NU8UUSULD @hSNFE3NFLLEND WQGUSPL WUUNTGUPUSEh SeENsulah,
N3BECTUS HAIIMOHAJIBHON AKAJTEMIN HAYK APMEHNN

Utihuwbhlu 74, Ne 4, 2021 Mexanmka
VIK 539.3 Doi- http://doi.org/10.33018/74.4.1.4

Forced electroacoustic oscillations along piezoelectric layer thickness:
Applied opportunities

Avetisyan Ara S., Mkrtchyan M.H., Avetisyan L.V.

Keywords: piezoelectric layer, electro-acoustic forced oscillations, surface impact, contactless impact,

oscillations control, energy concentration.

BI)IHy)K,E[eHHI:Ie QJIEKTpPpOaKyCTu4IeCcKue KoJIeOaHus 110 TOJIIIIHE
IIbE303JIEKTPUYIEeCKOro CJ1o . HpI/IKJ'Ia,Z[HI)Ie BO3MO2KHOCTHN

Aserucan Apa C., Mkprusau M. I'., ABerucsau JI.B.

KuroueBble cJIOBa: MHE303JIEKTPUTIECKHUI CIOH, JIEKTPOAKYCTUIECKUE BBIHYKIEHHbIE KOJeOaHusI,
[IOBEPXHOCTHOE BO3IEMCTBUE, ODECKOHTAKTHOE BO3/IECTBUE, YIIPABJIEHUE KOJIEOAHUSIMU, KOHIEHTDa-
IUsI SHEPTUH.

C nesbio GOpMyYIHMPOBAHUS OCTAHOBKH 33]1a4 YIPABJICHHUS KOJEOAHUSIMHU IIHE303JIEMEHTA [IPU
IIOMOIIY [TOBEPXHOCTHOT'O BO3IEHCTBUA JIEKTPHUIECKUM IIOJIEM, & TaKrKe JJis IOJIydueHHusl crocoba
HAKOIIJIEHHUsI 3JIEKTPUYIECKOH 9HEePTrUH, PacCMaTPUBAETCs IIPOCTasg MOJAeIbHas 3aJa9a BBIHYKJIEHHBIX
KOJIEOAHUU IIBE303JIEKTPHIECKOrO CJIOf KJIacca 6mm reKcaroHaJIbHOU CHMMETPHH.

PopMyIUPOBaHbI 33Jlada YIPABJIEHUS JIEKTPOAKYCTHYECKUMH CIBUTOBBIMU KOJIEOAHUSMH IIO
TOJIIIUHE IIbE303JIEKTPUYECKOIO CJIOs IIOBEPXHOCTHBIM MEXaHHYECKUM BO3JEHCTBUEM, & TaKxKe 3a-
ada GECKOHTAKTHOIO YIIPABJIEHUS STHMHU KOJIEOAHUSIMU BO3IEHCTBHEM ITOBEPXHOCTHOTO ITOTEHIINAJIA
3JIEKTPUYIECKOTrO I10JId.

Pemennus 3amad xonebanuil NpeaCTaBIIAIOTCS B BUJE Pa3JIOXKEHHs HCKOMBIX (PYHKIHN IO COO-
CTBEHHBIM MOJAM OJHOPOSHON KPaeBOH 3ama4un, a PyHKINN, XaPaKTEPU3YIOIINe IOBEPXHOCTHLIE BO3-
JeiCTBUsA, - COOTBETCTBYIOIIUMUA IapPMOHUKaMMU.

Pernennt IPUKJIAJIHBIE 3aJa9U yIIpaBJICHUA SJIEKTPOAKyCTUIEeCKUMU KoJieOaHUSIMU B ciryvae, Kak
MEXaHUIEeCKOI'O ITOBEPXHOCTHOI'O BO3,EL6fICTBPIH, TakK U GECKOHTAKTHOI'O IIOBEPXHOCTHOI'O BOS,ZLeﬁCTBHH

IIOTEHIIUAJIOM JJIEKTPUYIECKOI'O IIOJIA.

