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In this paper, we derive the meso-scale equations of motion for particle reinforced Timoshenko
beam from corresponding micro-scale equations by letting the scale parameter denoting the ratio of
the particle radius and beam thickness decrease to zero. The beam is cantilevered at one end and
is subject to a normal pressure of constant magnitude at the other end. The displacement field and
the stress-strain state of the beam are determined for a decreasing sequence of values of the scale

parameter to establish the convergence of solutions numerically using the finite element analysis.



Introduction

Materials with new target features and improved properties are of extremely high
demand in all areas of engineering ranging from civil to aerospace and even medical.
The reason is that most of the current needs of engineering are not fully satisfied by
existing homogeneous or even some of the composite materials anymore stimulating
new experimental and theoretical research in different areas of materials science.

Usually, composites are reinforced either by fibers or particles. Each of these two
types has its own wide area of applications. Current material science has powerful
tools of modelling reinforced composites with even very chaotic micro-structure. One
of the main modelling tools for finer description of reinforced composites is the so-
called multiscale approach [1]. In the most vast description, the multiscale approach
develops the micro-scale description of the composite taking into consideration all
possible micro-inhomogeneities and micro-defects [2,|3]. Then, the most appropriate
homogenization tool [4/5] is applied to derive the meso-scale of the macro-scale de-
scription of the composite. Nevertheless, application of the homogenization for specific
cases is not that straightforward and each case may require an extensive research.

Particle-reinforced composites are widely used in many important areas of mod-
ern engineering. By appropriate choice of the reinforcing material properties of the
volume fraction, it becomes possible to design in some sense optimal structures. This
motivates us to study another important factor that may have influence on the desired
properties of the composite- spatial distribution of particles. As of now, most of the
research about modelling and characterization of PRC materials is carried out when
the particle distribution follows a specific random distribution. However, evidences
show that the uniform distribution of reinforcements may not always be optimal [20].
In other words, it may be possible to achieve better properties for the composite
with a properly chosen particle distribution. For that purpose, the dependence of
the target properties of PRCs (such as bending or flexural stiffness) from the particle
distribution law must be analyzed. Apparently, this can be easily done in case when
that dependence is explicit.

In this short note, we consider the homogenizaiton of a particle-reinforced, can-
tilever Timoshenko beam and show the convergence of the micro- and meso-scale
displacements field numerically. The theory of the particle reinforced composites
(PRCs) is well developed and currently includes results allowing to model anisotropic
behavior, interface defects, material surface effects, two-phase materials, non-uniform
and arbitrary distribution of particles (see [6-19]).

We start from micro-scopic description of the beam and apply the convergence
definition given in [18,[19] to derive its meso-scopic description. In the micro-scopic
description, the beam is represented as a continuum with spherical inclusions having
specific geometry within the beam. The limiting description corresponds to a beam
with point inhomogeneities. The finite element method is used to capture the dis-
placement field of the beam for a decreasing sequence of the scale parameter denoting
the ratio of the inclusion radius and the beam height. A clear convergence of the
micro-scale displacements field to the meso-scale one is observed.



1 Main assumptions and beam model

In Cartesian system Oxyz, consider the beam B={x € R, 0 <2 < 1,0 <y < hy,

0 < z < ha} of constant, rectangular cross section. Let the beam be reinforced by a
N

finite number of spherical particles b® := U b;, C B with center xg, and radius
n=1

of the n' particle. Here, ¢ > 0 is a scale parameter allowing to zoom in or zoom out

the scale at which the composite is studied.

In order to be able to develop a consistent theory for the beam, we are going to
accept the following assumptions.

Assumption 1. Suppose that B; := B\ b is connected.

Assumption 2. We assume that both b® and Bj are isotropic, linear elastic,
homogeneous and free of all types of defects and voids.

Assumption 3. During the deformation of the beam, particles do not interact
mechanically, meaning that for any ny # nao,

bs, NbS, = 2. (1.1)

Assumption 4. For the sake of simplicity, the consideration is limited by in-
finitesimal strains such that for any n; # no,

g;; < dist (b, , b5, ) -

Here, ¢;; are the components of the strain tensor of the beam, dist (-, -) measures the
distance in R3.

In addition to Assumptions above, with respect to the beam, we accept the Tim-
oshenko assumptions [21].

It is important to emphasize that when changing the scale parameter, the volume
fraction of the particles remains constant. In other words, by decreasing ¢, we change
only the visual representation of the composite corresponding to the current scale and
not its geometric configuration.

1.1 Beam equations at micro-scale

Assume that the beam is subjected to an axial load of constant intensity F' acting
at the end of the beam, while its other end is cantilevered. The axial load is dis-
tributed uniformly over the whole end-section of the beam, so that, without losing
the generality, we assume uniform displacement field over the width of the beam (see

Figure .
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Figure 1: Schematic representation of the beam reinforced by spherical particles

Timoshenko assumptions lead to the following non-zero components of the strain

tensor: S5 1 7 8w
%) w
Eim (IIZ,y,Z) = -z oz’ 522 (x,y,z) = 5 < Oz - (pq (x)> .

