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Yupasienune KosiebanuamMu 06€CKOHEYHON MeMOpPAHHOM JIEHTHI C
HOJABUXKHBIM KpaeM B CBEPX3BYKOBOM IIOTOKE rasa

Aserucan Apa C., Mkprusaa M. T.

PaccMorpena 3amada ynpabjieHusa KojaebaHUAMHU OeCKOHEYHON B OJJHOM HAIIpaBJIeHUN MeMODaH-
HOH JIEHTHI B CBEPX3BYKOBOM IIOTOKE I'a3a 33 KOHEYHBIH mHTepBasI BpeMmenn. Oaun kpait MeMOpaHHOM
JIEHTBI YKeCTKO 3ammemMiIeH. K Apyromy Kparo JIEHTHI C HOMOMIBIO YKeCTKOH MpAMOil TuHefKU NPUKJIagbI-
BAIOT ynpasjsioiee Bo3geficrBue. Maremarwdeckasi KpaeBas 33/a4a 0eCKOHEYHOU MeMOpaHHOU
JIEHTBI MOJEJIAPYEeTCS KaK OJHOMePHBIe KoJlebaHHs CTPYHBI C KPAeBBIM BO31eHCTBHEM.

Bamada ynpasieHus KojebaHuaMu 0eCKOHEUIHON MeMODPAHHON JIEHTEI, 00TeKaeMOil CBEPX3BYKO-
BBIM IIOTOKOM I'a3a U € IOJBHXKHBIM KpaeM, PelllaeTCs MeTOJ0M pa3JesIeHHs IepeEMEHHBIX, C Pa3JIoXKe-
HueM nporuda kojaebaHus JeHTH HA cOOCTBeHHBIE (DOPMEI U (MYHKIWH €€ FapMOHHK B psax Pypbe.
Hckomaa (yHKIOUA KpPaeBOro YIPABJAIOIIEI0 BO3JefiCTBHA TaKKe IIPEJCTABILETCA B BHUIE PAId
®ypse. B ciaygae kpaeBoro ynpasseHusi, COOCTBEHHBIE FADMOHUKY KOIe0aHus MeMOPAHHON JICHTEL U
TAPMOHUKHU YIIPABJIAIONIETO BOS,ZLef’ICTBHH CTPOATCA COBMECTHO, IIOCJI€ YAOBJIETBOPECHUA I'DAHUYIHBIM,
HaYaJbHBIM U (PUHAIBLHBEIM YCJIOBUAM 3334,

PaccMOoTpeHBl YacTHBIE CIIyYau BO3MOXKHBIX YIIPABJIAIOMUX (DYHKITUH BO3aeicTBUSA 1 (DOPM KOJIe-
Oanuit MeMOpaHHOI1 JIEHTHI B PA3HBIX CJIy4Yasx HAYAJIbHBIX U KOHEYHBIX YCJIOBUA. BHIIOJIHEHBI pacieThl

HA KOHKDETHBIX IIPUMepax.
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BO€ BO3jeiicTBHe, 33/1a4a YIPABJICHHUS, FADMOHUKY YIIPABJILIOIIEr0 BO3aeficTBUA.
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A vibration control problem is considered for an infinite in one direction membrane tape in a
supersonic gas flow in a finite time interval is considered. One edge of the membrane tape is rigidly
fixed. A control action is applied to the other edge of the tape using a rigid straight ruler. The
mathematical model of the problem is reduced to a control problem for one-dimensional vibrations
of a string with a boundary control.

The vibration control problem under study is solved via variables separation method by expand-
ing the deflection of the membrane vibration into Fourier series by natural vibration modes of the
membrane and the function of its harmonics. The unknown function of the boundary control is also
expanded into Fourier series. For the boundary control, the eigenharmonics of the membrane vibra-
tions and the harmonics of the control are constructed simultaneously, after satisfying the boundary,
initial and terminal conditions of the problem.

