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В линейной постановке исследуется зависимость видов потери устойчивости невозмущённого состояния 
рановесия тонкой упругой удлинённой прямоугольной пластинки от характера первоначального 
напряжённого состояния при наличии сосредоточенных массы и моментов на её свободном крае в 
предположении, что пластинка сжата в направлении, перпендикулярном скорости обтекающего 
сверхзвукового потока газа, набегающего на ее свободный край. Найдено аналитическое решение задачи 
устойчивости возмущённого движения динамической системы «плстинка-поток». Установлено, что при 
обтекании первоначальное напряжённое состояние, обусловленное сжимающими усилиями, приводит как 
к существенной дестабилизации, так и к стабилизации состояния невозмущённого равновесия пластинки, в 
зависимости от параметров системы «пластинка–поток».  
 

Մ.Վ. Բելուբեկյան , Ս.Ռ.Մարտիրոսյան 
 Գերձայնային գազի հոսքում սեղմված երկարաձիգ սալի ֆլատերի մի խնդրի մասին կենտրոնացված 

իներցիոն զանգվածների և մոմենտների առկայությանբ  
 

Հիմնաբառեր՝ երկարաձիգ ուղղանկյուն սալի կայունություն, սեղմող ուժեր, պանելային 
դիվերգենցիա, տեղայնացված դիվերգենցիա, պանելային ֆլատեր, գերձայնային շրջհոսում, 
իներցիոն զանգվածներ և մոմենտներ 

Ուսումնասիրված է նախնական լարվածային վիճակի ազդեցությունը գերձայնային գազի հոսքում 
սեղմված ուղղանկյուն սալի կայունության մի խնդրում, որում գազի հոսքը ուղղված է սալի ազատ 
եզրից դեպի հակադիր հոդակապորեն ամրակցված եզրը զուգահեռ մյուս երկու հոդակապորեն 
ամրակցված եզրերին: Ստացված է կայունության խնդրի անալիտիկական լուծումը: 
Ցույց է տրված պանելային դիվերգենցիայի և ֆլատերի առաջացման հնարավորությունը: Գտնված են 
գազի հոսքի համապատասխան կրիտիկական արագությունների արժեքները: Ցույց է տրված սեղմող 
ուժերի ինչպես ապակայունացման, այնպես և կայունացման ազդեցությունը «սալ–գազի հոսք» 
համակարգի խոտորված շարժման վրա կախված պարամետրերի արժեքից: 
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By analyzing, as an example, a thin elastic compressed elongated plate streamlined by 
supersonic gas flows, we study the influence of the initial stress state of the plate on the 
stability of the disturbed motion of the dynamic system “plate – flow” under the assumption 
of presence of concentrated inertial masses and moments on its free edge. We establish the 
relationship between the characteristics of natural vibrations of the plate and the velocity of 
the streamlining supersonic gas flow, which enables one to drow some conclusions 
concerning the stability of disturbed motions of the system depending on the stress factor 
and the relative thickness of the plate. For various values of the «essential» parameters of 
the system, we determine the critical velocities of the gas flow leading to the divergence 
and flutter instability. 
 
Introduction. It is known [1– 4] that the specific features of the influence of the initial 
stress state of the plate on the stability of distributed nonconservative systems are still of 
great theoretical and practical interest up to the present, since the question concerning 
elastic stability inevitable arises during disign calculation of any flying mashine to ensure 
flight safety. 
The model problems of the stability of an elastic rectangular plate streamlined by a 
supersonic gas flow is a mathematical description of the conditions of divergence,  
localized divergence and panel flutter appearance, excited by air flow. 
A huge number of works are devoted to the study of static and dynamic instability of plates 
and shells, a review of which is mainly contained in monographs and articles [1–10]. 
However, here, with the exception of A.A. Movchan, approximate solutions are 
constructed, and an effective estimate of the accuracy of these approximations is not given. 
A.A. Movchan [4] received the first fundamental theoretical results in such statement at 
research of a problem about a flutter of the rectangular plate streamlined by supersonic gas 
flows. 
In this article, in a linear statement, we investigate the influence of the initial stress state on 
the dynamic behavior of the disturbed motion of the "plate-flow" system near the 
boundaries of the stability region under the following assumptions. A rectangular plate with 
one free edge and three hinged edges is compressed in a direction perpendicular to the 
velocity of a supersonic gas flow, incident on its free edge, along which concentrated 
inertial masses and moments are applied [2, 11]   
Here, in contrast to [1-10], based on the method described in [15], we obtained an 
analytical solution to the stability problem for the dynamic system “compressed rectangular 
plate – supersonic gas flow”. 
The results of the work can be used in the processing of experimental studies of divergence 
and flutter of the skins of supersonic aircraft, as well as in the study of a wide class of 
problems of stability of dynamic systems. 

