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Cy6onTuMabHOe 10 ObICTPOACHCTBHIO yIpaBJIeHNe ABHKeHHEeM IBY3BEHHOT0 MAHHUITYISITOpPA

KiioueBble ¢j10Ba: [ABY3BEHHBIIl MAHUITYJITOP, CyOONTHMAIBHOE O OBICTPOACHCTBHUIO yHIPABICHUE

PaccmaTtpuBaeTcst 3ajada INOCTPOCHHS CYOONTHMAIbHBIX IO OBICTPOJCHCTBHIO DPEXHUMOB YIPABICHHS
JIBUJKEHUEM ILIOCKOIO JIBy3BEHHOI'O MAHMIIYJSTOPA C IPOM3BOJILHBIMH I€OMETPUYECKUMHM M HMHEPLUMOHHBIMU
xapakTepucTukamu. TpeOyercst nepeBecTH MaHMIIYJIATOP W3 33/laHHOH HayaabHOM KOH(UIypalnuu B 3a/laHHYIO
KOHEUHYI0 KOH(UIYpalUIO NP YCIOBUSX, YTO B Hauaje U B KOHLE NMPOLECCA CUCTEMAa MOKOUTCH, a MOMYJH
YIPaBJIAIONUX OOOOIIEHHBIX CUJI HE NPEBBILAIOT (UKCUPOBAHHBIX 3HAYEHMH. YINpaBJIEHHS MILyTCS B KJlacce
PENeHHBIX PEXUMOB C MMHUMAIbHBIM (PaBHBIM TPEM) CyMMapHBIM YHCIOM NEPEKIIOUCHUH, JOCTATOUHBIM IS
YIOBJIETBOPEHUs TPAHUUHBIX YCIOBHil. IIPENIOKEH PaCUCTHBIH ANrOPUTM, MO3BOJSIOMIMI MO HAYAIBHBIM U
KOHEUYHBIM I0JIOKEHUSM OIPE/ICNIMTh KOJIMYECTBO TOYEK MEPEKIIOYEHHs yNPaBlIeHUH, NOPSAI0K YepeIoBaHUs HX
3HAKOB, MOMEHTBI IIEPEKIIFOUEHHS U BPEMs IPUBEACHUS MAHUITYIATOpa B TPeOyeMOe MOJI0KEHHE TTOKOSL.

Uytwnhuyub 9.9, ¥phqnpjuib T.0.
Bplonul Ywmthwnyjjuwnnph supddwi unipoyyinhdw pun wpuquqnpsnipyub nEjuupnudp

Zhduwpwretp: tpljonuly dwthwynyjuwnny, unipoupinhdu) pun wpuqugnpénipyut nhjudupnd

TYhunwplynud E juduyuljwt pljpuswthwlju b hukpghnt punipwqphyubpny hwpp tplonuily
dwthynyjuwnph  swpddwt  unmpowywhdw) pun  wpwqugnpsnipyub nEjujuwpdwt  npkddubtph
Jupnigdwt jutinhpp: Mwhwbgynud  dwthwynijjunnpp nknuthnpul) npjus uljqpiwljut hwiquinh
Jh&wlhg wpjws Jhpgtwmljutt  hwhqunh  dhdwl nhjwjupnudubph  Jpu gplws  wpdus
vwhdwbwthwlnudubph ghwypnud: VEjuwdupnudubpp honpdnud Bo juinp we funp hwunwnntt
$ntuyghwibph nuund tjuqugnyt (huduuwp pkph) gmdwpuiht pyny hojwbgdut YEnkpnd,
npp puqupup b oEquuyghtt wupdwbbbpht pudupuptine hudwp: Unwowpldws b hwodupluyh
wignphpd, npp poyp k nwghu pun wyqpiwub b ipgwuib nhppkph npngty nkjujwpnidutph
thnjuwtigdwt Yhwnbph pubwlp, nputg tpwbibph hippuqunipjut Jupgp, hnjuwbgdwi wwhtpp b
wnpyws hwbiquinh nhpp dwbhwynijjuinnph phipdwt dudwbulyp:

