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Control problems of UAVs have important applications in both science and life. In this paper
a control problem of UAV is considered when it has a pendulum hanging from it. The dynamics
of both UAV and the pendulum is presented. After linearizing the model, a novel hybrid method
of control is applied to the system to solve the control problem. The results we gained i.e. the
control inputs and state trajectories are shown in form of graphs which were generated from virtual

simulations.
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1 Introduction

Control problems of UAVs have important applications in both science and life.
The history of UAVs, the examination and the research about the UAVs is thoroughly
discussed in [1]. In this paper dynamics of a UAV is considered alongside with a
pendulum hanging below from the UAV. The dynamics of the pendulum is presented
with respect to the UAV and then both models are combined into one. After lineariz-
ing the model, a novel hybrid method of control is applied to the system to solve the
control problem.

The hybrid model we applied is as follows. We first stabilize optimally the pen-
dulum using the motion of the UAV as control inputs and then we use the optimal
stabilizing control inputs to drive the UAV-Pendulum system to a desired position.

The results we gained i.e., the control inputs and state trajectories are shown
in form of graphs which were generated from virtual simulations. The results are
compared with the case when an inverted pendulum is sticked to the top of the
UAV. Used energy is calculated for same values for both cases (UAV with inverted
pendulum and UAV with hanging pendulum) and it is shown that in the case when
the pendulum is inverted the energy cost is almost two times as high as in the case
when the pendulum is hanging down from the UAV.

2  Modelling of the System

To derive the pure theoretical dynamics of a UAV let us fix a coordinate system
. Let be the origin. We will also need another coordinate system fixed in the center
of mass of the UAV (Figure 1). The torques and forces generated by each of the
propellers are shown in the Figure 1. The propellers are numbered 1 to 4 [2].

fi fi
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S TM, T\;\!:'-

f2

Figure 1

Let {=(2 y =z )T be the coordinates of the center of mass of the UAV with
respect to the system Ozyz. As mentioned above, the center of the mass of the UAV
coincides with the origin of the coordinate system Opgxpygzp. Let us describe the
inclined position of the UAV about the point Op using yaw, pitch and roll angles.
Let @ be the pitch angle, © be the roll angle and, finally, let ¥ be the yaw angle.
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Then we will have two vectors describing the position of the UAV. Those are the
following:

T T
E=(z y z), n=(® © V) (1)
In the coordinate system the linear velocities V3 and the angular velocities v are the
following

Ve=( Vs VBy VB )T, v=_(p ¢ T)T (2)

In this setup we will have the dynamics of the system as given below [2; 3].

i = 4icusece + 1pSuse, i = 1pSusecs — 17Cuse, £ =—g+ 11CeCo,
q)—p—ﬁ—s‘lc’f)oq—l—cqc’zor @—Cq>q—8q>7" U= S:q+czr 3)
' Jyy—1I:z)qr _ _q T 5 (Loz—Iza)pr o D 3
P I I“’II IT Imsz + Ty’ 7= Iyy Ir Iyy

,':,:(wz_ yy)pq_lrliwf“f'}—i

where the following notations are used:
Cy:=cosa, S, :=sina, M =myay +mp

T® lk (—w% + wi)
B = TO = lk (—w% + w%) (4)
Ty 27 Ti

T=>F= ka“ (00 T)

As for the mathematical model of the pendulum we will consider its dynamics in the
coordinate system Ogzpypzp. So, the dynamics of the pendulum will be as shown
below. [4]

ip = ﬁ (—apd — (L —yp) & — 227 (ypiptp — (L* —yp) &) +
a3 (U2 4 yplip + C (9 + 2)) + 2 (—L2plip + vpiip + v3 (22 +C (g + 2)) +
, 1 (i =iy = (9 4 2)))) ) (5)
= moaye (=4pii — (L* — 23) i — 2up (2pdptp — (L2 — 27) §) +
+yp (g'c + 2pdy +C (9 + 2)) +
+yp (—LPapiy + adiy, + 22 (12 + C(g+ 2)) + L? (22 — g2 — C (g + 2))))

Using the formula of center of mass of a system

Ko = miT1 + Mot
mi + mo
_ = T _ _ T
Whereﬁ:{:(x y z) andrgzrp:(x+xp Y+ Yp z—ﬁ) , wWe can
find the coordinates of center of mass of our UAV-Pendulum system in the coordinate
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system Oxyz. Let m; = mo = 1, then we will have

:cC:erl:rp
yc:y+§yp

— 1 f12_ 2 _ .2
ze=z— 5\l — 7 — Y

To get the state space model of the UAV-Pendulum system we introduce the notations

as shown below
Ty = Te, Tz = Te, T3 = Yoo T4 = Yo, T5 = Ze, Te = Ze, Ty = P, 183 = O,
9=V, Ty1g=p, T11 =¢, T12 =7, T13 = Tp, T14 = Tp, T15 = Yp, T16 = Yp

(6)

We linearize the dynamics around the origin of the fixed coordinate system. So, we
finally get.

