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KuroueBsle ciioBa: ITnactunka, 000104Ka, H3rubHast KpaeBasi BOJIHA, JTOKAIH3aLs, MeMOpaHHas TeopHs 000JI0ueK

B naHHOH CcTaThe aBTOPHI NPEACTABIAIOT 0030p CBOMX HCCICHAOBAHHMH, KAaCAIOLIMXCS JIOKAIM30BaHHBIX
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IUIaCcTHHA.

In this paper the authors provide a review of our investigations pertaining to localized bending waves in thin-
walled structures. The authors also present the statements and analytical results fortwo new problems related to
bending edge wave propagation in homogeneous infinite plate reinforced by inclusions, modelled as elastic beam
or elastic plate.

1. Localized bending waves are perturbations concentrated in the vicinity of the free edge
of thin plates and shells and decaying within a short distance from the edge. These bending
localized waves are also called “edge waves” or “edge resonance waves”. Based on the
Kirchhoff theory of isotropic elastic thin plates, the existence of a bending wave localised
near the free edge of a semi-infinite medium was first demonstrated by Konenkov in [1].
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The first edge waves’ results published in English were documented in [2,3], where was
rediscovered the same phenomenon concurrently and independently, without being aware
of Konenkov’s contribution.

From a mathematical point of view, the edge wave resonance eigenvalue problem is
similar to the eigenvalue problem for the local stability of plate [4] which was firstly
reported in [5].

The problem of bending waves localized near the free edge of a transversely isotropic
plate is investigated in [6] using the Ambartsumian’s higher-order plate theory which takes
account of the transverse shears generated by flexural deformation. Unlike the first order
Reissner—Mindlin theory, which also takes account of transverse shears, Ambartsumian’s
theory does not demand that plane normal cross-sections remain plane during bending.
Within this analysis the existence of localized bending waves in transversely isotropic
plates is established, and solutions of the dispersion equation obtained for different values
of the elastic parameters. The analysis of frequencies of localized bending waves shows
that for thick plates the effect of anisotropy can be considerable. For the case of vibrations
of a narrow plate, from the long wave approximation a new beam vibration equation of the
Timoshenko type is obtained for a transversally isotropic plate.

Within the framework of the Ambartsumian’s higher-order plate theory, in [7] the
existence and propagation problems of electro-elastic bending waves localized at the free
edge of a 6mm hexagonal symmetry piezoelectric plate was established. The condition for
existence of a localized bending wave is obtained, and the dispersion equation solved with
respect to a dimensionless frequency. It is shown that the piezoelectric effect can increase
the attenuation coefficient for a localized wave by up to 70% compared with that for a
purely elastic plate, thus significantly decreasing the depth of penetration. The problem is
also solved within the classical Kirchhoff theory. A comparison of results is carried out
between two theories.

The study of planar and bending magnetoelastic vibrations of a perfectly conductive flat
plate immersed in a uniform external magnetic field is presented in [8]. The Kirchhoff’s
plate theory and the model of a perfect conductive medium are used. The conditions for the
existence of localized bending vibrations in the vicinity of the free edge of the plate are
established. It is shown that the localized vibrations can be detected and can be eliminated
by means of an applied magnetic field.

The problems of localized bending waves for elastic isotropic and orthotropic cantilever
plates with a rib reinforcement were studied in [9,10]. Herein the effect of inertial and
elastic contributions due to the rib have been separately analysed. These investigations
revealed that the presence of a reinforcement rib can suppress localized bending waves.

In the framework of the membrane theory of cylindrical shells [11,12], the localised
vibration near free edges of finite and semi-infinite cylindrical shell is considered. The
derived dispersions equations lead to the localised membrane vibration conditions which
are analysed and the appropriate recommendations are offered.

Localized magnetoelastic bending vibration
of an electroconductive elastic plate [8]

The study of bending magnetoelastic vibrations of a perfectly conductive flat plate
immersed in a uniform external magnetic field is presented. Kirchhoff’s plate theory and
the model of a perfect conductive medium are used. For this system it can be shown that
localized bending vibrations exist in the vicinity of the plate free edge and can be detected
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and eliminated by means of changing the intensity magnitude of the magnetic field.

