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JIOKaJII/IBaHPIﬂ CABUTOBbIX BOJIH B CJIOUCTO- II€pUOAUYIECKOM
HEeOJHOPOJHOM BOJIHOBO/IE

Kazapau K., Kazapau P., Tepzan C.

KuroueBbie cJjioBa: JIOKAJIU3AIMsl, CABUTOBas YIIPyTasi BOJIHA, HEOJHOPOIHBINA MaTepuaJ, BOJTHOBO/I.

,HJIH OIIPpEIEJIEHHOI'O KJlaCCa HEOIHOPOJHBIX MaTepHaJIOB aHaJUTUYIECKU YyCTaHOBJIEHA BO3MOXK-
HOCTDH JIOKaJIN3aIlunu C,ZLBHFOBOP‘I pryFOﬁ BOJIHBI B CJIOMCTOM BOJIHOBOZE, COCTOAIIEM U3 IIE€pUOguve-
CKH ITOBTOPAIOIMUXCHA YIIPYT'O KOHTAKTUPYITUX HEOJTHOPOJHBIX KOHEYHEr'o YucCjaa UICHTUIHBIX CJIOEB.
,ZLJ'I?I HEOJHOPOAHOT'O MaTepuaJjia ¢ IE€PUOANICCKUMA HECUMMETPUIHBIMUA HpOd)I/IIISHVII/I IIOKa3aHO, 9YTO
BCJIEICTBUU HEOJHOPOJAHOCTH UMEET MECTO JIOKaJIn3alud CABUTOBBIX BOJIH HA BHEUTHUX I'PaHUIIAaX BOJI-
HOBOIa HOKaJ’II/IBaHHH BOJIH 3HAQYUTE/IbHO YCHUJ/IUBAETCA C YBEJIMICHUEM UYHNCJIa 3JIEMEHTapHBIX AY€eK
BOJIHOBOIa. ,ZLJIH HEOJHOPOJHOI'o MaTepuaJjia ¢ CUMMETPUYIHBIMU HpO(i)PUIHMI/I IIOKa3aHO, 9YTO B 3TOM

BOJIHOBO/IE€ JIOKQJIN3allnusA CABUI'OBBIX BOJIH HE MMeEeT MeCTO.
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For a special class of inhomogeneity materials this analytical study demonstrates localization of
shear elastic wave in periodically stratified waveguide, consisting of periodically repeated perfectly
bonded inhomogeneous identical finite number unit cells. For inhomogeneous material with periodic
non symmetrical profiles is shown that due to inhomogeneity the shear guided waves can be localized
at interfaces in the waveguide. The localization of waves significantly increases with the numbers of
the waveguide unit cells. For inhomogeneous material with symmetrical profiles is shown that this

material does not support localization in waveguide.
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Introduction

Functionally graded materials (FGM) are inhomogeneous elastic bodies whose
properties vary with space. FGM plays an essential role in the most advanced
integrated systems for vibration control and health monitoring. The progress in
the characterization, modelling, analysis and principal developments of FGM was
reviewed in [I} 2]. In pure elastic FGM materials elastic wave propagation was studied
by many authors, and some studies close to presented article topic are worth to be
mentioned [3HII]. In piezoelectric medium coupled electro- elastic bulk and surface
waves are widely discussed in science periodic, particularly in [12H21]. Elastic and
couple electro elastic surface wave prorogation in inhomogeneous materials admitting
analytical solutions is considered in [6HI0, 13, [I5]. In this study, an exact analytical
approach and transfer matrix technique are used to investigate localization of shear
elastic wave in periodically stratified waveguide of some functionally graded material,
consisting of periodically repeated perfectly bonded inhomogeneous identical unit
cells.

Statement of the problem.

Let consider shear elastic wave propagation in periodically stratified functionally
graded waveguide, consisting of periodically repeated perfectly bonded identical
inhomogeneous layers. The material parameters of a inhomogeneous material, the
stiffness and the mass density are assumed to be varied in the same proportion in
the unit cell as p,(z) = pofn(2); pu(x) = pofn(x), where f,,(z) is the inhomogeneity
functions which will be specified later, z € [(n — 1)d,nd],n = 1,2, ..N, is the number
of the unit sells (Fig.1 )

x=din1) = =

Fig.1 Elementary unit cell of the inhomogeneous elastic waveguide

The elastic displacements and stresses obey to the anti-plane equations of
motion and Hooke’s law. Choosing the anti-plane deformation in the z-direction and
considering a steady SH-wave wu, (z,y,t) = uno (z) exp [i(ky — wt)], where u, (x,y,t)
is the displacement in z direction, we come to the following equations (k,w are wave
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number and angular frequency)

