following form: 

     2 22 2 21 2 1 1 2 1v v v v v                (4) 

 
 
 

Fig.1 Model of a plate immersed in a 
magnetic field in x and y directions. 
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Sufficient and necessary conditions for the existence of localized bending waves have 
the form 

  3 1 2, 0v v v      

In particular, for a steel plate ( 110GPa, 0.3)E    , with relative wave-length of 

0.02kh   and 0.01kh  , a value of 0 1.15   is needed to eliminate localized 

vibrations, resulting in an intensity of the magnetic field on the order of 01 1.5H T  and 

01 0.37H T , respectively. 

 
Magnetic field parallel to wave propagation 

In this case 01 020, 0H H   and application of 02H  leads to an increase in the 

localized vibration frequencies with increasing magnetic field intensity, implying that the 
localized vibrations exist, regardless of the magnitude of intensity of the magnetic field.  

 
Orthotropic plate reinforced by a rigid rib [9] 

 
A study of the localized bending wave in a thin elastic orthotropic cantilever plate 

reinforced by a rigid rib is presented. A general solution is given and the particular case of 
an isotropic reinforced plate is analyzed. The bending vibration equation issolved in 
conjunction with appropriate boundary conditions and an avenue to identify the rib elastic 
proprieties through an inverse approach is described.  

A rectangular elastic plate in a Cartesian reference system  , ,x y z  is considered such 

that the plane  xOy  coincides with the plate middle surface, with z  as the coordinate 

along thickness of a plate, such as ,  0,y b ,  ,z h h   (Fig.2) 

Based on the Kirhhoff’s hypothesis, a plate bending vibration equation can be written as  

 
4 4 4 2

11 11 66 224 2 2 4 2
2 2 2 0

w w w w
D D D D h

x x y y t

   
     

    
 (4) 
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Figure 2: Model of a cantilever plate with one free and rib reinforced edge. 

Here  ,w x y  is a plate middle surface normal displacement, 2h  is the plate 

thickness,   is a density of a plate material, 11D , 12D , 22D , 66D  are physical constants 

characterizing plate rigidness.  
On plate edges, e.g. 0,y b , simply supported boundary condition has been assumed. 

The edge 0x   is supposed to be free from mechanical stresses and reinforced with 
rib, which is modeled as an elastic beam. On this edge, the following boundary conditions 
are applied  

2 2 2

11 12 02 2

w w w
D D A

x y y x y

    
         

,  
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2 2 4

11 12 66 02 2 4
2

w w w
D D D D

x x y y

    
        

 

2 2 3

11 12 02 2 2
0

w w w
D D A

x y x y

  
  

   

 
2 2 4

11 12 66 02 2 4
4 0

w w w
D D D D

x x y y

    
        

 

Herein, 0A  and 0D  are the twist and bending stiffness of the beam, respectively. 

As a limiting case, if the plate is semi-infinite, the attenuation (localization) condition 

for the out of plane displacement  at x   is assumed as  lim , , 0
x

w x y t


  

The necessary and sufficient condition of the existence of localized waves  is found 
as  

 2 2
2 3 12 0n n         (5) 

66 0 022 12
1 2 3

11 11 11 11 11

2
, , , , ;

D A DD D

D D D D D
         

 

, 1,2,3.....n n b n     

Without a rib, i.e. 0    , the condition (5) always hold, while the presence of a 

rigid rib can eventually eliminate the localized wave if 2 22 0n n      .  

On the other hand, for isotropic plate with rectangular square cross section rib the 
condition (5) can be written as 
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   
2 422 2 8

22 20 0
2 6 3

2 1
1 0

n naE En a

b h E bh E

           
 

 

and the localized waves can be eliminated if  

  
4

2 20
3

2
1 1 2 1

2

Ea

bh E

        
 

.  