We consider the problem of the construction of a time-suboptimal control modes of the motion of a flat two-
link manipulator with arbitrary geometric and inertial characteristics. It is required to transfer the manipulator from
a given initial configuration to a given final configuration under the conditions that at the beginning and at the end
of the process the system is at rest, and the moduli of the generalized control forces do not exceed fixed values.
The controls are sought in the class of relay modes with a minimum (equal to three) total number of switches,
sufficient to satisfy the boundary conditions. A computational algorithm is proposed that allows, from the initial
and final positions, to determine the number of control switching points, the order of alternation of their signs, the
switching moments and the time for bringing the manipulator to the required rest position.
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Introduction

In practice, two-link manipulators are used both independently and as part of the
structures of multi-link manipulation robots for which it is these two links that perform the
bulk of the robot's motions when it performs various technological operations. Therefore,
the development of effective modes of program control of a two-link robotic manipulator is
still an urgent task. When choosing program controlled movements, one should take into
account such factors as the time for performing a work operation by a manipulator, energy
consumption, various restrictions, ease of implementation, etc. In cases where shortening of
the work cycle of the manipulator leads to speed up of the entire technological process, it is
advisable to construct programmed motions that are optimal with respect to speed of action.
At the same time, an important task from the point of view of practical implementation is
the construction of optimal control laws for a two-link manipulator of a simple structure,
having the minimum possible number of switchings. In [1,2], optimal and suboptimal
control laws were constructed for a two-link manipulator with zero-lag links in the two-
point problem of moving a gripper with a load. A significant dependence of the time it
takes to bring the gripper to the terminal state on the manipulator configuration type was
revealed, and the problem of choosing the optimal configuration type was solved. In [3], a
graphic-analytical approach was developed to constructing time-suboptimal open-loop
controls that bring a two-link manipulator with arbitrary geometric and lag characteristics
from the initial rest configuration to an arbitrary final rest configuration. The publications
[4-8] deal with optimization methods for solving the problem of controlling robots,
including two-link manipulators, and calculating their design parameters. In [9,10], a
parametric optimization method was used to construct a quadratic-functional-suboptimal
control of the motion of a plane two-link manipulator taking into account feasible
manipulator configurations corresponding to given gripper positions at the beginning and
end of the motion. In [11,12], the problems of optimal control of transport movements of an
electromechanical two-link manipulator time optimal [11], energy consumption and the
functional combined from them [12] are considered. Methods for calculating controls are
proposed based on a simplified model that does not take into account the mutual influence
of links. Numerical simulation of the dynamics of the complete model under optimal
control modes has been carried out. The simulation results have established the practical
efficiency of the found modes. In [13], an algorithm was developed for time suboptimal
control of a two-link electromechanical manipulator with high positioning accuracy. A
combined control is proposed that allows you to bring the manipulator to the desired
position with any given accuracy. The works [14-16] are devoted to the construction of
time optimal control of the motion of a two-link manipulator with a second balanced link.

In this paper, for a flat two-link manipulator with arbitrary geometric and inertial
characteristics, an algorithm for calculating suboptimal program controls is proposed,
which allows, based on the initial and final configurations of the manipulator, to determine
the number of switching points of control moments, the order of alternation of their signs,
the switching moments at which the system moves from the initial rest position to the
specified final rest position in a time close to the optimal response time.

137



1 Formulation of the problem

Consider a two-link manipulator (fig. 1) consisting of two absolutely rigid bodies G,
and G, joined by a hinge O,. The body G (first link) is joined to a fixed foundation by
means of hinge O, . The hinges are ideal and cylindrical, and their axes are parallel to one

another. At the end of the second link ( Gz) a reinforced gripper is installed, in which there

is a movable object (cargo). We will assume that the linear sizes of the gripper are much
smaller than the lengths of the links and consider the gripper to be a material point when
studying transport motions. The system performs a plane-parallel motion in a horizontal

plane perpendicular to the axes of the hinges O1 and 02. The manipulator control under
study is accomplished with two independent drives D, and D, . The first link and the base
interact via the drive D, , and D), is responsible for the interaction between the links G,
and G, of the manipulator. The control functions in the manipulator model under study are

the torques M, and M, about the axes O, and O, generated by the drives D, and D, ,

respectively. The action of other forces is not taken into account.
y In the plane we introduce a fixed
O Cartesian coordinate system O, XY
3

with origin one the axis of O,. We
denote: ¢, - angle between the O, X
and the straight line 0,0, connecting
72 the hinges; ¢, - angle between the

G 0, O, X axis and the straight line O,C

passing through the axis of the moving
0, X hinge O, and the center of mass C of

G,; L =|0102| - distance between

Fig. 1. Calculation model of a two-link manipulator
the hinge axes; / =|02C| - distance

from the axis of O, to the center of mass of G, with the cargo; /, and /, - moment of
inercia of G, and G, (with the cargo) about the axes of O, and O,, respectively; m -
mass of G, with the cargo.