Ouon () + (00w? — pok?) f

o) — o o010 () = @

For a special class of inhomogeneity functions Egs. (1) can be converted into
differential equations with constant coefficients admitting the exact solutions [0 [16].

b +2
3 () = (COSh (a(x—(n—-1)d)+do)+ o sinh (a (z — (n — 1) d) + do)) (2)

The expression Egs. (2) is valid also for b = ibg, a = 0. When a = 0 instead of Eq.(2)
we have (dg = 0)
135 (@) = (L bl — d(n = 1)) (3)

Solutions of Eq. (1), corresponding to the functions f,(LJr) (x), can be found as

Aln 6ipx A2n efipx
ugn () = ( il ) i Ton(z) = uofé+)($)3z (un(x)) (4)
i (@)

where p = d_l\/92 — (kd)? = (ad)?;0 = wy\/ g ' po; By introducing the column field
vector Uy, () = (uon(z), 7on(x))", Ay = (A1nAs,)” the solutions of Eq.(4) can be
cast as . -

U, (z) = Y (2) 4,

where

EF) (2) = ———x
1+ (@)
i _ (5)
2e'PT 2e7"PT
X ; . —ipz (o
(Mo et (2" (@) = 01D (@) —poe™ 7 (2ipfi (@) + axfﬁ)(x)))
Solutions of Eqs. (1 ) corresponding to the functions f,(f)(x) can be found as

to (A1 €P® + Agpe™P)

TOn(x) = 5
» @) (6)
2 2
uon (x) = ,uok:(i) Go% O Ton ();
n (33
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where
() () =\ 1) (2) %

<_ P (2ipf ) (@) 0. £ (=) e (=2ipf ) (@) 4. £ () >
X

2(a2+p2) (£ (2)) 2(a2+4p?) ({7 (2))

1T 1pxT

Hoe o€~

The transfer matrix M linking field vector values at the surfaces 2 = (n—1)d, z = nd
of the unit cell can now be determined as:

U, (nd) = E®) (nd) - 4,0, (n—1)d) = EF) (n—1)d) - 4, (7)
Excluding vector A, in Eq. (5) one has

. . . —1
Herein M) = £ (nd) (FT(Li)> ((n=1)d) is the unimodal transfer matrix for

the inhomogeneous cells corresponding to the functions fT(Li)(x).

The condition ‘Tr (M (i))‘ > 2, defines the stopband of frequencies, ranges of

eigen frequencies in which waves cannot propagate in the infinite periodic medium
consisting of periodically repeated inhomogeneous cells [22]. Let note that elements
of matrix M®) do not depend of cell number n.

Using the continuity conditions of the field vectors U(z) at interfaces z = nd we
come to the matrix equations

Unti (@) = MU, (2,-1) 9)

R n
, Repeating this procedure the n-th times the propagator unimodal matrix (M (i)>

can be found. The matrix (M(i)> links the field vectors at + = 0 and z = nd

surfaces of the waveguide.
(M<i>)"(71 0) =0, (nd), n=1,2,...N (10)

According to Sylvester’s matrix polynomial theorem for 2x2 matrices the elements of
the n-th power of an unimodal matrix M) can be cast as [23]

- n M M
M(i)) _ < 11 12)
( My Mas

and can be simplified using the following matrix identity

M1 =m118,—1(n) = Spn—2 (1) ; M12 = m12S,—1 ()

11
Mo = ma1Sp—1 () ; Mag = maaSy—1 (1) — Sp—2 (n) ()

59



where mi1, m12, Ma1, masare elements of matrix M ()

ME = mi1 Mi2
ma1 Moz )’

Sp (n) are the Chebyshev polynomials of second kind, namely

sin ((n+1)¢)

Sn(n) = sng o ¢ =mn;
1 N 1
n= §Tr (M) =3 (m11 + ma2);

The first Chebyshev polynomials are

So(m) =1, Si(n)=2n Sy(n) =4n"—1

Subsequent polynomials may be obtained from the recurrence relation of Chebyshev
polynomials [? |
Sm (1) = 20Sm-1(n) — Sm—2(n) (12)

Consider now a boundary value problem when the waveguide interfaces z = 0,2 = Nd
and are tractions free

701(0):TON(Nd):0 (13)