Mhhgniipgppuubt sipgph hwupnpjudp EfEpyppuunwaqujut hwpljunpujut
pupuimittpp. Yhpundwt hbwpuynpnyeymuibkp

Wtyphuywt Wpw U., Upypgyun UN., WGyphuywid L.

Pwlwh puptp’ whtgnityppujub pbpg, pugpuitnuibbp pup hwupnipyul, fappu-wynuphly hwpunpujut
upubnuibitip, dwiipbnipwyht wqnbgnipynid, wthynd wgntignipynid, pupubtnuiotiph nijugupnd, Ebtpghwh
Unugpuayned:

Lywyuly nmbtbwny, bappuub nuaph dwytpngpwyht wgnbgnipjwd dhongny, wyhtignkityppuljut
stinph  puypuinuitiph wihynd  ntujupiwb  pubnhpbtph  dbwitpynwip, hbsytiu wb Ehpppuyut
tubpghwyh Ynupujiwd dtipnn upuiwne hwdwp, ghpupyymy b gigudyymb uhdtypphwyh 6mm nuuh
whbgnbEyppulub ptpgph hwpungpuijud pugutnudbtph ywpg dnnbjught ebnhp:
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Quutinywd G Jwitipbnipwihtt dbhowbhjuyub wqnbgnipjudp whtgnbtppuub sbpypnud, pug
hwuypnipjub uwhph Lthppuwynugphly pupuitndttiph ntjudupdwt pinhpp, htswbu twb EGpgppuyut
nuomph dwytipbnipuyht wbhynd wantgnpyjudp wyn pupuinuittph njudupdwb pbnhpp:

Sunpuliiw@  pubnhpitiph i momudbtpp  Ohpfuyugynd Go hwdwutin - Ggpughtt funph  utithwub
dmbyghwitiph pwpptph  wphupny, hul dwytpimpughtt nhjwjwpnn wgnbgnpgniblipp - plinpwgpnn
Pnbijghwttinp tipyuyugyud G hwdwywypuwuppwd hwpdnbhubtipny:

Lndywd GO Ltlpppuwynuphy  quqpuitnudttph phujupdwd jhpwpwluwd  fubnhpbbp, hbosybu
dwytipunipwyht dkpwbhjuyuwd wantignipyub, wybybu b fahppuyub nupph ymptibghwing dwitipimpwyht
wihynd wantignipjub nhiyptipnud:

In a view of formulation of the controlling problems of a piezoelectric element oscillation by
means of an electric field surface impact, as well as to obtain a method for electric energy harvesting,
a simple model problem is considered of forced oscillations of a piezoelectric layer of a 6mm class of
hexagonal symmetry.

The problem of controlling electroacoustic shear oscillations along the thickness of the
piezoelectric layer by surface mechanical impact, as well as the problem of contactless control is
formulated for oscillations caused by impact of the surface potential of an electric field.

The solutions of oscillation problems are represented in the form of an expansion of the
sought functions in terms of eigenmodes of a homogeneous boundary value problem, the functions
characterizing surface influences are represented by the corresponding harmonics.

The applied problem of control has been solved for electroacoustic oscillations in cases of both
mechanical surface impact and non-contact surface impact caused by an electric field potential.

Introduction

In 1880 the Curie brothers discovered the unique property of piezoelectric matter
(direct piezoelectric effect). Shortly thereafter in 1881, the inverse effect was also
confirmed, specifically, that the substance located between the two electrodes, reacts
to an electrical voltage applied to it by changing its shape. The direct piezoelectric
effect is currently widely used in high-precision instrumentation, and the inverse
piezoelectric effect, for exciting oscillations of mechanical pressures and deformations.

General principles and basic relations of the linear theory of piezoelectrics are well
studied. These can be found in famous books [IH5] and etc.

With the development of modern technology, research on the control of related
oscillatory and wave processes is encountered more and more [6HI] and etc. But before
dealing with process control, it is necessary to explore the controllability of the original
physical model [10] [11].