The Lagrange equations describing the motion of this system have the form [3]
(11 + mLf )¢1 + mLJ(bz COS(¢1 - 5”2) + lel¢22 Sin(% - (02) = M1 _Mz’
Lo, + lel @, cos(@, — ) — lel¢12 Sin(ﬂ —9,)=M,.

We pose the following optimal control problem.

(L.1)
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Problem 1.1. Find the program laws of change the control moments M L= M 1 (1),
M, =M, (t) that ensure of the system (1.1) from the initial state

2 0)=¢/, §0)=0, ¢,0)=¢), $(0)=0 (12)
into a given final state
p(M=p/, ¢(1)=0, @)=¢,, ¢(T)=0 (13)

In a minimum time 7, with the condition that the control moments are limited in absolute
value by constants:

0 0
M ()| <M, |M,@)|<M;. (1.4)
In (1.1)-(1.4) we go to over to dimensionless variables denoted by primes:
t'=(M/(mL))?t, I'=1/L, I!=1/(mL), M/'=M,/M], i=12.(15)
If we then omit omit the primes, and also rotate the coordinate system O, XY through

the angle ¢)10 , then relations (1.1)-(1.4) become simpler: in them we have

o =0, m=1, L =1, Mj=1. (1.6)

2 Solving a linear problem

First consider the special case of the manipulator (1.1) in which the second manipulator
link is statically balanced; i.e., one has / =0 in (2.1). Then, taking into account (1.6), the
time-optimal control problem takes the form
T — min 2.1)
(L +D@ =M, —-M,, 1L,p,=M,, (22)

».(0)=0, ¢(0)=0,

_ , 2.3)
?2,0)=9;,  @(0)=0,

oM)=¢ , ¢(T)=0, i=12, 2.4)
M |<M] . |M,|<1. 2.5)

The solution of problem (2.1)-(2.5) is known [3]. A pair of functions that determine the
time optimal control depending on ((DIT, A(DZT ), A(02T = (02T - (03 , can be represented as:

(M[. M), (9. Ap)) €@,

M =(M].M,), (9] . Ap;) e @, (26)
(M, M), (9] .Ap;)€®,.

Here the areas @, i =0,1,2 are defined as follows:

O, =0 VO VDI VDI, .7)
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o0 ={(pf ,Ap]) e ®: Apl =By, ¢ >0,
" ={(p] . Ap]) e ®: Ap] =—Ag], ¢ >0},
O ={(¢] . Ap}) € @ Agy =~y ¢ <0},

) ~{(pf, Ap)) e ®: Ap] = By, g <0},

O, =0 v, 2.8)
o" ={(¢] . Ap}) e D ~Ag] <A@} <By|, ¢ >0},

o’ ={(¢].Ap]) e @: Byl <Ag; <~Ap/, ¢ <0},

(Dz _ q)(ZO) Uq)(zl) ’ 2.9)
o ={(¢ . Ap)) e ®: By <Agl, ¢ >0 u —dg{ <g,, ¢ <0},
D) ={(p].Ap]) eD: Ap] <-Ag]. ¢] >0 u Ap] < By, ] <0},

where

A= +D)M+D)'L', B=,+)(M,-D)"L",

and

O ={p,p,: -27<¢,p, <27} (2.10)
- the region of change of generalized coordinates (angles) of a two-link manipulator.