An elastic electroconductive plate is
considered and is immersed in an external
longitudinal magnetic field parallel to the

(z,y) plane, (Fig. 1). H =H i +H02iy

of constant intensity (H o =const,

Hy,= const) .
In framework of the Kirchhoff’s theory and
the model of a perfect conducting medium the Fig.1 Model of a plate immersed in a
plate vibration equation can be defined as magnetic field in x and y directions.
2 2 2 2
DA’w —i(Hgl o 52 Y om,h, a_wj 1202 20
2n ox oy Ox0y ot

()
where W is the plate normal deflection.
Next the localized bending vibrations of a semi-infinite plate occupying the domain

0<x<oo, —0<y<oo, —h<z<h is considered. It is assumed that the localized
waves are propagating along the ) axis.
The associated boundary conditions at the edge x =0 are:
ow  O'w 0| ow O’w | hHZ ow
T +tV— =0; D— 2+(2—U) > -——U_—— =0 2
Ox oy Oox| Ox oy 21 Ox

At x —> o0 the vibration damps out, implying that limw=10.
X—>0

The two special cases of a magnetic field are considered:
Magnetic field perpendicular to wave propagation

In this case H01 #0, Hoz =0 . The solution of Eq. (1) can be written as:
w(x,y)=w, (Cle”“’x +Ce '™ ) o) 3)

where k is the wave number and @ is the frequency of vibration,

p=\/(1+x+\/n2+2x+x2), q=\/(1+x—\/n2+2x+x2),

T]2:2phc02 _ hH;
Dk* 4nDk’

The dimensionless parameter 1] is related to the frequency of localized vibration, and

according to the condition of damping it should satisfy the inequality 0 < 1’]2 <1. The
roots of the dispersion equation can be cast in the following form:

’r|2=1+2(1—v—)()\/(l—v—x)z-l—vz—2(1—v—)()2—v2 )
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Sufficient and necessary conditions for the existence of localized bending waves have
the form

x<(3+v)( 1—v)/2, v#0
In particular, for a steel plate (£ =110GPa, v =0.3), with relative wave-length of
kh=0.02 and kh=0.01, a value of ¥, =1.15 is needed to eliminate localized

vibrations, resulting in an intensity of the magnetic field on the order of H,, ~1.57 and

H, ~0.37T, respectively.

Magnetic field parallel to wave propagation
In this case H,, =0,H, #0 and application of /1, leads to an increase in the

localized vibration frequencies with increasing magnetic field intensity, implying that the
localized vibrations exist, regardless of the magnitude of intensity of the magnetic field.

Orthotropic plate reinforced by a rigid rib [9]

A study of the localized bending wave in a thin elastic orthotropic cantilever plate
reinforced by a rigid rib is presented. A general solution is given and the particular case of
an isotropic reinforced plate is analyzed. The bending vibration equation issolved in
conjunction with appropriate boundary conditions and an avenue to identify the rib elastic
proprieties through an inverse approach is described.

A rectangular elastic plate in a Cartesian reference system (x, ¥, z) is considered such
that the plane (xOy) coincides with the plate middle surface, with Z as the coordinate

along thickness of a plate, suchas , y € [O,b] , Z € [—h,h] (Fig.2)
Based on the Kirhhoff’s hypothesis, a plate bending vibration equation can be written as
o*w o'w o'w o*w
D, —+2(D,, +2Dy) ~+D,, —+2ph—-=0 4)
ox oy ot

ox*dy
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Figure 2: Model of a cantilever plate with one free and rib reinforced edge.
Here w(x, y) is a plate middle surface normal displacement, 2/ is the plate

thickness, p is a density of a plate material, D,,,D,,,D,,, Dy, are physical constants

characterizing plate rigidness.
On plate edges, e.g. ¥ =0,b, simply supported boundary condition has been assumed.

The edge x =0 is supposed to be free from mechanical stresses and reinforced with

rib, which is modeled as an elastic beam. On this edge, the following boundary conditions
are applied

o*w O*w o o*w
_Dll_z_Dl _2:A0_ ,
ox oy Oy \ Ox0y
0 o*w 0*w o*w
_§|:D117+(D12+2D66)§:|=D0W
2 2 3
D“a—VZVJan@—VZVJrAOa—Wz:O
ox oy Ox0y
0 0*w O*w o*w
E[D“_axz +(D12+4D66)—a . }Do_af =0

Herein, A0 and Do are the twist and bending stiffness of the beam, respectively.
As a limiting case, if the plate is semi-infinite, the attenuation (localization) condition

for the out of plane displacement at X —> o0 is assumed as lim W(x, ¥, t) =0
X—>0

The necessary and sufficient condition of the existence of localized waves  is found

as

yBli+ykn1/2(a2+a3)—af <0 ©)
D D 2D D

a =22 g =2 g e B:ﬁ’ y==u
Dll Dll Dll Dll Dll

A, =nn/b, n=1273...