In order to formulate the formulation of control tasks for oscillations of the
piezoelectric layer using surface mechanical impact or contactless action of an electric
field, as well as to identify a method of accumulating electrical energy, a simple model
problem is considered of forced oscillations of a piezoelectric layer made of a material
of 6mm class of hexagonal symmetry

1 One-dimensional shear oscillations across the
oscillations of the piezoelectric layer.

In a rectangular Cartesian coordinate system(z,y,z), an elastic layer of a
piezoactive material of 6mm class of hexagonal symmetry occupying the region
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{0<z<a; —oo<y<oo; oo<z<oo} (Fig. 1).
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Fig. 1: Physical model of excitation of electroacoustic oscillations along the thickness
of the piezoelectric layer and their control

Crystallographic axis of symmetry P is parallel to the coordinate axis 0z, and the
coordinate plane z0y aligned with the isotropic plane of the material. The equations
of propagation of one-dimensional shear waves or transverse oscillations of the layer,
in the quasi-static approximation can be specified by the set of equations [1, 2, 4]

CAAW 4g (T, 1) + €159 20 (T, 1) = pW(x, 1), €119 .02(x, 1) = €15W 2o (2, t). (1.1)

Here, we used the following notations: function w(z,t) is the elastic displacement
along the coordinate z, E(z,t) = —¢ , is the component of the electric field along the
coordinate x, cqq the shear modulus,p is the bulk density,eq; dielectric permittivity
and e;5 piezo module of layer material. The expressions for the non-zero components
of the mechanical stress and electrical displacement in one-dimensional setting have
the form

O22(2,t) = caaw z(x,t) + 150 2 (2,t), Dy(z,t) =eswe(z,t) —eng(x,t). (1.2)

On planes * = 0 and * = a of layer edges, the boundary conditions of surface
mechanical impact and clamping are given by

’LU(O,t) = /’L(t)7 (13)
w(a,t) =0. (1.4)

In the boundary condition (1.3), u(t) is an arbitrary function of time corresponding to
a nonstationary displacement of the surface. But in problems of electroelasticity, the
surface impact can also be set by mechanical force o, (0,t), or by surface polarization
(electrical displacement) D, (0,t), or by electrical potential (0, ).

On the planes of layer edges, the boundary conditions for the electric field are
also satisfied. Without loss of generality, as applied limiting variants of electrical
boundary conditions, we consider the conditions of electrically open and electrically
closed surfaces, respectively, on the planes x =0 and z = a

[pw(2,t) = (e15/e11 ) - wala,t)] g = 0, @(a, )],y = 0. (1.5)
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For a complete formulation of the boundary value problem of forced oscillations of
elastic shear, it is also necessary to set the initial conditions also. In the case of a
quasi-static formulation of the problem, it is natural to set the initial values for the
mechanical components w(z,t) and w(z,t)

w(z,0) = f(x),  w(z,0)=g(x) (1.6)

Initial conditions for accompanying electric field components ¢(z,t) and $(z,t) are
determined in accordance with the boundary value problem (1.1) and (1.3)-(1.5).
Here, four more types of initial conditions are possible with initial values of the
accompanying electric field components

w(gc, O) = f($)7 (p(.%', 0) = ¢(SU) (1'7)
u')(x, 0) = g($)7 ¥ (E,O) = 1/1(55) (18)
w(x, 0) =f :U)7 90(567 0) = ¢(1‘) (1'9)
w(z,0) =g(x),  &(z,0)=¢(z) (1.10)

Reduced boundary value problem (1.1), (1.3), (1.4) and (1.6) is similar to the problem
of forced oscillations of a string [I0]. When the one of the initial conditions (1.7)-(1.10)
is valid instead of conditions (1.6), the solution of boundary value problems does not
become more complicated, but the content and applications are expanded.

2 Solution of the boundary value problem of forced
oscillations of elastic shear along the thickness of
the piezoelectric layer.