1. Statement of the Problem.  
Consider a thin elastic elongated plate occupying, in a Cartesian coordinate system Oxyz , 

a domain 0 x a  , 0 y b  , h z h   . We assume that 1 0.2ab  . The 
Cartesian coordinate system Oxyz  is chosen as follows: the Ox - and Oy -axes lie in the 
plane of the indisturbed plate, and the Oz -axis is perpendicular to the plate and directed to 
the side of the supersonic gas flow streamlining it on one side in the direction of the Ox -
axis with an undisturbed velocity V . It is assumed that the gas flow is plane and potential. 
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Suppose that the edge 0x   of the plate is free, whereas the edges x a , 0y   and 
y b  are hinged. The hinges are assumed consider to be perfect. We also assume that 

concentrated inertial masses cm  and rotation moments cI  to the free edge 0x   are 
applied [2, 11].  
Let us assume that initially, even before the flow around, the plate is subject to the action of 
compressive forces 2y yN h  uniformly distributed along the edges 0y   and y b  

of the plate and as a result of heating or some other reason; compressive stresses y  are 
assumed to be constant throughout the middle surface of the panel, and unchanged with a 
change a deflection ( , , )w w x y t  of the plate [1, 2]. Under the influence of certain 
factors, the undisturbed equilibrium state of our plate can be broken down, and it will begin 
to perform disturbed motion with the deflection ( , , )w w x y t .   
The deflection ( , , )w w x y t  will cause an excess pressure p  onto the upper 
streamlined surface of the plate from the side of streamlining gas flow, which is taken into 

account by the approximate formula of the “piston theory” [13,14]: 0 0
wp a V
x


   


, 

where 0a  is the sound velocity in undisturbed gas medium, and 0  is the density of 

undisturbed gas flow. We also assume that the deflections ( , , )w w x y t  are small as 
compared with the plate thickness 2h .  
Let us find out the conditions under which the loss of stability of the unperturbed state of 
equilibrium of the dynamic "plate-flow" system is possible, when the bending of the 
rectangular plate is caused by the corresponding aerodynamic loads p , compressive 

stresses y  in the middle surface of the plate, concentrated inertial masses cm  and 

rotation moments cI . We assume that the compressive forces y  are small as compared to 

the critical stresses .( )y cr (tabl. 1) that can produce buckling of the plate in the absence of 
flow. 
Note that in this work, as in work [15], in order to obtain the possibility of an analytical 
study in the considered problem of the dynamic stability of the “plate – flow” system, the 
distributed mass of the plate is conditionally replaced by concentrated inertial masses and 
moments of rotation applied along the free edge of the plate [2, 11]. Such a replacement 
does not at all lead to a distortion of the dynamic picture of the phenomenon - loss of 
system stability; perhaps, up to numerical values of the critical gas flow rates, which can be 
somewhat overestimated. 
Then, under assumption of the validity of the Kirchhoff hypothesis and the "piston theory" 
[13, 14],  the small bending vibrations of points of the plate median surface satisfy the 
differential equation [2, 8]: 

2
2

0 02 0y
w wD w N a V

y x
 

    
 

,    , ,w w x y t ;                                                (1) 

and the corresponding boundary conditions [2, 11]: 
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,  0y   and  y b .                                                                          (.4)    

Here, 2 ( )w w    ,  is a Laplace’s operator; D  is the cylindrical flexural stiffness of 
our plate;   is Poisson’s ratio.  
In the parameter space of system (1)–(4), it is required to determine the critical velocity 