Without a rib, i.e. Y= =0, the condition (5) always hold, while the presence of a
rigid rib can eventually eliminate the localized wave if YBAZ +~/2yA, —v? < 0.

On the other hand, for isotropic plate with rectangular square cross section rib the
condition (5) can be written as
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i \E b E_(I_UZ)Z b7 <0

2 4
wnladt (Eo jz . \/5(1— L )nnna E,

and the localized waves can be eliminated if

na* (§j>£(1_02)(M—1).

lE) 2

Effect of the stiffness and inertia of a rib reinforcement on localized
bending waves in semi-infinite strips [10]

The problem of localized bending waves in an elastic semi-infinite plate with a rib
reinforcement has been analyzed. The mathematical conditions for the existence of the
waves have been derived from the equation of motion. In particular, the effects of inertial
and elastic terms in the rib have been separately investigated, leading to an interesting
duality. With such a configuration, the existence of localized bending waves for a massless
rib reinforcement does not depend on the inertial properties of the strip. On the other hand,
if only the inertia contributions of the rib are taken into account, the flexural stiffness of the
strip plays no role. Results for several cross-sections and a typical aluminum alloy material
have been presented. Analyzing the changes in the dimensionless frequencies of the waves,
it has been found that — for a circular and square cross sections — there exists a particular
dimension for which the edge waves are equivalent to the edge waves occurring without
any reinforcement. From the investigation of the regions of existence of the waves it
appeared that the elastic contributions due to the rib are predominant compared to their
inertial ones, at least for this problem. Furthermore, stiffer strips have been found to require
smaller reinforcements to suppress their edge wave.

Localised vibrations of membrane cylindrical shell [11,12]

The problem of localized vibration has been studied in an elastic cylindrical shell using the
equations of shell membrane theory. The shell has one edge which is traction free, while
three different boundary conditions are considered on the other edge, namely, a clamped
edge condition, and the Navier and anti-Navier boundary conditions. The corresponding
dispersion equations have been obtained and analyzed to assess the existence of a localized
vibration at the free-edges. For all boundary condition cases the qualitative behavior of
dispersion curves is very similar for the selected values of the Poisson ratios. However, it is
observed that the frequency decreases when the shell length increases, reaching asymptotic
values more rapidly for higher wave numbers. It has also been shown that there are no
qualitative differences between results of shells under Navier and anti-Navier edge
conditions. For the case of a shell with a traction free edgeand clamped edge there is a
minimum value of shell length/shell radius ratio where the localized vibration does not
occur. In addition, for the shells with traction free edge/Navier and traction free edge/anti-
Navier boundary conditions it is shown that localized vibrations occur for any shell length.

A cylindrical shell of length L , R radius of shell middle surface and thickness %
(Fig.3) is considered next.
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Fig.3 Cylindrical shell middle surface

The equations of motion and constitutive elastic law of cylindrical membrane shell are
as follows

o(oU 10V v oW 10U
AU +0,—| —+—— |+ =——
da\da RP) (1-v)R da ¢ ot
0, 0(oU 1oV 2 w1
AV +2L | 22 |y = (6)
Roploa RoB) (1I-v)RZ op ¢ ot

1oV W oU  pRhO'W
——— V=
ROB R oo, C ot
HereC = Eh (1 —? )71 , P is the bulk density , £ is Young's modulus ,G is the shear

modulus , Vv is the Poisson's ratio of the shell material, /1 is the shell thickness, U is the
axial displacement along the generator , V' is the circumferential displacement in the
direction of the profile of the middle surface and W is the radial displacement normal to the

¢ 138 L G, _l+v

+__7 = = s
o’ R ol T 1-w

When 07'n7? <n2 <1 the modes of all solutions of Eq. (6) have attenuated, non

middle surface, A =

periodic, forms.
In the case of the boundary conditions of the clamped and traction free shell the

particular case when the effect of bending deformation is negligible, namely when y =0,
the dispersion equation has the form
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4(2 - )2 \/E + [4sls2 + (2 - )2]sinh (kp,L)sinh (kp,L)-

7
_[1 +(2—n2 )2} 5,5, cosh (kp,L)cosh (kp,L)=0
where
1 - - 12
b= > |:S1 T8, =S, i\/(51 +5, _YS3) _4(1_V 7)51 (Sz _Y)}
2(1-v7y)