System of equations (1.1) can easily brought to the form

& w (2, t) = W(2,1),  Qax(z,t) = (e15/€11) W 2a(, 1), (2.1)

where & = cy4(1+ x?)/p is the reduced velocity of the electroactive shear wave,

X2 = €25 /(case11) is the electromechanical coupling coefficient of the material. By
introducing a transform to move shear

w(z,t) =u(z,t)+ (1 —z/a) - p(t) (2.2)

The boundary r conditions (1.3) and (1.4) with regard to function u(x, t) are converted
to homogeneous surface conditions

u(0,t) =0, u(a,t) =0 (2.3)

and the first equation of the system (2.1) takes the form of an inhomogeneous wave

equation, with a perturbation (1 —x/a ) - ji(t), at a certain depth of the layer

& U (v, t) =i, t) + (L—z/a) - ji(t), @uz(,t) = (e15/€11 ) - Upu(w,t). (2.4)
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Homogeneous boundary conditions (2.3) allow to represent the solution of the
equation (2.4) in the form of an expansion in eigenfunctions of the homogeneous
boundary value problem

u(@,t) =Y up(t) - sin(Apa), (2.5)

with eigenvalues )\, = nw/a and the corresponding harmonics characterizing the
dynamics of natural oscillations of the layer w,,(t)

u(t) = Zun<t)v (26)

where u,(t) = > [Aun cos(wynt) + Bun sin(wunt)] and wyy, = ¢tA,

n=1

Factor in inhomogeneous part of the equation (2.4) also is represented as a series
of its eigen functions

1—=z/a)-j(t) = Z fin(t) - cp - sin(A,x) where ¢, =2/nm (2.7)

with the corresponding harmonics of its acceleration characterizing the surface effect

pu(t) = Z pn(t) = Z [Apn cos(wpunt) + B sin(wpnt)] (2.8)

Here,w,, are the known frequencies of the harmonics of the surface effect, A, and
B,,,, are the known amplitudes of harmonics of surface impact. Substituting (2.6) and
(2.8) into the first of the equations (2.4), we come to the infinite system of ordinary
differential equations

iin (1) + Wo - un(t) = _anfm < pin(t) (2.9)

Here, wyy, = ¢é:\y, are the eigen frequencies of oscillations of the layer, and w,,, are the
surface impact frequency. General solutions to equations (2.9) we find by the method
of variation of constants

Un (t) = Ayn cos(Wunt) + Bup sin(wynt)+

9 ) 9 ) (2.10)
+ an,un/(w#n - wun) ’ [A#n Cos(w,mt) + Bl”l Sln(w#nt)]
where the non-resonant frequency of exposure is defined as
Wn 7 Wun, (2.11)

Unknown amplitudes A,,, and B,,, in solutions (2.10) we find on the basis of the
given initial conditions, expanding these conditions in a Fourier series in terms of
their eigen forms. In the case when the initial conditions are specified by mechanical
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characteristics (1.6), these expansions will be written in the form
0) = fo-sin(Anz), (2,0)=> gy -sin(A,2) (2.12)
n=1 n=1

Comparing the expressions for the true shear across the layer thickness (2.2) and the
expansion of the initial conditions (2.12), to determine unknown amplitudes A, and
B, we will have an infinite system of linear algebraic equations in the form

{un(O)—l—Cn-,un(O) fn

Un(0) + n - fin(0) = gn (2.13)

Taking into account (2.5), (2.6), (2.8) and (2.10) we can easily obtain the unknown
amplitudes

{Aun +cp []— + win/(wzn - wfm) ] : A,un = fn (2 14)

Taking into account the transformation (2.2), true shear in layer thickness w(z,t) is
defined in the following form

o0

w(z,t) =Y [un(t) + cn - pn(t)] - sin (M) (2.15)

n=1

where wy, (t) = un (t)+cp-pn (t) are true harmonics of oscillations under surface impact.
From the second equation of the system (2.4), taking into account the transformation
(2.2), the surface conditions (1.5) and (2.3) on surfaces = a and & = 0, the potential
of the accompanying electric field oscillations is determined in the form

o(z,t) = (e15/e11 ) - [(a — ) - u'(0,t) + u(z, t)] (2.16)