Particular cases of possible control functions and modes of vibrations of the membrane for differ-
ent initial and terminal conditions are considered. Numerical analysis of particular cases is carried

out.

Key words: membrane tape, supersonic gas flow, one-dimensional vibrations, boundary action,

control problem, harmonics of control function.

Introduction

Flexible thin-walled structural elements (plates or shells) made from soft materials,
which are technically modeled as membranes are often used in modern technology.
Naturally, in technical problems of vibration control of membranes, the mathematical
boundary value problem is formulated on the basis of boundary conditions and of the
state of the membrane.

From this point of view, the proposed control problem of vibrations of an infinite
in one direction membrane in a supersonic gas flow when one edge of the membrane
is rigidly fixed, and the other edge is controlled, on a finite time interval is a model.
Supersonic gas flow streamlines around the membrane along its width, resulting in a
membrane to vibrate.

The problem is mathematically modeled as a problem of one-dimensional forced
transverse vibrations of a membrane with a boundary control. Formally, it coincides
with the problem of boundary control of string vibrations under a distributed trans-
verse external action [1]. Forced vibrations of the membrane and issues of its stability
in the aerodynamics of high supersonic gas velocities were investigated in the mid-
dle of the last century [2,3]. However, to the best of our knowledge, the issues of
controlling such a membrane vibrations were not considered so far.



The solution to the mathematical boundary value problem of damping string vi-
brations with two control functions are given in the monograph [4].The problem is
solved by the method of Fourier series expansion applied to the string deflection. For a
string without a distributed transverse load, a similar mathematical boundary value
problem is solved in [5], using D’Alembert method. However, D’Alembert method
does not allow to solve similar boundary value problems in cases where the general
solution of the problem cannot be represented in an integral forms containing the
given initial and terminal conditions explicitly. In the problem of boundary control
of vibrations of a string with given states at intermediate moments [6], the control of
a string with two acting control functions depending on time at the two ends of the
string is investigated.

In well-known monographs [7-10], some of the existing methods and those under
intensive development can be found for the solution of model problems of controllabil-
ity of dynamic systems or for the analysis of the nature of control of physicomechanical
dynamic processes.

In the proposed work, we seek a solution to the control problem by expanding all
functions, including the function of the boundary control in the form of Fourier series
with respect to natural modes of vibrations of the membrane and with respect to its
natural harmonics. After satisfying the boundary, initial and terminal conditions, the
modes and harmonics of the vibrations of the membrane, as well as the corresponding
control function are determined.

1 Statement of the problem. Formulation of the
mathematical boundary value problem

Consider the possibility of control of an infinite in one direction membrane vibrat-
ing in a supersonic gas flow, when one edge of the tape is rigidly fixed, and the other

edge is controlled (Fig. 1). The membrane has a width 0 < x <[ and a very long
length (considered to be infinite).
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Figure 1: Diagram of supersonic gas flow around the membrane



The supersonic gas stream flows around the membrane along its width, vibrating
the membrane. Vibrations of the membrane in a supersonic gas flow are modeled as
parallel one-dimensional vibrations of the membrane[1]:
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Here,3 = xpoo M N, ! is a physical parameter characterizing the gas flow along the
membrane, a? = pohN, lis the inverse of the square of the speed, N, lis the tensile
force in the direction of the width of the membrane, py is the membrane material
density, x is the aerodynamic constant, p., is the gas density, M is the Mach number,
h is the membrane thickness.

The edge x = 0 of the membrane is rigidly fixed. The induced vibrations of the
membrane are controlled by means of a rigid rectilinear ruler applied on the moving
edge x =1 of the membrane and represented by the function p(t) depending only on
time. The boundary conditions will therefore be

W(0,t) = u(t), W(,t)=0. (1.2)

According to the classical formulation, based on equation (1.1) and boundary con-
ditions (1.2), the boundary control p(t) will be considered in the class of functions
p(t) € Lol0 <t < Tpl. It is assumed that at the initial moment ¢ = 0, the shape of
the membrane deflection and the distribution of the rate of change of the deflection

are known:
ow
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t=0

It is required to find such a boundary control u(t) for which equation (1.1) is trans-
mitted from the initial state (1.3) to the terminal state

ow

Wiz, To) = ¢(z) , - = ¢(a), (1.4)

t=Top

over the interval ¢ € [0; Tp].