2

n
5 :kzcz’ k=E> Sl=1—ﬂ2,sz=1—9n2,
t

s, =2-v'n',y= (1—6n2nz)_l

Herein @ is the circular frequency.
In the limit 1 — 1 one can find

4ﬂ+kLsinh(kLﬂ)—2ﬂcosh( 1-0 kL):O

which determines the critical length of shell #, = kL , beyond which the localisation, edge

resonance, OCCurs.
Taking into account that edge resonance take placeat kL >>1, the following condition
for critical length is found

kL >2~1-6 or L/R>2.\1-0 /n

In the general case when the effect of bending deformation is not negligible y # 0, for
sufficient long shell 7, = kL the critical length of shell 1y = kL is determined from the

condition

_2p§(1—v2Y0)+1+v_2W0 X (l—yo)v 5
" (1+V—2VYO)p0 {I_V YO+1_9_70 [1_6_(2_‘} )YOJ}

-0-7,(2-v)]"
2-(1-vy,) T e

where p, = [
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Fig.4 Dimensionless frequency M, vs. L/ R of the shell

with traction free and clamped edges

From the dispersion curves, according to the wave number 7, there is a minimum value
of L/ R under which localized waves do not take place. These values are reported in
Table 1.

(L/R) n=2 n=3 n=4

v=0.20 2.5970 1.3061 0.9246 0.7232
v=0.25 2.7848 1.3618 0.9602 0.7501
v=0.30 2.9872 1.4169 0.9947 0.7758
v=0.35 3.2083 1.4712 1.0279 0.8005

Table 1. Minimum values for L/ R for the existence of localized waves
corresponding to shell with traction free and clamped edges

The bending edge waves in an infinite elastic plate reinforced with rib

An infinite homogeneous elastic plate reinforced with inclusion, defined as an elastic rib, is
considered next (Fig.5). The solutions for the edge wave attenuation due to the inclusion is
to be found.
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Fig.4 .Homogeneous elastic plate reinforced with an elastic rib .

The equations of plate vibration in X > 0,5 =1 and  regions are

4 4 4 2
D(a W 0w, O J+2phaw" s=1,2

ox* oy’ ox*oy’ or?
X hy X0y ®
o |2p
lep ?; p=Al-n; g=yn+L
Solutions of Eq. ( 8) attenuated at X —> £00 can be written as
W, = (Cl exp[—kpx]+C, exp[—kqx]) exp [z(ky - oat)] ;
w, = (C3 exp[kpx]+C, exp[kqx])exp[i(ky —(ot)];
Boundary conditions at X =0 can be written as
o*w, 0w 0’ o’w o’w
DO((?_ 6x22]+0§(wl_WZ)J—FGO]’ax—@yZZ_pOI”?a;Z:O N
o’ o’ o 0’
D, (?M;Z(wl _W2)+(2_U)6)c—6)/2(wl -W, )j+EOJ?vzz+ PoS 8;52 =0
(w -w )=0' i(w -w )=0
1 2 P e

Here G,,p,, are shear modulus, bulk density of the rib material, /,,/ i J, S are cross-

sectional torsional moment of inertia, cross-sectional polar moment of inertia, cross-
sectional bending moment of inertia, cross-sectional area of the rib, correspondingly.
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Substituting Eq. (10) into boundary conditions anhomogeneous set of algebraic
equations can be found. These will have arbitrary constants, namely C,,C,,C;,C,.

Equating the determinant of the set of equations to zero, the dispersion equations expressed
in terms of the dimensionless frequency 1 can be found dispersion equations

(GLK* +2Dk(p+q)—1,p,0°) =0

(E(,Jk4 + 2Dk3pq(p + q)—Spocoz) =0

The first equation can be rewritten in dimensionless notations as
0+ 1+n+1-n-Bn>=0;

_Gylk B—I k3po
4hp

This equation has a solution 1) < 1 corresponding to the localized wave if 3 > \/5 +0
The second equation can be rewritten as

a++1-1’ (Jl—n +\/1+n)—8n2 =0
_EJk o _kSp,
2D’ 4hp
For this equation the solution of the localized wave exists if 3 > o .

From these localization conditions it follow that the rib inertia terms Sp, and p,/,

provide the existence of localized bending waves in plate.
The bending edge waves in a bi-material compound plates

Two semi-infinite plates of the same material (extend between a <y <00 and
—00 < y <—a) reinforced by elastically bonded finite plate of other material () < |a|)
are considered next. The finite plate is distinguished by an index (0) (Fig.5).