&y =T, &y = ixm, &g = T4, Tg = ﬁxls, &y = w6, L6 = U1, L7 = T10,

U2

L L L g .
Ty = x11, T9 = T12, L10 = 7= — 7,015, L11 = 7

_ 9 ’ — U4
Iyy Iy T13, 12 1.’ (7)

13 = T14, T14 = —gT8 — %9313, 15 = T16, T16 = gT7 — %5615

where u; = % — g, Uz = Tp, U3 = T, Uq = Ty.

Using Kalman’s rule one can check that the system (7) is fully controllable. So, now
we are in a point where we can define the problem and we can go ahead to show the
way we solved it.

3 Problem Definition

Given the system (7), the initial position of the system z; (0) = z1,0,23(0) =
Z3,0,%5 (0) = 5,0 and the final position 1 (t1) = x11,23 (t1) = 31,25 (t1) = 251,
find control inputs ui,us,us such that it drives the system from the given initial
position to the given final.

As one can notice this control problem is not an optimal control problem.

Solution: Our approach to the problem solution was the following. First, we ensure
that the pendulum remains at its lower equilibrium position. We do this by applying
optimal control input stabilizers inside the coordinate system Opxpypzp. And after
we know that the pendulum will remain stable (will not oscillate with respect to the
UAV) we proceed to the control problem. Let us now define a subproblem of optimal
stabilization for the subsystem

13 = T14

L g

T14 = —gus — 7713

e 9T (8)
T15 = T16

T16 = gue — i»’ﬂw

Note that here we use the notation

{mzw )

7 = Ug
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Now the subproblem will be the defined as follows.

4  Problem Definition

Given the system (8), the initial position of the system x; (0) = x; 0, ¢ = 13,16,
find control inputs u® = (ug ug)T such that it drives the system from the given
initial position to asymptotically stable position while minimizing the linear quadratic

regulator

o0
/ :L'14 Jr:cw +u5 Jruﬁ) dr
0

Solution: Notice that the system (8) can be divided into two subsystems which are

T3 =214

. 8.1
{ T4 = —%xm — gus (81)

T15 = T16

. 8.2
{ 16 = — {5215 + gus (82)

With optimality constraints

J[e] = / (234 + u2) dr and J [e / Tl + ug)
0 0

respectively. We will show the solution steps for one of the systems (say (8.1) ) as
both of them are solved absolutely identically.

We choose to solve the optimal stabilization problem by using Lyapunov-Bellman
method. In general, the method says that the optimal control input has to satisfy the
optimization equation as given below

mgn (VV (z) (Az + Bu) + (2" Qz + v Ru)) =0 (10)

Where
Ble] = VV (z) (Az + Bu) + (2" Qz + u” Ru) (11)

(11) is Bellman’s expression for the linear time-invariant control systems. So, in
our case for the system (8.1) we will have

oV oV g 2 2
—Z — + + 12
B [0] = s T14 + 9 ( lp.’L‘13 gu5> T4 Us ( )

It is obvious that the value of u which optimizes (10) is the extremum of (12).
Thus, we will have

0o_ g9V
FE = = 1
uo 2 ax14 ( 3)

By substituting (13) back into (12) we get the following.
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oV g 1°1% e < oV
T14 — 7713
013

2
2 = 14
L B0, 4 > +27, =0 (14)

81‘14

Here V =V (213, z14) is the Lyapunov function for the system (8.1) and we search
for it in the form

1
V = 5 (cllx% + 2012%13%14 + ngxil) (15)
Putting (15) into (14) we get an equation which have the form
(c11%13 + c12714) T14 — g (c12%13 + C2214) T13—
l

P
(16)
- ﬁ( + )+l =0
4 C12713 T C22714 Tig =

From (16) the following system of algebraic equations will follow

2

9. _g 2 _ _ 2

5,027 162 = 0 =i
2

2 _ _
cio— e +1=0 = c12 =0 (17)
2

_ 2

c11 — 11022 - 97612022 =0 C22 =
P

Where the shown solutions are the ones which make V' =V (z13, 214) positive definite.
Finally, to get ud = u? (713, 214) we put (17) into (15) and put what we get into (13).
That gives us

Ug = T14 (18)

To obtain u = u? (t) we simply need to substitute (18) into (8.1) and integrate

the system. Under the initial conditions
213 (0) = 0.5, 214 (0) =0

we will get

(colp—iTp/ TG (~slpt /Ty /T
oo (T L
= (19)

\/Ev —4+glp

o

u

Taking the exact same steps for the system (8.2) we will get u) = —x16, and finally
ug = ud (t) which will be.