 
 

Effect of the stiffness and inertia of a rib reinforcement on localized 
bending waves in semi-infinite strips [10] 

 
The problem of localized bending waves in an elastic semi-infinite plate with a rib 
reinforcement has been analyzed. The mathematical conditions for the existence of the 
waves have been derived from the equation of motion. In particular, the effects of inertial 
and elastic terms in the rib have been separately investigated, leading to an interesting 
duality. With such a configuration, the existence of localized bending waves for a massless 
rib reinforcement does not depend on the inertial properties of the strip. On the other hand, 
if only the inertia contributions of the rib are taken into account, the flexural stiffness of the 
strip plays no role. Results for several cross-sections and a typical aluminum alloy material 
have been presented. Analyzing the changes in the dimensionless frequencies of the waves, 
it has been found that – for a circular and square cross sections – there exists a particular 
dimension for which the edge waves are equivalent to the edge waves occurring without 
any reinforcement. From the investigation of the regions of existence of the waves it 
appeared that the elastic contributions due to the rib are predominant compared to their 
inertial ones, at least for this problem. Furthermore, stiffer strips have been found to require 
smaller reinforcements to suppress their edge wave. 

 
Localised vibrations of membrane cylindrical shell [11,12] 

 
The problem of localized vibration has been studied in an elastic cylindrical shell using the 
equations of shell membrane theory. The shell has one edge which is traction free, while 
three different boundary conditions are considered on the other edge, namely, a clamped 
edge condition, and the Navier and anti-Navier boundary conditions. The corresponding 
dispersion equations have been obtained and analyzed to assess the existence of a localized 
vibration at the free-edges.  For all boundary condition cases the qualitative behavior of 
dispersion curves is very similar for the selected values of the Poisson ratios. However, it is 
observed that the frequency decreases when the shell length increases, reaching asymptotic 
values more rapidly for higher wave numbers. It has also been shown that there are no 
qualitative differences between results of shells under Navier and anti-Navier edge 
conditions. For the case of a shell with a traction free edgeand  clamped edge there is a 
minimum value of shell length/shell radius ratio where the localized vibration does not 
occur. In addition, for the shells with traction free edge/Navier and traction free edge/anti-
Navier boundary conditions it is shown that localized vibrations occur for any shell length.  

A cylindrical shell of length L  , R radius of shell middle surface and thickness h  
(Fig.3) is considered next.  
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Fig.3  Cylindrical shell middle surface 
 

The equations of motion and constitutive elastic law of cylindrical membrane shell are 
as follows 

 

 

2

0 2 2

2
0

2 2 2

2

2

1 2 1

1

1 2 1

1

1
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U V W V
V

R R v R c t
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R R C t
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            

      
           

   
   

  

 (6) 

Here   121C Eh v


  ,   is the bulk density , E  is Young's modulus ,G is the shear  

modulus , v  is the Poisson's ratio of the shell material, h  is the shell thickness, U  is the 

axial displacement along the generator , V  is the circumferential displacement in the 
direction of the profile of the middle surface and W is the radial displacement normal to the 

middle surface, 
2 2

2
02 2 2

1 1
, , ,

1t

G v
c

R v

  
     

   
 

When 1 2 2 1n      the modes of all solutions of Eq. (6) have attenuated, non 

periodic, forms. 
In the case of the boundary conditions of the clamped and traction free shell the 

particular case when the effect of bending deformation is negligible, namely when 0  , 

the dispersion equation has the form 
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       
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 (7) 

where 
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Herein   is the circular frequency.  

In the limit  1  one can find 

   4 1 sinh 1 2 1 cosh 1 0kL kL kL             

which determines the critical length of shell 0r kL , beyond which the localisation, edge 

resonance, occurs.  
Taking into account that edge resonance take placeat 1kL  , the following condition 

for critical length is found 

2 1 2 1 /kL or L R n        

In the general case when the effect of bending deformation is not negligible 0  , for 

sufficient long shell 0r kL  the critical length of   shell  0r kL is determined from the 

condition  
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Fig.4  Dimensionless frequency n  vs. /L R  of the shell  

with traction free and clamped  edges 
 

From the dispersion curves, according to the wave number n, there is a minimum value 
of /L R  under which localized waves do not take place. These values are reported in 
Table 1. 

