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VYupasiisieMocTh B CpeJHEM TPAHCBEPCAJIBHO M30TPOIHON MJIACTUHKA
AwmbapirymsaHa

KirroueBsble cjioBa: yacTHas Teopu#d C. A. AIVI6apL‘LyMHHa, YTOYHEHHbIC TEOPUN aHU3OTPOIIHBIX ILJIa-

ctuH, MeTol, pyHKIuu ['puna, 6eCKOHEeYHasI CUCTEMA

B sr0it cTaTrhe paccMOTpeHa yIPaBiIsSeMOCTb B CPEJHEM ILIACTUHKN AMOapIlyMsIHA, H3TOTOBJIEH-
HOI M3 TPAHCBEPCAJIBHO H30TPOIIHOIO MaTepHaJia. ¥ DABHEHUsS COCTOSHHUS OCHOBAHBI HA THIIOTE3aX
YaCTHON TeOpUU aHU30TPOIHBIX IJIACTUH, padpaboranHoi C. A. AMOapIyMsIHOM [1JIsi OIMCAHUS Je-
bOPMUPOBAHHOI'O COCTOSTHUSI AHU30TPOIHBIX IJIACTUH, B KarK/I0H TOYKEe KOTOPOU MMEEeTCs IIJIOCKOCTH
U30TPOINH, MapaJjijle/ibHast CPEJUHHON IIJIOCKOCTH ITacTHHKU. llpumenen merorn dyukumu ['puna
JJIsI IBHOT'O IIPEJICTaBJIEHUsI HOPMAJIBHOT'O IlepeMeIeHNs IIJIACTHHKH Yepe3 MaTepHuaJjbHble ITapaMeT-
pbl IIacTUHKY (TI0THOCTD, Moaynu HOHra B 060MX HANPABJIEHUSIX MU30TPOINH), SIBJISIFOIUECS] PaB-
HOMEPHO PACIPEIEJEHHBIMU CIyJailHBIMU BejnduHaMu. B pe3ysbrare, yc/ioBre yIPaB/IsSEMOCTH B
CpeJIHEM CBEJIEHO K OECKOHEYHON CHCTeMe JIMHEHHBIX YPaBHEHUU OTHOCUTEJIBHO MCKOMOUN (hyHKIUU
yupasiienusi. IlocTpoeHsl Tpy apaMeTpUIecKuX KIacca 9aCTHBIX (9BPUCTUIECKUX ) PELIeHUH ype3aH-
HOTO BapuaHTa 6eCcKOHe4HOH cucreMbl. Ope/esieHne MapaMeTpPOB YIIPABJIEHUsI CBEJEHO K PEIIEHUIO

33429 HEJIMTHEHHOTO MPOIPaMMUPOBAHUS.
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In this paper we study the averaged controllability of Ambartsumyan plate made of a transversely
isotropic material. Governing equations are based on assumptions of particular theory of anisotropic
plates developed by S. A. Ambartsumyan specifically for describing the deformation of anisotropic
plates made of material with isotropy plane which, at each point of the plate, is parallel to its middle
plane. The Green’s function approach is applied to express the plate normal displacement by means
of material parameters (density, Young moduli in both directions of isotropy) which are assumed to be
uniformly distributed random variables. Eventually, the averaged controllability condition is reduced
to an infinite system of linear constraints with respect to the control action. Three types of particular
(heuristic) solutions of the truncated version of the infinite system are discussed. Determination of

control parameters is reduced to the solution of a problem of nonlinear programming.

1 Introduction

The concept of averaged controllability has been introduced by Enrique Zuazua in
the recent paper [1] and has been further developed in [2H9] (also, refer to the list
of references in [8]). Averaged controllability is an important criterion of control-
lability for systems or processes containing random parameters. In case of systems
or processes described by partial differential equations, material characteristics may
be (and most of the cases are) regarded as such parameters. The advantage of this
notion is that controls providing the desired state exactly or approximately, do not
depend on the random parameters. For instance, let a controlled state be described
by w (z,t,u; &) where x and ¢ are deterministic variables, u is the control and « is
some random variable. The aim is to provide a desired state wr (z) at t = T. Then
we will say that it is controllable in average if the controllability residue

R (u) = [|w (2,T,u) — wr ()]

satisfies
Rr(u) =0 (exactly) or Rr(u) <e (approximately)

for some given ¢ and appropriate norm ||-||. Here, w is the averaged state given by

(651
()= [ wlsa)pa)da
[
p is the PDF and «aq, o are the extreme values of a.
Thence, substituting @ into the definition of Ry (u), we will be able to derive
a constrained on u that does not depend on « explicitly. It rather depends on the
extreme values o and «q.
Generally, the analysis of exact averaged controllability is considerably simplified
when the integral in the expression of @ is explicitly evaluated. Nevertheless, in case
when the integral can not be explicitly evaluated, approximate analytical expressions
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like trapezoidal or Simpson rule can work out with high accuracy. On the other hand,
the analysis of approximate averaged controllability is often easier considering that
the integral can be well estimated in terms of known integral inequalities.