In this case the following matrix equation can be imposed

(31" (umo<0>> _ <u0N éNd>) (14)

Eq. (14) have a non-trivial solution if the following two alternative equations are
satisfied

Sn-1(n(0)) =0 (16)
From Eq.(14) besides of these equations it follows also that

uon (Nd) = (m11Sn—1 — Sn—2) u01(0); (17)
Alongside with Eq. (14) one can consider the matrix equation such as
() n ’LL()l(O) _ UQn (nd)
(M ) ( 0 Ton (nd) (18)
and the relation between field vector values can be found as
Uon(’fbd) = (m115n_1 — Sn_2) u01(0); n = 1, 2, 3...N (19)

The roots of Egs. (15,16) are curves in the phase plane (6, kd), each point of which
corresponds to a wave travelling in the wave guides.
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If mo1(6) = 0 or my2(6) = 0, then since M) is a unimodular matrix m1m9s —
miameo; = 1 it follows that mqi1mes = 1 and therefore n = ()\+ )\*1)/2 , where
A =my; (0) Using recurrent relation Eq.(12) the following new relation can be shown
for the Chebyshev polynomials of second kind:

P = )‘Sn(n) - Sn—l(n) =A (()‘ + Ail)Sn—l(n) - Sn—2(77)) - Sn—l(n) =
=A ()‘Snfl(m - Snf2<n))
which can be rewritten as
P11 =AP, (20)

where P, = (ASp—1(n) — Sn—2(n))
Taking into account that P = X, (So(n) = 1,5-1(n) = 0) the following identity
can be obtained valid for all integers starting from n =1,

P, =\" (21)

Hence it follows from Eqgs.(19,21) that for frequencies § = 6y, where 6 = 6, are the
roots of the equation meo1(8) = 0, we have

U(]n(’I’Ld) = )\nU()(O); n = ]., 2...N (22)

Therefore Eq. (22) shows that at frequencies § = 6, localisation of elastic shear
displacements may take place at the top or bottom interfaces of the periodic waveguide
if m11(9) 75 m22(9).

Another possible case is Sy—1 (n(6)) = 0. This equation has N — 1 roots in the
range 1) € (—1,1) which are given by 7, (§) = cos (mrN~') ,m=1,2..N — 1

Taking into account that in this case Sy_2 (17,,) = (—1)™ one can write

u()n(nd) = (—I)mU()l (0), n = 1, 2. N (23)

This means that N — 1 shear wave normal modes exist where amplitudes of guided
waves are distributed along the waveguide width and have the same magnitude at the
top and the bottom interfaces.

When the top and bottom faces of the waveguide are clamped

uo(0) = up(Nd) =0
Egs. (15,21) should be replaced by the following equations:
mi2(0) =0 (24)
Sn-1(n(0)) =0
Ton(nd) = A™"791(0)

In this case the localization of the elastic shear stresses takes place at the top or
bottom interfaces when mq2(6p) = 0 if mq1(0g) # maz(6o).

Here are also N —1 normal modes distributed along the waveguide width and have
the same magnitude of stresses at the top and the bottom interfaces which follows

61



from the following relation:
Ton(nd) = (=1)"7191(0); n=12...N (25)

Thus two different families of vibrational modes exist in the inhomogeneous
waveguide for both traction free and clamped the top and bottom interfaces . One is
a localized mode which exists only when m11(6p) # m22(0y), where 6y are the roots
of ma21(0g) = 0 orma1(6y) = 0. There are also another N — 1 normal non-localised
vibration modes at frequencies defined by Sy_1 (n(6)) = 0.

Results and discussions

In this section attention is restricted to some specified inhomogeneity functions.
In the first example, the inhomogeneity function are quadratic functions
7(L+)(x) = (14 b(xz —d(n —1)))* At the Fig.2 the profiles of quadratic functions

T(LJF) () in the elementary cells n = 1,2,3,4 are presented for different values of
inhomogeneity parameter § =bd, § =1;5 = —-0.7,8 = -2

'{?:1_ ﬁ:-ﬂ.?.
o o
4_
al
2L
1
x x
1 2 3 4 o 1 2 3 4 o
p=-2
)
1.0
(I}
(117
4
2
a
1 ? 3 4 o

Fig. 2: Profiles of quadratic function 3" (x))
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Let note that the inhomogeneous quadratic function when 8 = —2 is the symmetric
function f7(l+) (n—=1)d+z) = fr(f) (nd — z), xz €(0,d/2).
For quadratic functions fflg)(x) the transfer matrix M) can be found as