Deflection functions ¢(x) and @ (x) , as well as functions of the vibration speed
¥(x) and ¢(x), at the initial moment of time ¢ = 0 and at the final moment of time
t = Ty respectively, are considered to be elements of Ly[0 < x < []. The solution of
the formulated mathematical boundary value problem is obtained by introducing a
new displacement function V'(x,t) such that

Viz,t) = Wz, t) - (1 - %) u(). (1.5)
Substituting(1.5) into (1.1), boundary control p(t) will move into the equation of
vibration of the membrane. The mathematical boundary value problem in the form
of homogeneous equation (1.1) subject to inhomogeneous boundary conditions (1.2)



is reduced to inhomogeneous equation of forced vibrations
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with “external influence” —(5/1) - u(t) + a2 (1 — /1) - ji(t), subject to homogeneous
boundary conditions for the unknown function of the reduced displacement V' (z,t):

V(0,t) =0, V(it)=0. (1.7)

The initial and terminal conditions are respectively reduced to

Vet =) = (1-7) n0),

oVt 2y . (1.8)
|, ~v@ - (1= 7)o

Via.To) = ¢(2) = (1= ) - (o).
oV (z,t) i . (1.9)
o |, ~P@=(1-7) am

2 Solution of the mathematical boundary value
problem

The new formulation of the mathematical boundary value problem in the form of
equation (1.6) and homogeneous boundary conditions (1.7) allows the representation
of the solution of the problem by the method of variable separation as follows:

Vi t) = X(z) - f(t) = Y Xon(2)fn (t), (2.1)
n=1

using the expansion of the reduced displacement of the membrane in the form of a
Fourier series in terms of its eigenmodes of the vibration.

2.1 Decomposition of the forced vibration of the membrane
tape on its own forms

Taking into account homogeneous boundary conditions (1.7) and the homogeneous
part of equation (1.6), the deflection of the membrane can be represented as a Fourier



series in terms of its eigenmodes as follows:
X(x) = i Xon (), where Xg, (x) = B, exp (%) - sin (?m) ,mneN  (2.2)
n=1
with corresponding eigenharmonics
folt) = i Bon (t), and Oy, (t) = Aoy, - sin (wgnt) + Boy, - cos (went) . (2.3)
n=1

In this case, the eigenvalues of the vibrational motion are defined as
w2, = (nw/al)® + (B/20 )%, n e N. (2.4)

It is obvious that the frequencies of eigenharmonics are determined by the physical
and geometric parameters of the vibratory system: al, 8 = xpoo M N1 and o =
poh N 1. The maximum value of the eigenfrequency, at a certain value of the tensile

force N/l = (x*p% M? /87 )1/3, is achieved for the first eigenmode X (7) =
By exp(Bx/2 ) -sin(wz/l). Due to the inhomogeneity of equation (1.6), the newly
formed vibration modes on the segment x € [0; {] will be represented by the proper
vibration modes (2.2), and the dynamics of these forms is already will be represented

by another function of time 6(t) = > 6, (t). Decomposing also the factors in the
n=1

terms on the right-hand side of the i;lhomogeneous equation (1.6) into the Fourier
series with respect to eigenmodes (2.2),

1= —i CpnXp(x)and (1 —2/l) = i D, X, (x), (2.5)

we obtain an equation for the n—th form of vibration of the membrane, in the form
of a sequential infinite system of ordinary differential equations

O (t) + (X3 /0®) 00 (t) = =Dy - [ji () + (8/0°1) - (Co/D) -pn(®)] . (26)
In expansions (2.5), Fourier coefficients CyandD,, are defined as
Cro =[4exp(—B1/2 ) - (2exp(BL/2 ) — 2(—1)") - nar)/ (4n?n? + 1262) ,