In this paper, we consider a similar problem for a square plate simply supported
at its four edges. The plate occupies the domain Q0 = {(x,y,z) € R3 (z,y) €
[0,1]%,22 € [~h, }] } and it is subject to a dynamical load F (z,y,t) = u(t)v (z,y)
with controllable u and given distribution function v. We will assume that at ¢ = 0,
the plate was resting in equilibrium. The plate is made of a transversely isotropic
material. More specifically, at each point of the plate the isotropy plane is parallel to
the middle plane of the plate.

2 Ambartsumyan hypotheses and governing equa-
tion

Denote by w = (ws, wy, w,) the displacement field in the plate. Let us assume that
the following hypotheses of Ambartsumyan particular theory are valid [10]:

1. w, does not depend on z-coordinate, i.e., w, = w (z,y,1),

2. the normal stress 0., and the shear stresses 7., 7. are determined according
to classical anisotropic plate theory.

3. in the Hooke law, o is negligible with respect to the stresses 0,4, 0yy and 7.y.

Note that in [11] it has been shown that Ambartsumyan theory of anisotropic plates
is of fourth order similar to the linearized von Karmén equations. An optimal control
problem for Ambartsumyan layer-plate has been considered in [12].

On the basis of these hypotheses, the displacement field will be expressed as fol-
lows:

st =20 () ot
Wz T, Y, 2, - Zax 2 4 3 ®o\T,Y,1),

Jw z (h? 22
9 7t = —<X 3 a - T 5 7t
wy(f Y,z ) Z@y+2G/<4 3 ¢0(xay )7
and the normal stress is determined from the third equation of motion of the classical
theory subject to the boundary conditions

O—zz|22,:h = F(:Evyat) ’ Jzz|2z:_h =0,
as follows:
1 3z 23 222 1\ 0%wy
= (54222 )Pyt +p- (5 -5 .
? <2+2h h3> (@y.6) +p <h2 2)23152
Here,
FE 8Aw0 E (’)Awo
t) = — t) = ——
©o (il?,y, ) 1 V2 ax ) 77[]0 (LL', Y, ) 1— 1/2 ay 3
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(p, E,v,G") are the independent material parameters of the plate, A is the 2D Laplace
operator, and wy is the normal displacement of the plate mid-plane calculated by the
classical theory, i.e.,

DAA’LUO + ph 8

BT O — F(z,y,t) in Q (2.1)

where
En3

D=wma=m

is the bending stiffness of the plate.
Then, the anisotropic normal displacement w of the plate mid-plane will satisfy
the fourth order equation

DAAw + ph%t2 =F (z,y,t) in 9, (2.2)
with
h2 FE 82Aw0
F (ffayat)*F(»’”ay,t)*m@ AF — ph 7z |

subject to boundary conditions

= My, = t =0,
{w 0, 0 at z=0 (2.3)

w=0, My,=0 at y=0,1.

Here, M,, and M,, are the in-plane bending moments given by

62 (9210 h2 D &po 61/10
My (z,y,1) = D((%g +V6y2>+10G’ <8:c+ 8y)

Pw 02 h? D 0 0
w)+ (,,m%).

* e \" oz oy

Myy (xvya )7 D< 6.172 TyZ

Note that (2.1) can be explicitly solved for various boundary conditions: refer
to [13] for more details. Since in our case the plate is simply supported at its four
edges, we will have [13]

o (2,9,1) ph///an, G 2.6yt — o) dedndr,  (2.4)

Gw&mt) =3/ % Zl Anm*“’l“(\[ -Anmt> 20 @) 60 () (1) o (1)

h 7.[.2 (n2 + m2)

2 /120 -2

Anm = ©n (x) = sin (71'77,%) .
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Similarly, the general solution to (2.2]) and (2.3]) will be
$ Y, T ph/ / / Fl g nT (mvayanvt_T)dEdndT:wO(xvyat)_

_ﬂﬁ/ / / AFG(QS,g,y,T},t—T)dng]dT_F

0?Aw
1—1/2 G’/ // 57.20 (v,&,y,m,t —7)d&dndr.