.crV  of the supersonic gas flow: 

. 0 0 0 2cos .( , )cr mV a M a M , 0 2M  , 2cos . 33.85mM  ;                                          (5)  
under the assumption 

. . ( ) ( )y cr yy pr    ;                                                                                                    (6) 

0M  and 2cos .mM are the boundary values of the Mach number corresponding to the 

interval of permissible values of supersonic and hypersonic velocities [1]; .( )y cr  is the 

critical stresses, leading to buckling of the plate in the absence of flow ( 0V  ) [17]; 

.( )y pr  is the lower limit of fluidity.  
In [15, 16], an analytical solution was obtained for the stability problem for the dynamic 
system “plate – flow” in the case in which the influence of the initial stress state of a 
rectangular plate is not taken into account. Аnd in [17] an analytical solution for the 
problem of static stability of a panel with loaded edges, both in a streamlined and in the 
absence of a streamlining are found. 
Thus, the analysis of the stability of the disturbed motion of the considered dynamical 
system “plate – flow” (1) - (4) is reduced to the study of the differential equation (1) with 
the corresponding boundary conditions (2) - (4) for the deflection under the the assumption 
(5) and (6).  
2. General solution of the problem. For finding the general solution of the problem of 
stability of the plate (1)-(4), we will reduce it to a problem on eigenvalues for the ordinary 
differential equation.  
We try to find the General solution to the boundary-value problem defined by equation (1) 
and by the boundary (2) - (4) in the form of harmonic oscillations 

1
( , , ) ( ) sin( ) exp( )n n n

n
w x y t C f x y t





     , 1
n nb   ;                                    (7) 

where n  is the half–waves number in the direction of the plate side b .  
Then, in accordance with the expression (7), the considered problem of the panel flutter 
(1)–(4) is reduced to the following boundary value problem on eigenvalues   of 
nonselfadjoint operator for the ordinary differential equations on the forms of vibrations         

( )nf x : 
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2 1 4 1 2
0 0( ) 2 ( ) ( ) ( ) ( ) 0IV II I

n n n n n y n nf x f x a VD f x N D f x         ;             (8)  

 2 1 2( ) ( )II I
n n n c nf f x I D f x    ,                                                                           (9) 

 2 1 2(2 ) ( ) ( )III I
n n n c nf f x m D f x      ,   0x  ;                                       

( ) 0nf x  ,   ( ) 0II
nf x  ,  x a . 

The boundary value problem (8) and (9) consists of investigating the behavior of the 
eigenvalues   is relation to the velocity V  of gas flow. The equilibrium of the plate 
streamlined by gas flow is stable if all the eigenvalues   lie in the left-hand half-plane of 
the complex variable. The lowest value of the velocity at which even one of the eigenvalues 
  crosses into the right-hand half-plane is the critical flutter velocity. Transition into the 
right-hand half-plane indicates instability of the oscillatory type: there is the panel flutter. 
The one exception is when transition takes place through the point 0  ; this case 
obviously corresponds to the divergence of panel. Here, the coupled interaction of different 
degrees of freedom is of considerable importance also in the case of panel flutter. 
Depending on the relation between the parameters, the critical flutter velocity can be either 
smaller or larger than the critical velocity of divergence.       
The particular solution of the differential equation (8) takes the form  

( ) exp( )n n nf x C rx  ,  1
n nb   ,                                                                       (10)           

nC  – are the arbitraries constants, which are not equal to zero simultaneously.  
Substituting the solution (10) in the differential equation (6), we obtain the characteristic 
equation, which is the algebraic equation of the fourth degree 

4 2 3 22 (1 ) 0n yr r r      , 3 1 3
0 0n na VD     , 2 1 2

y y nN D    ,               (11)  
which, in accordance with Ferrari's solution, will be represented as [17]:                            

   2 2 2 2 2 22( 1) 1 2( 1) 1 0y yr q r q q r q r q q              .  