According to (2.6), the components of the optimal control M * are defined as follows.
If

1
(0, Ap))ed, =\, @.11)

a=0

then M| - control with one switching, and M, - control with two switching

M} = (=) M sign| (1" =0)|(, + Dol + L,Ag]|], 1 =T /2,

(2.12)
a=0,1,
-D”, te[0.8?)u[#.17],
T (=D, te [t;2>,t;2>),
) == LAp, /T +T/4, (2.13)
19 =1 LAl /T +3T" /4, B=0,1.
If
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1
(0, Ap))ed, = o, (2.14)

a=0

then M - control with two switching, and M, - control with one switching
1 2
DMy, telo) o4, 1) ],
1= 1340 H La
(-1 M, te[zy,t; >),

1) = (=1 [(1,+ Dol + L,AQ] |/ (M)T))+T; /4, 2.15)

10 = ()[4 + Dol +LAG] |/(MIT;)+3T; 14, B=0,1,

M; = (1) sign[ ( -0|LAg)|], &7 =T;/2, a=0,1. 2.16)
If

1 1
((/JlT,(/)zT)G‘DO=(U®é°’“’jU(U®§“’”j, 2.17)
a=0 a=0

then M 1*, M ; - controls with one switching

M} = (=1)* M sign| (1" =0)|(1, + Do] + L,Ag]

], a=0,1,

M3 =(=1) sign (1 -0)|L,Aag) |, B=0,1, (2.18)

tV=tP=T"/2=T/2,

In (2.11)-(2.16) T;" and T, are defined using the following formulas
1/2

1 =2((,+ 0l + Lagk | m?) L 1 =2(|Lagt]) 2.19)

Formulas (2.6)-(2.19), depending on whether point ((DIT, A(DZT ) belongs to a particular
area @,(¢/ ,A@) ), i=1,2,3, allow us to determine both the type of control mode and
the switching moments ¢V =t (o, A@l), i=1,2,3;j=1,2 and time

" =T (¢1T ,A(DZ,T ), under which the system (2.2) moves from the initial state of rest

(2.3) to the given state of rest (2.4) in the minimum time. As follows from formulas (2.11)—
(2.16), in case [ =0, the pairs of modes (2.12), (2.13) and (2.15), (2.16) for
a=0,8=0 and ¢ =0, =1 are equivalent in terms of time optimal and, therefore,

we can restrict ourselves to considering one of them. However, in case [ # 0, generally
speaking, one should not expect these pairs to be equivalent.

3 Algorithm for Solving a Nonlinear Problem

To solve Problem 1.1 in the case [ # 0, the following algorithm is proposed.
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3.1. Since there are eight boundary conditions (1.2), (1.3) for the fourth-order controlled
system (1.1), then in order to fulfill these conditions, in the general case, it is required that
the control law contain at least four free parameters, including the non-fixed time 7" of the
end of the process. From the maximum principle of Pontryagin it follows that the control
functions will be relay functions and that they are maximum (with respect to the modulus).
In accordance with the linear case, we set piecewise constant control laws with four free

parameters (the switching moments £#,7,,# and the process time 71') in one of the
following forms:

(1) M, =Mu, ), M, =v,(),
(2) M, =Mv,(t), M,=u,(),
-1, 1€[0,), 17, tel0,,)U[s.T],
(=D, telt,T], P e, te[t.t),
0<t, <T, 0=2t,<t,<T, a,fp=0,1
According to (3.1), both moments M, and M, take the maximum possible (with

(3.1)

u, () =

respect to the modulus) values and have not more than three switching in total. The
function u, corresponds to one switching at the moment 7, and the function Vg

corresponds to two switchings at the moments 7, and #,. Formulas (3.1) describe eight
different methods of control, differing from each other by the number of the moment that
has one switching (cases (1) and (2)), as well as by combinations of values ¢, f =0,1
that determine the order of alternation of signs of the control moment with two switching.

Fixing one of these eight modes, we can look for parameters ,,%,,1;, T so that solution
@,(t,,t,,t;5t), i=1,2 of the system (1.1) with initial conditions (1.2) would satisfy
conditions (1.3) at the end of the motion. We get a system of four equalities

T T

¢1(t1,t2,t3,T):¢1 > ¢2(t15t2’t3’T):§025 (a)
¢1(t1,t2,t3,T):0, ¢2(t15t2:t35T):0 (b)

for the sought parameters ¢,,7,,7; T

(3.2)

However, for given terminal values ¢)1T R (02T , the existence of a solution to system (3.2)
depends (as in the linear case) on the choice of the type of control regime (3.1). Therefore,
it is first necessary to construct regions @, (/),7=0,1,2, and then, depending on whether

point (¢)1T, (02T) belongs to one or another region @, (/),i=0,1,2, determine the type of

control mode (3.1) in which system (1.1), (1.2) is brought to this terminal position with
zero velocities.