Denoting

h E l l
— AF - t— - 1P
10 (1 _ V2) pG/ /0 /0 o G (SL‘, 67 Yy, 1, T) dﬁdndT w1y ({E, Y, 15 ) )

h? 0% Aw
10(1—22) G’/// 8720 (2,8 y,m,t — 7)d&dndr = ws (2,9, P),

we will obtain
w(z,y,t; P) = wq (z,y,t; P) —wi (z,y,t; P) +ws (z,y,t; P).

The indication of P in the argument of w and wg, wy, ws is merely to show their
dependence on the material parameters.

2.1 Simplification of the displacement

Before proceeding with controllability problem formulation, let us first simplify wy,
wy and woy further. First, notice that

t
:C y’t P Z Unngn m( )/ U’(T)Kgm(t_T7E7p)dTa
0

n,m=1

4 l l
7W/O /O v (&,1) @n (§) pm (1) d&dn,
Ty

> t
wi (2,9, P) = D VpmPn (@) om (y)'/ u(r) K}, (t— 75 P)dr,
n,m=1 0
4h l l
1 = .
U = 102 (1= 12) - Ao /O /O Av - pp (€) om (1) d€dn,

1 |E E
K} (t;P — sin — Anmt | -
(:P)= g/~ (,/p )
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Further, notice that since K2, (0;-,-) = 0, we have

o [t 0 b KD, (t— T B, p)
ﬁ/ (N K,,, t—7;F p)dT—/O u(T) BT dr =

FE
:_7«/ ) sin (”p-)\nm(t—7)> dr.
82A”LU0

t 2170 — T
2= S B on @ pn ) [ u(r) P2 Ti D)

dr =
ot2
n,m=1

Therefore,

Z )‘nm n® + mz) U?Lm‘»@n (w) Pm (y) X

n,m=1

t . B
X /o w (7) sin <\/; Anm (t — T)) dr.

Substituting this expression into wy, we will obtain

( 1 P) = 4m2h? / / / Z 2 +m2) 0, %
w2 (T, Y, 15 1014 1_ 1/2 pG/ = n m=) Upm
T ' E
X on (§) om (7})/ w (7) sin ( ; D Vi (T71)> dr x
0 \/

X 21 )\im sin <\/§ Anm (t — 7')) ©n () 00 (&) om (¥) ©m (1) dédndr.

On the other hand, since

l
/o P (6) pu (6)dE = L7

ny?

where 4,2 is the Kronecker symbol, we will obtain

(x,y,t; P) Z V2, 0 (T) o ( / (u,t,7; P)dr,
n,m=1
where -
wh
vfwn = m “Anm (n2 + m2) Ugm'

E - E
Krzzm (uvt77—; P) = pG/ g (\/; Anm (t — 7')) X
X/O U(Tl)Sin (\/7Anm (T—Tl)> dry.

|
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Thus, finally,

o t
w (I, Y, t’ P) = Z |:U’917n / u (T) K’g?n (t - T; E’ p) dr—
n,m=1 0
t
— v / u(r) K}, (t —7; P)dr+ (2.5)
0

t
o2, / K2, (u,t,73 P)dr | on (2) om (4).
0

3 Averaged controllability problem

Assume that the material parameters P = (p, E, G’) are uniformly distributed ran-
dom variables. Let the aim of control be to provide at ¢ = T the desired state

ow

En =wr (z,y) in Q

w(z,y,T) =wr (v,y),

t=T
with wr,wp € L? ([0, 1]2). Then, the averaged controllability criterion will be
2

ow

& . (3.1)

L2([0,1]?)

- wT (xa y)
t=T

Ry (u) = ||@ (z,y,T) — wr (x,y)lliz([o,uz) + '

3.1 Determination of averaged state

The averaged state w will be determined as
P P

- [ 0p (PP + [ un (e 0p(P)dP.
P P

Now, let us evaluate the averaged state taking into account that

0(FE — Ey) — 0(E — Ey)
By — E, ’

p(E) =

where 6 is the Heaviside function. Since only K¢, depends on E and p only, we will
obtain

(o]

1 t _
0 (@) = 5 3 o @) om (1) / w(r) K, (t—7)dr,
n,m=1 0
where 1 = (Ey — Eo) (p1 — po) (G — Gy),

_ P1 E4
R, dr= [ [ KD, (6B ) dEG.