                                                                                                                                        (12)  
Here q  is the parameter of the velocity V of the gas flow. Parameter q is the real root of 
the cubic equation 
 2 2 68 ( 1)( 1 ) 0y nq q      ,                                                                            (13) 
In this case, the parameter q  satisfies the condition [17]:  

 0 ,q q  ,                                                                                                                (14) 

 2
0 1 2 (4 3 3yq       , 2 4 3y    and 0 1q  , 2 4 3y   (tabl. 1).           (15) 

2
y  is the compressive stress coefficient, deternined by expressen (11).  

                                                                                                       Table 1.  

 

2
y        0        0.3      0.5      0.8     1.0   1.21   1.333   1.333 

0q       1   0.840 0.721 0.510 0.338 0.072 –0.333 1 
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In accordance with relation (6), we have 
2 2

.( )y y cr   , 2 1 2 2
. .( ) 2 ( ) ( , , )y cr y cr n yh D n         ;                                          (16)   

  is a relation of the width a (downstream side) of the elongated plate to its length b :  
1ab  , 0.2  ;                                                                                                          (17)      

 2
.( )y cr  is the critical stress coefficient (Table 2) [17].   

For all  0,0.2 when 2 2
.( )y y cr    (Table 2) the non-streamlined elongated plate 

loses its static stability in the form of panel instability. 
                                                                                                                             Table 2. 
 

            
    γ 

      0.125       0.25         0.3      0.375       0.5 

      0.0001   75.31 10   74.559 10  74.255 10    73.8 10    73.04 10  
      0.001   55.31 10  54.559 10  54.255 10    53.8 10    53.04 10  
      0.01   35.31 10  34.559 10  34.255 10    53.8 10    33.04 10  
      0.10  54.092 46.554 43.521 38.880  31.289 
      0.30   6.822   6.029   5.695   5.180   4.272 

     
Note that the stability of non-streamlined rectangular plates under various boundary 
conditions and different values of the relation sides   of the rectangular plate was 
considered, in particular, in [1, 3, 6, 7].  
In [17], using graphoanalytical research methods, it was shown that in the admissible 
interval of values of the velocity parameter (15), characteristic equation (11) has two real 
roots 1 0r  , 2 0r  , and a pair of complex conjugate roots 3,4r W  with a positive real 
part, which are easily found as solutions of quadratic equations - factors of relation (12): 

2 2
1,2 0.5 2( 1) 1 0.5( 1)yr q q q        ,                                            (18) 

2 2
3,4 0.5 2( 1) 1 0.5( 1)yr q i q q       .                                              (19) 

Moreover, in accordance with condition (15), we have [17]: 

1 0r  , 2 0r  , when 2 [0,1)y  ,  2( 1 2 4 3 ) 3,yq      ;                       (20)   

1 0r  , 2 0r  , when 2 (1, 4 3]y  ,  2( 1 2 4 3 ) 3,yq       and             (21) 

2 4 3y  , (1, )q  ;   

1 0r  , 2 0r  , when 2 1y  , (1 3, )q  .                                                         (22) 
Therefore, the General solution of equation (1), in accordance with the expression (10), will 
be written as a double row: 

4

1 1
( , , ) exp( )sin( )nk n k n

n k
w x y t C r x t y



 

      , 1
n nb   ,                     (23) 



64 

nkC  is arbitrary constants; n  is the number of half-waves along the side b  of the plate; kr  
are the roots of the characteristic equation (11) determined by expressions (18) and (19).  
In accordance with the notation (11), from relation (13) we determine the explicit form of 
the dependence of the gas flow velocity V  on the parameters of the “plate – flow” system: 

 2 2 2 3 3 3 3 1
0 0( , , , ) 2 2( 1) ( 1 ) ( )y yV q n q q n D a a            .                        (24) 

Taking into account condition (5), it follows that 

   2 2
0 0 2 0 0 0 2y y cosm. cosm.V( q,n, , ) V( q ,n, , ),a M a M ,a M                          (25) 

Hence, taking into account the value of the cylindrical stiffness: 
3

2
(2 )

12 (1 )
E hD





 

, it 

follows that the permissible intervals of the values of the reduced velocity 

   2 1 3
0 0, , , yV q n D a a     corresponding to the velocity (24) will have the form: 