Using expansions (2.6) and (2.8) the expressions for the electric potential can be
written as

o0
o(x,t) = (e15/e11 ) Z a - ApCp + 1] - [Aun cos(wynt) + Bun sin(wynt)] - sin(A,x)

(2.17)
Taking into account the boundary conditions (2.3), on the clamped surface z = a, the
electric potential disappears, and its derivative will not be zero

o(a,t) =0, o' (a,t) = (e1s5/e11 ) - [u/(a,t) —u’(0,1)]. (2.18)

On the surface of mechanical impact * = 0, taking into account the boundary
conditions (2.3), the electric potential and its derivative, respectively, take the values

©(0,t) = (e15/e11 ) - a-u'(0,t) = (e15/e11 ) an un(t), ¢'(0,t) =0. (2.19)
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On the basis of the obtained solutions of the problem of forced oscillations along
the thickness of the piezoelectric layer, it is possible to propose new problems:
control of electroacoustic oscillations by surface mechanical impact , or contactless
impact on electroacoustic oscillations by non-stationary potential of the electric field,
accumulation tasks (or absorption) the energy of the electric field.

3 The problem of controlling electroacoustic
oscillations of shear along the thickness of a
piezoelectric layer

As in the problem of forced oscillations, when solving the control problem, we
again use the Fourier series method in the mathematical boundary value problem.
This approach reduces the problem of controlling oscillations along the layer thickness
by surface impact into an infinite system of the oscillation controlling by means of
eigenforms of the harmonics of the surface impact [10].

In the problem of oscillation control, as in the expansion of the impact function
(2.8) and so in the solutions (2.10), the amplitudes of harmonics of surface impact
A,n and B,,,,, are unknown ones. These coefficients are determined together with the
unknown amplitudes of the harmonics of the eigen vibration modes A,,,, and By,.

3.1 Control of electroacoustic oscillations of shear along the
thickness of the piezoelectric layer by surface mechanical
impact -1.

Based on the obtained solution of the problem of forced oscillations of a piezo
layer in the case of unsteady boundary mechanical loading, we can discuss the control
problem requiring to determine mechanical impact function p(t) allowing to reach
electroelastic state with deflection values

w(zx, Ty) = R(x), w(x, Ty) = 0, (3.1)

at the moment of time Ty. In the ratios (3.1) R and Tp are given constants. Here,
taking into account the expression for the deflection function (2.15), together with an
infinite system of linear algebraic equations (2.13), from the conditions of the final
state (3.1), one more infinite system of linear algebraic equations can be obtained

un(TO) +cp - ,un(TO) =Tn

In the system of equations (3.2) 7, are the expansion coeflicients of the final version
of deflection function

w(z, Tp) = Z Ty - SIn(Apx) (3.3)
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The values of the unknown amplitudes of the corresponding harmonics A,, Bun,
A,n| and B,,,,, we can obtain from the system of equations (2.13) and (3.2)
Aun + cn(1+Yun) - Aun = fn

Bun + cn(1 4+ yun) - Byn = In/Wun

cos(wunTp) + Aun + sin(wynTo) - Bun+

+ en(1 +Ywn) - c08(wunTo) - Aun + cn(l + Yun) - sin(wunTo) - Bun =14
Sin(wynT0) + Aun — c08(WunTo) * Bunt+

+ cn (14 Yun) - sin(wunTo) - Aun — cn(1 4+ Ywn) - co8(wunTo) - Bun =0

(3.4)

In the infinite system (3.4) the following notations are used for dimensionless frequency
characteristics 0y, = Wpn /Wyn and Yen = 62,,/(62, — 1) .