— €

\/E\/ =4+ glp

( (=9lp—+/9Tp\/=AFglp)t (leJr\/m\/‘“rglp)t)
05 e 20, 20,

V9

Under the initial conditions z15 (0) = 0.5, x16(0) = 0.
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5 Back to Core Problem

Now, that we have the solution for the subproblem, we can proceed to our main
problem. Recall that the control inputs in the sub problem which are u? = u2 (¢) and
ud = ud (t) are actually z7 andzg in the system (7). In that case one can notice that

two subsystems of (7) can be simply integrated. Those subsystems are the following.

i‘l = X2

oo g

T2 = 577713

P (7.1)
Iy = T11

y — u3 _ 9

11 = Tyy Tyy x13

I3 =24

o g

Ty = 5-T15

G (7.2)
X7 = T10

. U

Ty = 75— ﬁxls

As we already have x7 = 27 (t) and xg = x5 (t) we can simply derive x1; = 11 (t)
from system (7.1) and z19 = 10 (t) from system (7.2). As for x; = x; (t), i = 1,4
we will obtain by integrating &o = i.ﬁﬁlg and ¢4 = ixw under the consideration of

desired edge conditions. As a result, we will have the desired state trajectories of the
UAV and the control inputs us = usg (t) and uz = ug (t) which will drive the system
through the desired trajectories. Of course, those control inputs are not optimal
because of the absence of constraint.

Only the first of the remaining two subsystems of (7) which are

{”'35 e (7.3)

Te = Uy

(oo »

f12 = 7+
are discussed in this paper. The reason is that the second subsystem will have trivial
solution for in the scope of this problem and, hence will not affect the energy spent
for the control process. What refers to the subsystem (7.3) is that it describes the

movement of the system along Z-axis. We will assume the system goes up the Z-axis
with a constant speed for simplicity.

6 Simulating the Results

We have chosen to check the theoretical result of this paper by simulating the
motion of the UAV and recording state trajectories in form of graphs with time being
the independent variable. For the simulation purposes the following values have been
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chosen for the parameters.

g=981ms 2

lp=1m,

IZ(E

= I, = 0.4856 Kgm?* (21)

As for the initial and final positions of the system we have chosen the following values.

21 (0) = 0,25 (0) = 0,25 (0) = 0,2 (0) = 1 @1 (15) = 30, 23 (15) = 30, 5 (15) = 15

Finally, we are ready to present the graphs describing the motion of the quadcopter

(shown below).
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(a) The trajectory of 1 (t)
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(a) The trajectory of z3 (t)
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(a) The graph of us (t)
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(a) Trajectory of pendulum along z-axis (b) Trajectory of pendulum along y-axis
on the coordinate system Ozxyz on the coordinate system Ozyz
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The real Trajectory of the UAV in 3D Space.

Now, that we have seen a numerical example, we can proceed to compare the
results with another case scenario that is when the UAV carries an inverted pendulum.
Namely we are interested in comparing the energy usage in both cases. For the case
of current paper, we can calculate energy usage using the energy integral as shown
below
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/16 4
> 2?4+ u? | dt = 9699.85 units. (22)
5 \i=t j=1
As for the other case scenario we can use the result of [1] to calculate the amount
of energy used. Using again the energy integral we will have

t (16 4
> ai 4> u? | dt =18427.4 units. (23)
5 \i=1 j=1

So, we see that the energy consumed for controlling the UAV with a pendulum
hanging underneath is almost twice as easy as in the case when the UAV carries the
pendulum inverted on its top. Of course, this result was expected and it is quite
natural, that we have this huge difference.

Conclusion

The dynamics of the pendulum is presented with respect to the UAV and then
both models are combined into one. The model is then linearized and the control
problem is solved using proposed hybrid method, which means, we first stabilized
optimally the pendulum using the motion of the UAV as control inputs and then we
used the optimal stabilizing control inputs to drive the UAV-Pendulum system to
a desired position. The results we gained are shown in form of graphs which were
generated from virtual simulations. Then, we calculated the energy spent during the
control process for the same values of parameters for both cases: when the UAV
carries an inverted pendulum on top of it and when the UAV carries a pendulum
hanging down from it. It is shown that the amount of energy used to control the
UAV with an inverted pendulum is almost twice the energy used to control the UAV
with a hanging pendulum.

References

[1] Shahinyan A.S., Hybrid control of a motion of an unmanned aerial vehicle, car-
rying an inverted pendulum. Proceedings of NAS RA, Mechanics, Vol. 73, Ne2,
2020, pp. 69-78.

[2] Luukkonen T., Modelling and Control of Quadcopter. School of Science, Mat-
2.4108, Independent Research project in applied mathematics, Espoo, August
22, 2011, 26 p.

[3] Buchholz, N.N., The Main Course of Theoretical Mechanics, M.: the Science, h.
2, 1972, 332p. [in Russian].

[4] Hehn, Markus and D’Andrea, Raffaello. (2011). A flying inverted pendulum.
Proceedings - IEEE International Conference on Robotics and Automation. 763-
770. 10.1109/ICRA.2011.5980244.

78



[5] Bouabdallah S, editor. Design and control of quadrotor with application to au-
tonomous flying [dissertation]|. Ecole Polytechnique Fédérale de Lausanne; 2007.

Information about authors

Arman Smbat Shahinyan, PhD candidate in mechanics, Yerevan State University,
Faculty of Mathematics and Mechanics
Tel. (+374 55) 66 37 41, email: a.s.shahinyan@gmail.com

Received 03.02.2021

79


mailto:a.s.shahinyan@gmail.com

	Introduction
	 Modelling of the System
	Problem Definition
	 Problem Definition
	Back to Core Problem
	Simulating the Results