Moreover, since the beam is isotropic, the non-zero stress components will be

U;z (CL’, Y, Z) = E* (mv Y, Z) Eacvac (CL‘, Y, Z) ) U;z (:Ev Y, Z) =2p° ("Ev Y, Z) ;—;;Z (ZE, Y, Z) :
Here, E° and u° are the Young and shear moduli of the beam. At that,

EC
2(1+v)’

<

‘U:

Substituting the strain, the bending moment and the shear force are defined as

< <
M, (z) = /zofm (z,y,2)dA = —ai /ngg (x,y,2)dA = —E5 (2) %, (1.2)
or ox
A A

S
Q; (1‘) = H/O-;z (x,y,z)dA: ZL <aau; _(pg) /Eg (z7yvz)d‘4:
A A

(14+v) 13)
_ R g (z) {awg _ g} '
T2(1+v) 0 ar 7|
where
ES (2) = /zkE< (2, 2)dA, k=0,2, (1.4)
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Substituting (1.2)) and (1.3)) into the equilibrium equations of the Timoshenko beam,

Qs ow*
€T F —
Ox + oz 0,

oM., .
w0

we get

K 0 . ow* Y
2(1—|—1/)83U{E0(x)<8x —cp)} =0

Owt 9 Jpe () 2% F gy |2 ] =
8x+8x{E2(x) 8w}+2(1+u)EO(x)[6x 7| =0

Here, k is the Timoshenko shear factor. The cross section of the beam is assumed to
be uniform, so that « is considered to be constant. Hereinafter, it is assumed that [22]

(1.5)
F

_10(1+v)
124 11v

Taking into account the microstructure of the beam, its Young’s modulus at mi-
croscale, can be represented as

Eb) (x7y’z) € BZa

Ep7 (5'373/’3) €b§7

E* (xayvz) = {

where E} and I, are the Young’s moduli of B; and b*. Moreover, using the definition
of the characteristic function xps, we may write

E* (l’,y,Z) = EbXBz (xayaz)+Epr‘ (I',y,Z). (16)

1.2 Beam equations at meso-scale

In the context of this paper, we will consider the case ¢ = % with h = min (hq, h2).

Then, using the theory developed in recent papers [18,/19], we can prove that the
meso-limit of system (|1.5) with coefficients derived from (1.6]) is the system

K 0 [0 ow* o\| _
2(1+v)0x {EO (@) <8x oY )] =0
o 9 [ o, 0° K o ow® ol _
e T os [E @ax} oty @ {ax—%" } =0

where EJ and EYJ are defined exactly as in (1.4]) but using the following expression
for EO:

(1.7)

E

pVB a
N 25(33—$0n)5(y—y0n)5(z_20n)_

EO($7y’2) = (1_¢P)Eb+¢,ﬂ'

n=1
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Here, § is the Dirac function, Vg is the volume of the beam, ¢, is the constant volume
fraction of particles. See for details.

2 Numerical analysis of a cantilever beam subject to
axial load

In order to make sure that solution to (|1.5)) converges to solution to (1.7, we
involve the numerical method of finite elements. The beam is discretized into tetra-

hedral elements as shown in Figure 2] Note that the beam material is considered to
be made from copper, whereas the material of the particles is made from steel.

Figure 2: Finite element discretization of the beam and particles

Then, the displacement field of the beam described by is captured for ¢ =
0.075, 0.05 and when ¢ — 0. The latter case is modelled using the discretization of
D).

Figures show the evolution of the normal displacement ug3, normal stress o5,
and tangential stress o, when ¢ = 0.075, 0.05 and when ¢ — 0.
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Figure 3: Distribution of w*®
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Figure 4: Distribution of o%,
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Figure 5: Distribution of o,

It is evident from the corresponding values of the quantities shown on plots above
that as ¢ — 0

0 0 0
w* \‘ w-, a'gcac /‘ Oga> Uagcz \( Oz

3 Conclusions

In this study, we derive explicit dependence of PR Timoshenko beam stiffness
on particles distribution and material properties giving enough theoretical base for
optimal design of such beams by a proper choice of particles distribution. The method
of multi-scale modelling allows to derive the meso-scale model of the beam from
corresponding micro-scale model when the scale parameter describing the ratio of the
particle radius to the beam thickness tends to zero. Using the numerical method of
finite elements, the stress components and the displacement field of the beam are
shown to converge to the corresponding quantities at meso-scale.

The model is important for many applications including, e.g., derivation of mate-
rials with improved target properties and material or structural optimization of PRC
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structures.
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