 
 

 min
/L R  2n   3n   4n    

0.20   2.5970 1.3061 0.9246 0.7232 

0.25   2.7848 1.3618 0.9602 0.7501 

0.30   2.9872 1.4169 0.9947 0.7758 

0.35   3.2083 1.4712 1.0279 0.8005 

 
Table 1. Minimum values for /L R for the existence of localized waves 

corresponding to shell with traction free and clamped  edges 
 
 

The bending edge waves in an infinite elastic plate reinforced with rib 
 
An infinite homogeneous elastic plate reinforced with inclusion, defined as an elastic rib, is 
considered next (Fig.5). The solutions for the edge wave attenuation due to the inclusion is 
to be found. 
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Fig.4 .Homogeneous elastic  plate  reinforced with  an  elastic rib . 
 

The equations of plate vibration in 0, 1x s   and  regions are 

4 4 4 2

4 4 2 2 2

2

2 2 1, 2

2
; 1 ; 1;

s s s sw w w w
D h s

x y x y t

h
p q

k D

    
          

 
     

  (8) 

Solutions of Eq. ( 8) attenuated at  x   can be written as  

      
      

1 1 2

2 3 4

exp exp exp ;

exp exp exp ;

w C kpx C kqx i ky t

w C kpx C kqx i ky t

      
    

 

Boundary conditions at 0x   can be written as 

 

     

2 2 3 32
1 2 2 2

0 1 2 0 02 2 2 2 2

3 4 23
2 2 2

0 1 2 1 2 0 03 2 4 2

0

2 0

t p

w w w w
D w w G I I

x x y x y x t

w w w
D w w w w E J S

x x y y t

     
                

   
            

 (9) 

   1 2 1 20; 0w w w w
x


   


 

Here 0 0, ,G  are shear modulus, bulk density of the rib material, , , ,t pI I J S are cross-

sectional torsional moment of inertia, cross-sectional polar moment of inertia, cross-
sectional bending moment of inertia, cross-sectional area of the rib, correspondingly. 



 

158 

Substituting Eq. (10) into boundary conditions anhomogeneous set of algebraic 

equations can be found. These will have arbitrary constants, namely 1 2 3 4, , ,C C C C . 

Equating the determinant of the set of equations to zero, the dispersion equations expressed 
in terms of the dimensionless frequency   can be found dispersion equations  

  
  

2 2
0

4 3 2
0 0

2 0

2 0

t pGI k Dk p q I

E Jk Dk pq p q S

     

     
 

The first equation can be rewritten in dimensionless notations as 

21 1 0         ; 

3
00 ; ;

2 4
pt

I kG I k

D h


   


 

This equation has a solution 1 corresponding to the localized wave if 2    

The second equation can be rewritten as  

 2 2

0 0

1 1 1 0

;
2 4

E Jk kS

D h

      


   



 

For this equation the solution of the localized wave exists if    . 

From these localization conditions it follow that the rib inertia terms 0S  and 0 pI
provide the existence of localized bending waves in plate. 

 
The bending edge waves in a bi-material compound plates 

 
Two semi-infinite plates of the same material (extend between a y   and 

y a   ) reinforced by elastically bonded finite plate of other material ( y a ) 

are considered next. The finite plate is distinguished by an index (0) (Fig.5). 

4 4 4 2

4 4 2 2 2

1 2 1 2 1 2

2 2 0; 0,1, 2

; ;

s s s s
s s

w w w w
D h s

x y x y t

D D D

    
           

           

 (10) 

0
2

0

2
1 ; 1 ;

h
p q

k D


       ; 
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Here sw  is the plate middle surface normal displacement, sD are plate flexural rigidities,

s are bulk densities of plate materials, 2h plate thickness. 