From the conditions of the existence of nontrivial solutions of a system of

algebraic linear equations, we can determine the time interval ¢t € [0;Tp] during
o0

which the surface impact wu(t) = > pn(t) leads to the excited state of the
1

n=
piezoelectric layer from (1.6) state to state (3.1). Calculating the main determinant
Det||d;j(wun; wuni To)|l 44 = €2 # 0 of the system (3.4), we convince the possibility
of controlling the shear oscillations along the thickness of the piezoelectric layer.

p()/PZT-4 W(t)/PZT-4
1.5

1

(a) Surface mechanical impact function (b) The behavior of time depending
u(t) for controlling electro-acoustic function of elastic shear of
oscillations over the thickness of the electroacoustic oscillations of a

piezoelectric layer piezoelectric layer w(t)
Fig. 2

Finding the amplitudes of the corresponding harmonics Ayp, Bun, Aun and By,
from the system of equations (3.4), we define the function of the surface effect
according to (2.8) and the surface of the electroacoustic shear and the potential of
the accompanying electric field according to (2.15) and (2.17) , accordingly.
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(a) Elastic shear change surface w(z,t) (b) Surface of change of electric

in the process of controlling potential ¢(x,t) in the process of
electro-acoustic oscillations of the controlling electro-acoustic oscillations of
piezoelectric layer in the case of surface the piezoelectric layer in the case of
mechanical action p(t) surface mechanical action pu(t)
Fig. 3

In a particular case, when the initial and final states of the piezoelectric layer
descriptions are known

w(z,0) = F(x) = Z frn-sin(Apz), w(x,0)=G(x)= Zgn ~sin(Apz)  (3.5)
n=1 n=1
w(z, Ty) = R(z) = Y 1 -sin(Anz), (2, Tp) =0, (3.6)

for a period of time t € [0; 1.0sec] the control function w(t) is constructed, as a
mechanical surface effect (Fig.2.a). A function w(t) of the temporal behavior of
the elastic shear of electroacoustic oscillations of the piezoelectric layer has been
constructed also (Fig.2.b). Wave surfaces of elastic shear and electric potential along
the thickness of a piezolayer with a thickness @ = 10™®m are shown in the figures 3a
and 3b ,respectively.

3.2 Control of electroacoustic oscillations of shear across the
thickness of the piezoelectric layer by surface mechanical

impact - 2.

The most interesting applied control problem will be obtained if there is need
to determine the function of the mechanical surface impact p(t) so, that over time
t € [0;Tp] the electric field potential accompanying mechanical oscillations will be
equal to a given value ®(z,Tp). In this case, instead of the final conditions (2.1) we
need to consider the state

o(z,To) = @o(z) = Z bn - sin(Apz),  w(x, Tp) =0, (3.7)

Taking into account that the electric field potential accompanying mechanical
oscillations have the form (1.17), the determined infinite system of equations can
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be written as we obtain in the form

Aun + cn(1+Yuon) - Aun = fn

Byn + cn(l + %m) *Bun = gn/wun

co8(wWunTp) + Aun + sin(wunTo) - Bun + cnYun - c08(wunTo) - Apn+

+ cnYon - SI0(wpnTo) - Bun = (€11/€15 ) (Pn/(a - Apcn, + 1))
Sin(wynT0) - Aun — c08(WunTo) - Bunt+

+ (1 4+ Yon) - sin(wunTo) - Apn — cn (1 4+ Yun) - €08(wWunTo) - Bun =0

Naturally, as in the system (3.4), in an infinite system (3.8 the same notations
for dimensionless frequency characteristics are used dun = wWyn/wun and Yun =

Finding the amplitudes of the corresponding harmonics Aypn, Bun, Aun and By,
from the system of equations (2.8), we define the function of the surface effect
according to (2.8) and the surface of the electroacoustic shear and the potential of
the accompanying electric field according to (1.15) and (1.17,) respectively.