4 4 4 20
D&M Oy O s n 0% _oi5=0,1,2

ot ot ey or (10)
pp=p,=p; D =D,=D; v,=v,=vV

2p,h
k*\ D

0

p=yT=n; g=l+n; n=—%

5
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Here W, is the plate middle surface normal displacement, DS are plate flexural rigidities,

p, are bulk densities of plate materials, 2h plate thickness.

Fig.5 Semi-infinite plates of the same material (extend between a <y <00
and —o0< y<—a ) reinforced by elastically bonded finite plate

Solutions of (1) can be written as

w, = w(y)exp[i(kx—oot)]; ye(-a,a)

W, :(B1 exp[—kp(y—a)]+B2 exp[—kq(y—a)})exp[i(kx—mt)];y e(a,»)
w, = (A1 exp[kp(y+a)}+A2 exp[kq(y+a)])exp[i(loc—oot)];y € (—a,—oo)

The condition 1 <1 condition prescribes wave attenuation at ) — +o0.
The following continuity conditions apply

L

Y% oy y=a; (11)
M, =M,,N, =N

OO,

"y oy y=—a (12)

M,=M, ;N,=N,

2 2 3 3
MS :D(a MZ}S +U.a_wJ;NS ZDS(a M;S +(2_Us) ¢ = J

S
2
* ox
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Herein M o N , are stress couples and generalized normal stress resultants, and L, are
Poisson ratios of plate materials, respectively.
Substituting W, and W, into the first row of boundary conditions (11) and (12) one

obtains
_ kqw(a)+w'(a) _ kpw(a)+w'(a)
B, = k(p—q) ) B, k(p—q) .
b w(a) dpv(-a)-w(-a)
l k(p-a) k(p-qa)

Substituting W, and W, into second row of boundary conditions (11) and (12) and using

(13) the boundary conditions at middle plate edges y = %a canbe found:

K (pgy+yo—vy)w(a)+k(p+q)yw'(a)+w"(a)=0
Kpg(p+q)yw(a)+k* (2—U+y(—2+p2 +pq+q’ +o))w'(a)—w"'(a) =0
K (pgy+yo—v,)w(-a)—k(p+q)yw'(-a)+w"(-a) =0,

K pg(p+q)yw(-a) -k (2=v(2- p* = pg—¢* =v) ~v, ) w'(~a) + w"(~a)=0

Cd
y=D/D,; () 0

The equation of middle plate and boundary conditions leads to the separate anti-symmetric
or symmetric solutions:
Anti-symmetric solution

w(x)=c¢ sin(kp,y)+c, sinh(kg,y); (14)
o [2p,h
Po=\Mo=l gy =yMothimy=-7 g‘) ;
0

Substituting Eq. (14) into boundary conditions an homogeneous set of algebraic equations,
with respect to the arbitrary constants can be found. Equating the determinant of the set of
equations to zero, the following dispersion equation determining frequency @ is also
found:

Dispersion equation
9 (S+p02f+qO2g_pozq02)tg(akpo)_po (S_pozg_quf_poquz)th(akqo)+
+y(p +q)(po2 +q02)(poqo + pq tg(akpo)th(akqo)) =0 (15)
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By the same way we can obtain the dispersion equation for symmetric solution
w(y)=c,cos(kp,y)+c, cosh(kq,y);

Dispersion equation
g+, f+4,°g=p'a,” ) th(akg, )+ py (s—py g =4, f — po'ay” )t (akp, ) +

+pq(p+q)(p02 +%2)V_poqo (p+q)(p02+q02)ytg(akp0)th(akq0)=0 (16)

In (15,16) the following notations are used

s :—(yu—oo)(2+y(—2+q2 +U)—UO)+

+2pgy (~1+7=70+0, )+ Py (g’ =10+, );
f=(2+7(=2+ "+ pg+q* +0)=v, );¢ = pgy+y0-v,

The numerical analysis of dispersion equations (15,16), can provide practical
recommendations. Two types of compound plate materials will be considered, namely

po/D,2p/D and p,/D,<p/D.

Conclusions

This paper offers a detailed review of the authors’ published investigations pertaining to
localized magnetoelastic bending vibration of an electroconductive elastic plate, edge
bending waves in orthotropic plate and isotropic strip reinforced by a rigid rib and localized
vibration of cylindrical membrane shells. The authors also present new analytical results
concerning bending wave localization at inclusion in infinite homogeneous plate modelled
as beam or plate.
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