 
Fig.5 Semi-infinite plates of the same material (extend between  a y   

and y a  ) reinforced by elastically bonded finite plate 

 
Solutions of (1) can be written as 

     
        

        

0

1 1 2

2 1 2

exp ; ,

exp exp exp ; ,

exp exp exp ; ,

w w y i kx t y a a

w B kp y a B kq y a i kx t y a

w A kp y a A kq y a i kx t y a

     

                  

                 

 

The condition 1  condition prescribes wave attenuation at  y  . 

The following continuity conditions apply 

01

1 0

0

1

1

0 , ;

,
ww

w w
y

M M N N

y


 

 
 

;y a  (11) 

0

2 0 2

2
2 0

0

; ;

;

w

M M

w

N

w
y y

N

w 
 

 
 

;y a   (12) 

 
2 2 3 3

2 2 3 2
; 2s s s s

s s s s s s

w w w w
M D N D

y x y y x

      
                
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Herein ,s sM N are stress couples and generalized normal stress resultants, and s  are 

Poisson ratios of plate materials, respectively.  

Substituting  1w and 2w  into the first row of boundary conditions (11) and (12) one 

obtains 

   
 

   
 

   
 

   
 

1 2

1 2

' '
,

' '
, ;

kqw a w a kpw a w a
B B

k p q k p q

kqw a w a kpw a w a
A A

k p q k p q

 
  

 

     
  

 

   (13) 

Substituting  1w and 2w  into second row of boundary conditions (11) and (12) and using 

(13) the boundary conditions at middle plate edges y a  canbe found: 

         
          

2
0

3 2 2 2

' '' 0

2 2 ' ''' 0

k pq w a k p q w a w a

k pq p q w a k p pq q w a w a

       

             
 

         
          

2
0

3 2 2 2
0

' '' 0,

2 2 ' ''' 0

k pq w a k p q w a w a

k pq p q w a k p pq q w a w a

          

            
 

 ; 'o

d
D D

dy
    

The equation of middle plate and boundary conditions leads to the separate anti-symmetric 
or symmetric solutions: 
Anti-symmetric solution 

     1 0 2 0sin sinh ;w x c kp y c kq y   (14)  

0
0 0 0 0 0 2

0

2
1; 1; ;

h
p q

k D


         

Substituting Eq. (14) into boundary conditions an homogeneous set of algebraic equations, 
with respect to the arbitrary constants can be found. Equating the determinant of the set of 
equations to zero, the following dispersion equation determining frequency   is also 
found:  

Dispersion equation 

       2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0tg thq s p f q g p q akp p s p g q f p q akq       

       2 2
0 0 0 0 0 0tg th 0p q p q p q pq akp akq    

 

 (15) 
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By the same way we can obtain the dispersion equation for symmetric solution  

     3 0 4 0cos cosh ;w y c kp y c kq y   

Dispersion equation 

       2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0th tgq s p f q g p q akq p s p g q f p q akp       

 

         2 2 2 2
0 0 0 0 0 0 0 0tg th 0pq p q p q p q p q p q akp akq        

 

(16) 

In (15,16) the following notations are used 

    
   

  

2
0 0

2 2
0 0

2 2
0 0

2 2

2 1 ;

2 2 ;

s q

pq p q

f p pq q g pq

            

             

                 

The numerical analysis of dispersion equations (15,16), can provide practical 
recommendations. Two types of compound plate materials will be considered, namely 

0 oD D    and  0 oD D   .  

 
Conclusions  
 
This paper offers a detailed review of the authors’ published investigations pertaining to 
localized magnetoelastic bending vibration of an electroconductive elastic plate, edge 
bending waves in orthotropic plate and isotropic strip reinforced by a rigid rib and localized 
vibration of cylindrical membrane shells. The authors also present new analytical results 
concerning bending wave localization at inclusion in infinite homogeneous plate modelled 
as beam or plate. 
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