In the particular case when the numerical parameters of the initial and final states
of the piezoelectric layer are known (2.5) and (2.7), for a period of time ¢ € [0; 1.0sec]
the control function is built x(t), as a mechanical surface effect (Fig.4.a). The behavior
of time depending function of the elastic shear of electroacoustic oscillations of the
piezoelectric layer has also been constructed w(t) (Fig.4.b) changing from initial
condition (2.5) to final condition (2.7).

4 Contactless control of electroacoustic oscillations
of the piezoelectric layer shear by surface action of
an electric field.

The more interesting case will be the option of contactless surface action, when
on the traction free surface of the piezoelectric layer £ = 0 a non-stationary electric
field acts

©(0,t) = @o(t), (4.1)
and the second surface x = a, as before is clamped
w(a,t) =0. (4.2)
In condition (4.1), @o(t) € Cq the times function corresponding to the unsteady
potential of the electric field.
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(a) Surface electric impact function g (t) (b) Function of the behavior of the
for controlling electro-acoustic electric potential of electroacoustic
oscillations of shear along the thickness oscillations of the piezoelectric layer as a
of the piezoelectric layer function of time ¢(¢)
Fig. 4

On the layer edge planes, it is necessary to satisfy the two more boundary
conditions for the electromechanical values of the field. Without loss of generality, as
applied versions of electromechanical boundary conditions, we consider the conditions
of a traction free surface on x = 0 and an electrically closed surface on = = a,
respectively

(w2, t) + (e15/caa) - (@, 8)],g =0, w(a;t) =0 (4.3)

For a complete statement of the control problem, it is also necessary to set the
initial and final conditions. Initial and final conditions for the components of the
accompanying electric field ¢(z,t) and ¢(z,t) are determined in accordance with
the boundary value problem (1.1) and (4.1) - (4.3). Here, one more types of initial
conditions is possible with the initial values of the components of the electroactive
vibration

w(z,0) = f(z), ¢(x,0)=¢(x) (4.4)
In this case, we will consider the conditions of such a final state when the potential

of the electric field accompanying mechanical oscillations is equal to a given value
(I)(;m T())

o(z,To) = p(z), w(z,Ty) = 0. (4.5)
To solve the control problem, we introduce the transformation
olx,t) =0(x,t) + (1 —x/a) - po(t) (4.6)

For the introduced function ®(z,t), condition (4.1) and the second condition from
(4.3) are converted to homogeneous surface conditions

®(0,t) =0,  ®(a,t) =0 (4.7)

The first equation of the system (1.1) takes the form of an inhomogeneous wave
equation, with a perturbation (1 —z/a ) - ji(t) at a certain depth of the layer

C? - @ p(x,t) = B(x,t) + (1 —x/a) - olt), (4.8)

The second equation confirms the synchronism of the shift function w(z,t) and the
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new introduced function ®(x,t)

w,m(x,t) = (511/615) . ¢7mI(I7t) (49)
The first surface condition from (4.3) converted to form
[wa(z,t) + (e15/caa) - P o(2,t)],_o = (€15/acssa) - po(t) (4.10)

Homogeneous boundary conditions (4.7) allow to represent the equation (4.8) solution
in the form of an expansion in eigenfunctions of the homogeneous boundary value
problem

O(z,t) = Y Bp(t) - sin(Ap2) (4.11)

with eigenvalues A, = nm/a and with the corresponding harmonics characterizing
the dynamics of the process ¢, (t)

B(t) = i O, (1). (4.12)

Factor in the inhomogeneous part of the equation (4.8) also is represented as a series
of its eigenfunctions

(1—x/a)-@o(t) =Y @on(t) - cn sin(Anz) where ¢, =2/nr (4.13)

n=1

and with the corresponding harmonics of its acceleration characterizing the surface
effect

po(t) = Z pon(t) = Z [Apn cos(wWent) + Byn sin(went)] (4.14)
n=1 n=1

Here w,y,, are unknown frequencies, A,, and B, unknown amplitudes of harmonics
of surface action. Substituting decompositions (4.12) and (4.14) into the equation
(4.8), we come to the solution of the infinite system of ordinary differential equations

D (t) + why, - Pr(t) = —caw?,, - Pon(t) (4.15)

Here, wyn = Ci\, natural frequency of oscillations of the layer, and wen surface
action frequency.