~ Z cos Z+PBsin Z dsin Z
ME = Z(1+p) poZ(1+05)
b (ZB%cosZ — (B2 + Z*(1 + B)sinZ)) (1 + B)cosZ — %sinZ

(26)

where Z = /62 — (kd)® is a dimensionless parameter.
From Eqs. (26) it follows that when 8 = —2 then my;(0) = ma2(#) and therefore
localization does not take place. For inhomogeneous quadratic function when 8 # —2
localization of guided wave amplitudes takes place at eigen frequencies determining

from equations mai(6y) = Oor m12(fy) = 0 . The eigen frequencies of the waveguide
with clamped interfaces determines from equation

sinZ=0; 0y =\/(kd)?®+ x2m?. (27)

At these frequencies the localization coefficient |[A| = |1+ /| is a monotonically
decreasing function in interval 8 € (—oo, —1) and a monotonically increasing function
in interval g € (—1,00).

In the interval 8 € (—2,0) we have || < 1, outside of this interval |A| > 1.

The eigen frequencies of waveguide with traction free interfaces determines from
equation

BreosZ — (B*+ Z*(1+ B)sinZ) =0 (28)

The graphs of localization coefficients for traction free waveguide are presented on the
Fig.3 .

[A]

T B e

-G -4 7 2 4 i

Fig. 3: Localization coefficient of shear stresse wave amplitudes for quadratic
function.

As it follows from data of Fig.3 the localization coefficient weakly depends from
eigen frequencies 6.
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Contrary to the above case for waveguide with traction free interfaces In the
interval 8 € (—2,0), |A| > 1, outside of this interval |A| < 1.

When |A| < 1, in the traction free or clamped waveguide with quadratic periodic
inhomogeneity one can state that the amplitudes of guided waves attenuate from the
waveguide bottom interface to the top interface with increasing of cell numbers. When
[A] > 1 the amplitudes of guided waves attenuate from the waveguide top interface to
the bottom interface. In the second example, the inhomogeneity functions are inverse
quadratic functions .

_ -2
fao) (@) = (1 +b(z —d(n—1)))

In the Fig.4 the profiles of the inverse quadratic functions fY(L_) () in the elementary
cells n = 1,2, 3,4 are presented for different values of inhomogeneity parameter 8 =
bd, p=1; p=-08, =-2

£=1 =D
)
110
[
o |
4
22+
x
1 2 3 4 2 3 4 o
f=-2
i
o -
2 -
x
1 Z 3 4 o

Fig. 5: Profiles of inverse quadratic function fy(l_)(x))

Corresponding to the inverse quadratic function f,ga) (x) the transfer matrix ]\Zf(,)
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can be found as

Y- — ((1 +B8)cosZ — GsinZ s (ZB%cos Z — (8% + Z*(1 + B)sinZ))
poZsin Z Z cos Z+Bsin Z
d(1+8) Z(1+8)
(29)
Juxtaposition of the matrix M~ with matrix M+ leads to the conclusion that contrary
to quadratic function case Eq.(27) determines eigen frequencies for waveguide with
traction free interfaces and Eq.(28) determines eigen frequencies for waveguide with
clamped interfaces.
Therefore we can state in the case of inverse quadratic function inhomogeneity
the results concerning localization effects for clamped /free traction waveguide
coincides with results of traction free /clamped waveguide with quadratic function

inhomogeneity.

Conclusion

Based on an exact analytical approach and transfer matrix technique a localization
of shear elastic wave is established in waveguide consisting of periodically repeated
perfectly bonded inhomogeneous identical of finite numbers unit cells. For a
special class of inhomogeneity functions admitting exact solutions, relationships
are established between elastic displacements of the top and bottom interfaces of
the waveguide when these interfaces are traction free. When they are clamped
a relationship is established between tangential stresses on these interfaces. It is
shown the localization of guided waves are take place in the traction free or
clamped waveguide with quadratic and inverse quadratic non symmetrical periodic
inhomogeneity. In the case of inverse quadratic function inhomogeneity the results
concerning localization effects for clamped /free traction waveguide coincides with
results of traction free /clamped waveguide with quadratic function inhomogeneity.
The localization of waves significantly increases with the numbers of the waveguide
unit cells. It is shown also that the waveguide with inhomogeneous cells of which are
symmetrical periodic quadratic and inverse functions do not support wave localization.
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