ZSexp(—ﬁl/2 ) [exp(BL/2) - (4n2m? + 1282 — 41B) + dlnwB(—1)"] - nw (2.7)

D, 5
(4n272 + 1282)




2.2 Control of the natural forms oscillations by harmonics of
the edge action

The right-hand sides of the ordinary differential equations of the infinite system
(2.6) include the boundary control action ;(t) corresponding to the oscillations of the
eigenforms of the true deflection (2.2), one for all orthogonal forms with its secondary
derivatives. The introduction of a new designation for the frequency of the edge
control action

oo PO
pun T (la)2 .D,, -
Bl - (4n2ﬂ'2 + (,61)2) [1—(=1)"exp(—=pl/2)] (28)

4(1a)? - [(nm -+ (81/2) > = Bl — Bl - [ = (=1)" - exp(—B1/2 )]

the function u(t) is also represented as a series of corresponding harmonics
o0
p(t) = Z pn(t), where p, (t) = ATL;L - sin (w;mt) + By, - cos (wunt) (2.9)
n=1

The infinite system of ordinary differential equations for the vibrations of the mem-
brane (2.6) can be written in the form of an infinite system of equations for forced
vibrations

f@n (t) + o‘)gn : f9n (t) = _Dn : (wzn - wgn) * Hn (t) ’ (210)
or in the form )
Fun (O) + @iy« Fun (8) = (Wit — i) - Bon (£) - (2.11)

with respect to reduced harmonics fy,, (t) or f,, (t) of displacement V' (z,t)

f€n (t) = en(want) + Dy - Nn(w;mt)7 f;m (t) = Hn (Wunt) + Dgl O, (w9nt) (2'12)

This harmonics is the direct composition eigenmodes of the membrane vibrations and
the harmonics of the boundary action. It is obvious from the equations (2.10) and
(2.11) that the true frequencies of the reduced harmonics of the eigenmodes of the
membrane vibrations are formed in different ways.

According to the equation (2.10), the frequencies of the harmonics of the reduced
eigenforms of the membrane are formed on the basis of the eigenfrequencies wg,, = won,
undergoing the harmonics of the boundary action s, (t) with frequency w,,,.

According to the equation (2.11), the frequencies of the harmonics of the reduced
natural forms of the membrane are formed on basis of the "eigenfrequencies" of the
boundary action w,,, undergoing the influence of eigenharmonics of the membrane
vibrations. From equations (2.10) and (2.11) it is also obvious that the vibration of
the membrane subjected to boundary control will be stable or unstable depending on
the values of the frequencies wg,, < Wy OF Won > Wyn-

The general solution of (2.10) for n-th harmonic f,(wg,t) is obtained by the
method of variation of parameters in the form of addition of harmonics of eigen



and forced vibrations of the membrane:

Jon(wont) = Aj,, - sin(wgnt) + Bp,, - cos(went)+

2.13
+D,, - [Any, - sin(wynt) + By, - cos(wynt)] (2.13)

Similarly, the general solution of (2.11) for the n-th harmonic, f,, (w,nt),is obtained as
fun(wunt) = Azn~sin(wlmt)+B;n'cos(w#nt)+A9n~sin(w9nt)+Bgn'cos(wgnt) (2.14)

It is evident from expressions (2.4) and (2.8) that the frequency characteristics of
the system, ws, and w,,, are determined by physical and mechanical parameters
Bl = Xpoo! MN' and a? = p;h N 1. Formally, these frequencies can be equal under
the condition

[1—(=1)" exp(—pl/2)] = [4 (nm-(=1)" —=1)+ lﬂ/4oz2 ] + (n2ﬂ'2)/(a2ﬂl) (2.15)

It follows from equations (2.10), (2.11) and from the corresponding general solutions
(2.13), (2.14) that in this case the system vibrates with the eigenfrequency of the
reduced forms

fen(WQnt) = (A;n + D, - A”M) . Sin(ant) + (B;n + D,, - Bnu) . COS(OJent) (2.16)

In that case, neither a control problem nor a resonance of vibrations of the membrane
occur. According to (1.5), (2.1), (2.2)and (2.12), for the deflection function W (x,t)
we obtain

ZB ) 4 Dy o] -oxp (5 ) -sin (7).