General solutions of equations (4.15) we find by the method of variation of
constants

D, (t) = Awn co8(Wynt) + Bun sin(wypnt)—

4.16
~ G win/(win - win ) - [Apn cos(went) + Ben sin(wpnt)] (419

where the non-resonant frequency of exposure is defined as
Wen 7# Wun (4.17)

Taking into account the transformation (4.6), electric field potential across the
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layer thickness p(z,t) is defined as follows

o}

oz, t) = [D,,(t) 4 ¢ - pon(t)] - sin (A\,z) (4.18)

n=1

where ¢, (t) = @, (t) + ¢, - Yon(t) true harmonic of oscillations under surface action.
From the equation (4.9), taking into account the transformation (4.6) and surface
conditions (4.7) on surfaces = a and = = 0, electroactive elastic shear is defined as

w(x,t) = (e15/caa ) - [(a — z) - D'(0,t) + ®(z,1)] (4.19)

Using expansions (4.6), (4.18) and (4.19) the expression for the electroactive elastic
shear can be written in the form of the expansion

w(z,t) = (e15/caa ) Z [aAncn + 1] - @y (t) - sin(Apx) (4.20)

Taking into account the boundary conditions (4.4), on the clamped surface z = a, the
electric potential disappears, and its derivative is not zero

w(a,t) =0, w'(a,t) = (e15/caq ) - [®'(a,t) — @'(0,1)]. (4.21)

On the surface of mechanical action x = 0, taking into account the boundary
conditions (3.3), the electric potential and its derivative, respectively, take the values

w(0,t) = (e15/cas ) - a- '(0,t) = (e15/caa ) Z/\ D, (1), w'(0,t) =0. (4.22)

Presenting the initial and final conditions (4.5) in the form of Fourier series in
eigenforms sin(\,x)

= n=1
p(z,Tp) = Z% sin(Apz). (z, Tp) =0 (4.24)

The values of the unknown amphtudes of the corresponding harmonics A, Bun,
Agn and B

©ens
Awn — CnYwn A<pn = (044/615 ) : fn/(a)\ncn + 1)
Bwn +cp - 60.; (1 - ’Ywn) . Bcpn - ¢n/wwn
€o8(Wynt) « Awn + sin(wynt) - Bun+

. o (4.25)
+ ¢n (1 = Ym) - €08(Went) - Apn + cn (1 — Yun) - sin(wpnt) - Bon = ¥n
Sin(wwnTo) « Awn — €08(WwnT0) + Bun—

— CnOuwnYon - SIN(wWenT0) - Apn + CndunYn - €08(WunTo) - Bon =0

we find from the system of linear algebraic equations, which obtained from (4.23) and
(4.24).
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Into an endless system (4.25) the notations are used for dimensionless frequency
characteristics dun = Wen/Wwn and Yun = 62, /(1 —62,)

Finding the amplitudes of the corresponding harmonics Ayn, Bun, Aun and
By, from the system of equations (4.25), we define the function of the surface
effect according to (4.14) and electroacoustic shear surfaces and potential of the
accompanying electric field according to (4.20) and (4.18) accordingly.

Conclusion

The problem is established of controlling shear oscillations along the thickness
of the piezoelectric layer by surface mechanical impact, as well as the problem of
contactless control of electroacoustic oscillations of shear along the thickness of the
piezoelectric layer by the potential of the electric field.

The solution of the oscillation equation is represented in the form of an expansion
in terms of eigenfunctions of a homogeneous boundary value problem, with the
corresponding harmonics and their accelerations characterizing the surface impact.

An interesting applied problem of controlling electroacoustic oscillations has
been solved, when it is required to determine the function of mechanical surface
impact so that throughout the finite period of time the potential of the electric field
accompanying mechanical oscillations will be equal to a given value.
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