po 7 Eo
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Since K}

nm
a result, we obtain,

1 > ¢ _
oo t) = g Z 0L (2) om (4) - / (1) KL, (t - 7)dr,

n,m=1
K} () = 1/—s1n 1/ . dE dp.
Po
Similarly,
1. G &
W3 (x,y,t) = - 1ni/1 Z TLT)’L()D"L me / nm ’(L t, T dT
wo Gy nom=1
where

B T p1 rE1 E E
Kﬁm(u,t,r)z/ u(ﬁ)/ — -sin — A (E=7) | X
0 po JEq P P

. B
X sin ( — A (T — 71)> dE dpdm =
p

= / w(m) K3, (t,7,m)dr.
0

Thence, we arrive at

W,y t) = Y Kum (,8) on (2) o (1),

n,m=1
where
20 ¢ _
Ko 0,8) = 22 [ (7) Y, (¢ = ) dr-
HoJo
1. G
_;1 G/O 0 |:’U}L'HL ( )Krlzm( T)_

—vfm/ u(Tl)KZm (t,7,71)dr |dr.
0

contains only 1/G’, their integration is separate and straightforward.

(3.2)

3.2 Reduction of the averaged controllability condition to an

infinite system

Denoting by wr nm and Wy .y, the Fourier sine-coefficients of the corresponding func-
tions, substituting (3.2]) evaluated at ¢ = T into (3.1)) and taking into account the
orthogonality of trigonometric functions, (3.1]) is reduced to the following coupled

infinite system of constraints with respect to the control function w:

Knm (ua T) — WTnm = 07
aKnm
ot

t=T

— WTnm = 0.

(3.3)
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4 Some heuristic solutions

Even though infinite system (3.3)) is linear in w, its determination is not straightfor-
ward. For instance, it can be treated as a problem of moments and resolved explicitly
(see [14] for details). It can also be formally satisfied by some heuristic solutions [15].

4.1 Trigonometric solution

Since v%:12, wr ym and Wt ., converge in n, m very fast, (3.3) can be truncated for

some finite N, M. We additionally assume that u is compactly supported on [0, T].

Then,
L

u(t) = Z ug sin (qrt + 1)

k=1

can be substituted into the truncated system to derive

L
> ukTom (@, ) = Wrpm = 0,

kol or n<N, m<M, (4.1)
Z U ot - wT,nm = Oa
k=1 t=T
where
29 T _
Trm (@, 7%) = % sin (qu7 +1r3) K2, (T — 7)d7—
0
1 G/ T B
——In—t o) sin (qur + 1) KL (T — 1) —
po GoJo

— vflm / sin (qx71 + %) Kim (T, 7,7)dr |dr.
0

4.2 Piecewise constant solution

Another important control class is represented as

L
w(t)=> uk[0(t—te1)—0(t—tx)].
k=1

In this case, the parameters uy, t; will be determined from the following system:

L
Z Uk Prm, (tk) — WTnm = 0,
k=1

7 n<N, m<M, (4.2)
Z u OPrm —w =0

k ot Tnm — Y,
k=1 t=T
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Prm tk = nm/ _T)dT_ln[nm/ _T)dT_

tk 1
— vim / [0 (m1 —tg—1) — 0 (11 — 1)) Kf;m (T,7,711) dTldT:| )
o Jo

4.3 Impulsive control

Another heuristic solution is the impact action of the external force which can be
represented in terms of Dirac function as follows:

L
= Zuk§(t—tk).
k=1

In this case, for u; and t; we derive

Z uk:Inm (tk) — WTnm = 07
: <M, (4.3)

L
Z Uk — Wr,nm = 07
t=T
where
UO 0 1 G’ o Rl
I

— nm/ TTtk)dT:|

Note that (4.1)), (4.2) and (4.3) can be solved for appropriate L by efficient numerical
methods of nonlinear programming, which will be the subject of another publication
elsewhere.

5 Conclusions

Averaged controllability of Ambartsumyan plate made of a transversely isotropic ma-
terial is studied. The plate, which is initially in complete equilibrium, is simply
supported at its edges and is subject to an external control action with a prescribed
distribution function on the upper surface of the plate. The material characteristics
of the plate (more specifically, the density and both Young moduli) are considered
to be uniformly distributed random variables and the averaged state of the plate is
computed. The averaged controllability analysis of the plate is reduced to an infi-
nite system of linear constraints with respect to the control function. Three distinct
parametric families of heuristic controls are provided to satisfy the truncated version
of the infinite system. Efficient numerical methods of nonlinear programming can be
applied to determine those parameters.
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