In order to fulfill initial and terminal conditions (1.3) and(1.4),respectively, func-
tions p(z) and ¥(z), as well as ¢(x) and ¢ (x)are also expanded into Fourier series as
follows:

n=1

= n - Xal@), d(@) = b Xn(2) (2.18)

Taking into account the representation (2.17) of the deflection function W (x,t) and
expansions (2.18) and (2.19), initial and terminal conditions (1.8) and (1.9) for vibra-
tions of the membrane with boundary control are written in the form of an infinite
system of four algebraic equations for the amplitudes of the harmonics of the mem-
brane vibrations and the boundary control,

0,(0) + Dy - 11,(0) = 75,

G,L(O) - ( ) =0

0,, (wgnTo) + D tn (WunT0) = n
Gn(wgnTo) + Dy, - fin(wpnTo) = O

10



In the case of general solution (2.13), the infinite system of algebraic inhomogeneous
equations (2.20) can be written in an expanded form with respect to four unknown
harmonic coeflicients A}, , Bj,,, An, and By,

B;n + D, - Bnu = Tn
on
A;n + (w/tn/won) D,, - An/L = —

Sin(wenTgn) ’ A;n + COS(UJ@TLTOOn) B;n

+D,, - sm(wunTgn) Apy+ Dy, - cos(wunTgn) “Bny =n

COS(WGNTOW,) AZn - Sln(WQnTGn) BOn

on

Won

(Wpn/won) Dy - COS(wunTgn) Ay — (Wun/won) Dy - Sin(wunTgn) By =

Evaluating these four unknown constant coefficients Aj, , Bg,, An, and B, it will
become an easy problem to determine the boundary control function p(t) according
to (2.9) and the deflection function W (z,t) of the membrane vibrating in a supersonic
gas flow according to (2.17) on the finite interval ¢ € [0; Tpg].

In the case of general solution (2.14), infinite system of algebraic inhomogeneous
equations (2.20) can be reduced to an expanded form with respect to four unknown

harmonic coefficients Ag,,, Bgn, A:‘W and B},
1)
AGn + (wun/wé‘n) A*m =
Won

Sm(w(;nT ) - Aon + cos(wgnT ) - Bon + sm(wlm ) AL,
+ cos(w,mT ) B, =n
cos(wgnT ) - Agn — bm(w@nT ) Bgn+
On

+(wWpun/won) - cos(wlm ) A* — (Wun/won) Sln(wlm ) B, 7w9

Finding four unknown constant coefficients Ag,, Bon, A}, and B}, it will be an easy

task to build the boundary control u(t) according to (2.9) and the deflection function
W (z,t) of the membrane tape vibrating in a supersonic gas flow according to (2.17)
on the finite interval ¢ € [0;7p,]. In each of these cases, the required time of the
boundary control is defined as

2 2
Tho :maX{Toon = ﬂ-}, Tho :maX{TSn = ﬂ-}.

Won Wyn

3 Numerical analysis for different initial and termi-
nal states

Consider a membrane infinite in one direction vibrating in a supersonic gas flow
which streamlines the membrane along its width. One edge of the membrane is

11



rigidly fixed, while the other edge is controlled in the direction parallel to the deflec-
tion of the membrane (Fig 1). In numerical calculations, in order to determine the
physical and geometric characteristics of the dynamic system, the following charac-
teristics of the membrane material and the gas flow are consider: py = 1500 kg/m? |
N, =1/50 N/m , x = 0.32, M = 2.0, l = 2 m, h = 0.0001 m,ps = 0.01 kg/m? ,
a = 2.738613, Bl = 0.64. Obviously, depending on the physical and geometric charac-
teristics of the system,the behavior of the fundamental harmonics 6y, (t) of eigenforms
of the membrane tapeand the corresponding harmonics of the boundary action g, (t)
will be different.