Let's move on to constructing the region @ (/). Consider the following semi-reverse

method. By analogy with case /=0, controls under which system (1.1) with initial
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conditions (1.2) is reduced to the terminal point (1.3) lying on the boundary @ (/) will be

sought in the class of controls (3.1) with one switching
M, = MPu, (1), M, = 1, (0),
u, (1) = (<1 sign(t, 1), 4, (1) = (~1)"sign(t, ~1), (33)
0<¢<T, 0<t,<T, a,p=0,1.
Fix one of the four modes (3.3) and one of the parameters #,,, (for example, £, ). Then
we calculate parameters £, and I’ from the last two conditions of the following system
@ (4,4, T) = ¢1Ta @, (4,4, T) = ¢2T’ @ (4,1, T)=0, ¢,(1,1,,7)=0. (34
This procedure is reduced to finding the root (by the method of half division of the
segment) of a function of one variable £, the parameter 7" is easily found in the process of
numerical integration of equations (1.1) as the moment of the first vanishing of one of the
angular velocities (¢, or ¢,). When searching for the root ¢, the value ¢ = l‘l(l)

calculated by formulas (2.18), (2.19) of section 2 is used as the initial value. After that,
from the first two conditions (3.4) we determine the boundary values ¢1T ,gozT that

correspond to the obtained set of parameters #,,#,,7 . By sampling (with a certain step)

parameter 7, one can construct regions of finite configurations that are achievable for
given initial conditions and control type (3.3). If the described procedure is carried out for
all types of control with one switching (3.3), then lines ®{*” (1), ®{*" (/) will stand out

on plane ¢1T,(02T , defining region @ (/):

D, (1) = (LIJ <Dé°"”(l)jU(L1J <I>é"’”(1)) (3.5)

Since under controls (3.3) the solutions of system (1.1), (1.2) continuously depend on
the parameter /, then q)(()o’a)(l) - q)go,a) | q)f)l’a)(l) —> o

a=0,1 a=0,1 ° a=0,1 a=0,1 °
as [ —>0.

3.2. By analogy with the linear case, taking into account (2.10), outside region @ (/), in
the region @\ D (/):

<D1(1)U<D2(1)=(U @Di“)U)JU(L]J d»?”(l)j (6

a=0 a=0
we will consider control modes with three switching times (3.1)(1),(2):
in the regions

@7 (), =0,1 - control mode (3.1)(1), (3.7)
i.e. control M, with one switching at time #, and control M, with two switching at times

t, and t;,
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and in the regions

@7 (/),a=0,1 - control mode (3.1)(2), (3.8)
i.e. control Ml with two switching at times #, and %, and control M2 with one
switching at time #,. Thus, depending on which region (3.5) or (3.6) the point ((plT , (pzT )

lies in, from (3.7) or (3.8), respectively, it can be defined the type of control mode (3.1)((1)
or (2)), which can be used to transfer the manipulator to (1.1), ( 1.2) to a given final state

(13).
Suppose ((plr ,(pzT )e q)io)(l). This point according to (3.7) corresponds to the case

M: x=0,=0or a=0,F=1 in (3.1). Let's fix the first of them and solve system
(3.2) with respect to the parameters ?,,¢,,%,,7 . Let us carry out multiple integration of
system (1.1) with “zeroing” in three parameters ?,,%,,, . First, two (for example, 7,,?;) of
the four parameters l‘l,tz,t3,T are set, and from the conditions of velocities vanishing

(3.2)(a), the remaining parameters (¢,,7") are calculated (this procedure is described in
detail above, when solving the system (3.4)). Then, trying with some step the parameters
t,,1;, the previous procedure is repeated many times until the boundary conditions in

(3.2)(b) are satisfied. Finding parameters 7, ,7; again reduces to finding first the root of the
first equation (3.2)(a) with respect to variable 7, and then the second equation (3.2)(a) with
respect to variable #;. As a result, the parameters £, tz,l‘3,T , at which the control mode

GB.D()(a =0, =0) realizes the movement of the system (1.1), (1.2) to the state (1.3)
are determined.