The boundary control problem a)
In the case when the membrane is transmitted from the initial state

Wl,_y = ¢(z) =sin(10z) , v‘v]tzo = () = cos(10z) (3.1)

to the terminal state of rest,

W(z,Tp) = ¢(z) = 0, W( —J(z)=0 (3.2)

t=To

for the boundary control p(t) corresponding to general solution (2.13), in the case of
n = 15, we obtain

fi1 (£) = —0.08858 - sin [0.57654 - £] — 0.348088 - sin [1.14863 - #] —
— 0.792535 - sin [1.72171 - ¢] — 0.05522 - cos [0.57654 - £] —
— 0.550381 - cos [1.14863 - t] — 0.5624 - cos [1.72171 - ] + ..+
+ 1.15872 - sin [7.456687 - t] + 0.88594 - sin [8.030245 - ] +
+0.944 - sin [8.6038 - ] + 1.23084 - cos [7.456687 - t] —
— 0.59297 - cos [8.030245 - ] + 1.0624 - cos [8.6038 - £]

(3.3)

On the other hand, for the boundary control p(t) corresponding to the general solution
(2.14), in case of n = 15, we obtain

i (t) = —0.024935 - sin [0.57654 - ] + 0.011172 - sin [1.14863 - ] —
—0.01416 - 8in [1.72171 - ¢] + 0.01911 - cos [0.57654 - ] +
+ 0.030467 - cos [1.14863 - ] — 0.0299 - cos [1.72171 - t] + ...+
— 0.0266 - sin [7.456687 - t] + 0.034766 - sin [8.030245 - ] +
+0.022 - 5in [8.6038 - ] + 0.03 - cos [7.456687 - ] —
— 0.01449837 - cos [8.030245 - t] 4 0.01334 - cos [8.6038 - ¢]

(3.4)

12



(a) membrane width [ =2 m (b) membrane width I =5 m

Figure 2: Edge control functions in the case of damping vibrations of the membrane:
transition of the system from state (3.1) to state (3.2)

Despite the difference of expressions (3.3) and (3.4), in the case of the given
physical and geometric characteristics of the dynamic system, their graphical repre-
sentations match exactly (Fig. 2a). In the case of a wide tape, when | = 5 m, the
boundary control p(t) for n = 15 has the following form:

113 (t) = —0.02999 - sin [0.23675 - £] — 0.035520 - sin [0.46256 - ¢] —
— 0.234953 - sin [0.69076 - ] + 0.004589 - cos [0.23675 - t] —
— 0.04559 - cos [0.46256 - ] + 0.025341 - cos [0.69076 - £] —
— 3.634929 - 5in [2.98315 - #] — 1.711715 - sin [3.21254 - ] —
— 48.79411 - sin [3.44193 - ] + 1.867593 - cos [2.98315 - ] +
+ 1.075299 - cos [3.21254 - ] + 16.53303 - cos [3.44193 - £]

(3.5)

Boundary control problem b)
In the case when the vibrating membrane is transmitted from the initial state

Wl,_o = ¢(z) =sin(10z) , W‘t:o =¢(x)=0 (3.6)

to the terminal state

W(x,Tp) = ¢(x) =sin(2z) , W‘t:To = ¢(z) = 2cos(2z) (3.7)

for the boundary control p(t) corresponding to general solution (2.13) when n = 15
we obtain
a (t) = 1.4382355 - sin [0.57654 - t] — 7.03202 - sin [1.14863 - t] —
— 1.68865 - sin [1.72171 - t] — 0.054924 - cos [0.57654 - t] —
—19.36217 - cos [1.14863 - t] — 0.6583 - cos [1.72171 - t] —
— ... —0.4129 - sin [7.456687 - ] + 1.3702 - sin [8.030245 - ¢] —
—0.3794 - sin [8.6038 - t] + 0.71193 - cos [7.456687 - t| —
—1.2402 - cos [8.030245 - #] + 0.6841 - cos [8.6038 - ¢]
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Ou the other hand, for the boundary control u(t) corresponding to the general solution
(2.14) when n = 15,we obtain

pis (t) = —0.024935 - sin [0.57654 - t] + 0.011172 - sin [1.14863 - 1] —
—0.01416 - sin [1.72171 - ¢] + 0.01911 - cos [0.57654 - ] +
+0.030467 - cos [1.14863 - ] — 0.0299 - cos [1.72171 - ] + ...+
— 0.0266 - sin [7.456687 - ¢] + 0.034766 - sin [8.030245 - ] +
+0.022 - sin [8.6038 - #] + 0.03 - cos [7.456687 - t] —
— 0.01449837 - cos [8.030245 - ] + 0.01334 - cos [8.6038 - £]

Graphical representations of control edge actions 4 (t) and p5(t) are shown in Figures
3a and 3b, respectively.

Boundary control problem c)

The problem of boundary control of a membrane changes significantly in the case
when the supersonic gas flow is not taken into consideration. Then, the physical
parameter 3 = xpooM N, ! = 0. Therefore, the reduced inhomogeneous equation of
forced vibrations (1.6) and the differential equation of the fundamental harmonics of
the membrane vibration (2.6) are considerably simplified. As a result, we have forced
vibrations of a stretched membrane with boundary excitation fi(t).

Considering that, the dimensionless physical parameter 5l in basic calculations is
taken equal to 0.64, then for much smaller values of this parameter, we will have a
weak flow around the membrane tape.

pit) ot}
30

20p

5§J W “i?V \

a) boundary control u4(t) in the case of b) boundary control us(t) in the case of
general solution (2.13) general solution (2.14)

Figure 3: Boundary controls in the case when the system is transited from state
(3.6) to state (3.7)

In the case, when the vibrating membrane is transmitted from the initial state
W|,_o = p(z) =sin(10z), W =¢(x)=0 (3.10)
t=0

to the terminal state

14



(a) The case of the general solution (2.13) (b) The case of the general solution (2.14)
- boundary control p(t) in case of parameter - boundary control uj(t) in case of parameter

Bl = 0.64, Bl = 0.64,
- boundary control u5(t) in case of parameter - boundary control u}(t) in case of parameter
Bl = 0.0001, Bl = 0.0001,

Figure 4: The functions of edge control of the vibration of the membrane tape in the
case of the system transition from the state (3.10) to the state (3.11)

W(z,Tp) = ¢(x) =sin(2z), W — Y(x) = 2cos(2z) (3.11)
t=Toy
The boundary control p4(t) for fI = 0.64 and ps(t) for 51 = 0.0001, both corre-
sponding to the general solution (2.13), is shown in the figure 4a.
The boundary control ui(t) for Sl = 0.64 and p}(¢) for Sl = 0.0001, both
corresponding to the general solution (2.14) are shown in the figure 4b.

Conclusions

In the control problem by edge action of oscillations of the infinite in one direction
membrane tape in a supersonic gas flow, both of the deflection of the membrane tape
and the equivalent efforts of the edge control action are decomposed into a Fourier
series in terms by eigenforms of the vibration of tape. Mathematically, the problem is
reduced to an infinite system of the boundary value problems of ordinary differential
equations with matching conditions to the initial and final states of the tape, relative
to the true harmonics by the oscillations of the eigenforms of the membrane tape and
the corresponding harmonics of the edge action.

The characteristic frequencies both of the true vibration and the control action
in a supersonic flow have been determined. The edge control action, as well as the
behavior (the law of deflection change) of the oscillating belt under the given initial
and final conditions, are found.
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