4 Calculation results

Let's assume that the manipulator is characterized by the following dimensional
parameters appearing in (1.1), (1.4):

L =1m, /[=02m, m,=10kg, I,=1,=(10/3)kg-m’,
M°=2N-m, M’ =1N-m.

which correspond to the manipulator, the links of which are the same uniform rods.

@.1)

After passing to dimensionless parameters, according to (1.5), we obtain from (4.1)
L=1,1=02, m=1, I,=1,=1/3, M*=2, M’ =1. 42)

At values (4.2) boundary @ (/) was constructed to the semi-inverse numerical
technique described in the section 3.1 (fig. 2). For both calculation options golo = (/)3 =0.
On the axes of fig. 2 the final values of the angles ¢, = ¢1T, Q, = ¢2T are plotted. The bold
line in fig. 2 shows the border @ (/) (! =0,0.2) between regions @, (/) and D, (/).

We take the initial and final conditions in the form
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o =¢) =0, ¢/ =57°17"~1rad ¢] =114°34"~2rad . (4.3)

;1) B o3 ()
4
(0)
e ()
24 3
- — 2 2 a 6
yl
()
—4
@)
-6 -
(D(Ol.ll(';) q)(nﬁ.l)(])

Fig. 2. Diagram on the plane of generalized coordinates y, = ¢, y; = @, for determining the type of

modes in the case / =0.2 .

—0.5 4

0.0 05 10 15 2.0
t
Fig.3. Dependence of generalized coordinates y, =¢@,, ¥, =¢,, ¥, =@,, ¥, = @, on time in the

case [ =0.2.
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Values of parameters (4.2), (4.3) correspond to fig. 2, from which we find that in the
case under consideration (¢, ,) )€ ®\” . Therefore, the control mode (3.1) (1) from

(3.7) should be used: control M, with one switching f, and control M, with two

switching £, , ;. Calculations of the values of parameters #,,?,,%,,T from system (3.2) at

finite values (4.2) according to the algorithm described in the section 3.2 gave the following
results:

t,=1.073 (2.401s), t, =0.957 (2.141s), t, =1.940 (4.341s), T =2.146 (4.802s). (4.4)
At values of (4.4), the fulfillment of equations (3.2), (4.3) is ensured with an accuracy of
0.001 for both angles and both velocities. In parentheses in (4.4), (4.5) the dimensional
values of times are given using the transition formulas (1.5).
In the case / =0, for finite values (4.3), parameters ?,,%,,t,,T are determined using
the analytical solutions of the section 2 (formulas (2.12), (2.13), (2.19)):
t=t"=1, t,=6?=0.833, t,=t?=1.833, T=T"=2. (4.5)
Note that the first three values from (4.5) were used as starting values when searching
for the parameters (4.3) from the system (3.2) by the algorithm of the section 3.2.
The motion of a two-link manipulator was numerically simulated with controls (3.1)(1).

Equations (1.1) were integrated under initial conditions (DI.O = ¢l0 =0, i=1,2 and control

mode (3.1)(1) (& =0, =0) with parameters (4.4). The results of the simulation are

shown in fig. 3. The bold solid line and the solid line, respectively, show the dependences
of angles and on time, and the bold dashed line and the dashed line show the dependences
of angular velocities and on time.

Comparison of calculated results (4.4), (4.5) shows that moving the manipulator to the
required rest position in control modes (3.1) is accomplished in time close to optimal
calculated for the linear case with optimal control modes of the section 2. Therefore, the

constructed control modes can be regarded as time suboptimal.

Conclusion

The described algorithm allows constructing software relay controls that are suboptimal
in terms of speed with the minimum possible number of switching, sufficient for the
transition of a two-link manipulator from the initial state of rest to any terminal state of rest
in the working region of the manipulator. The results of numerical simulation of the
dynamics of a two-link manipulator with constructed control modes have established the
acceptability of the proposed calculation methodology. It can be used to calculate
suboptimal program motions of manipulating robots.

The work was supported by the Science Committee of RA, in the frames of the research
project 21T-2D2535.
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