 2 1 3 2 1 3
0 0 0 0 0 0 2cos 1, , , ( ) ( ( , , , ) ( ), )y y mV q n D a a V q n D a a a M                                                       

0 0 1 0 2cos . 1( , )ma M a M  ;                                                                                       (26) 
 where  

2 1 1 3
1 0 012(1 ) (2 )a E ha       , 0 2M  , 2cos . 33.85mM  .                    (27)       

The length of the interval (26): 1
1 0 2cos . 0 1( , 2 ) ( )md ha a M M     is a decreasing 

function both of the parameter 12ha  at fixed values of the Poisson's ratio  , and of   at 
fixed values of the relative thickness parameter 12ha . 
3.  Sufficient Criteria for the loss of stability of the perturbed motion of the "plate-
flow" dynamic system (1)–(4).   
Substituting the general solution (23) of the differential equation (1) into the boundary 
conditions (2) - (4), we obtain a homogeneous system of fourth order algebraic equations 
with respect to arbitrary constants nkC . The determinant of this system of equations 
equated to zero - the characteristic determinant - after simple transformations is reduced to 
the form of the biquadratic equation: 

4 2
0 1 2 3( ) 0n n n nA A A A          ,                                                                    (28) 

where 
1 3 3( )n cm D b n    , 1 1( )n cI D b n    , 0n  , 0n  ,                                 (29) 

are the reduced values, respectively, of the concentrated inertial masses cm  and moments 

of rotation cI  applied along the free edge 0x   of the plate; 

 2
0 0 1 2( , , , ) 2( 1) 1 exp( 2 2( 1)yA A q n q q n B B                         (30)                                               

 2 2
2 1 22 1 1 exp( 2( 1) ) ( ) cos( )yB q q q n sh n B n B                   

 2 2
1 1 22 1 1 exp( 2( 1) ) ( ) sin( )yB q q q n ch n B n B                ; 
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2
1 1( , , , )yA A q n                                                                                                      (31) 

2 2 2 2
1 22( 1) ( 1 ) ( 1 )exp( 2 2( 1)y yq q q q q q n B B                  

 2 2 2 2
2 12 2( 1)( 1 ) 1 ( 1 ( )y yB q q q q sh n B           

 

2
1 1 22 ((2 1)( 1) ) ( ) cos( ) exp( 2( 1) )yB q q ch n B n B q n               

 2 2 2 2
1 12 2( 1)( 1 ) 1 1 ( )y yB q q q q ch n B          

  

2
1 2( 1)( 1 ) ( ) sin( ) exp( 2( 1) )yq q sh n B n B q n             ; 

2
2 2 ( , , , )yA A q n      1 22( 1) 1 exp( 2 2( 1) )q q n B B                          (32) 

1 2 1 24( 1) ( )cos( ) exp( 2( 1) )q B B ch n B n B q n             
2 2

1 22(3( 1) 2 ) ( )sin( ) exp( 2( 1) )yq sh n B n B q n            ;  
2

3 3( , , , , )yA A q n                                                                                                   (33) 

  2
2 2 2

1 22( 1) 1 1 2( 1) (1 )yq q q q B B             
 

 

 2
2 2 2

1 22( 1) 1 1 2( 1) (1 )yq q q q B B             
 

    

exp( 2 2( 1) )q n      2 2 22 ( 4 2 1) 1 yq q q     2(2 4 1)(q 1)q q   
 

2 2 2( 1 1 )y yq q       2 2 22((2 1)(q 1) 1 )y yq q q       
 

2 2 2
1(q 1 1 ) ( )yq sh n B        

2 2
12 2( 1)( 1 ) ( 1)yq q q B       

1 2 2( ) cos( )ch n B B n B     exp( 2( 1) )q n    

  2 2 2
12 ( 4 2 1) 1 yB q q q       2(2 4 1)(q 1)q q   

 

 
2 2 2( 1 1 )y yq q       2 2 22((2 1)(q 1) 1 )y yq q q         

2 2 2(q 1 1 )yq        1( )ch n B   2 22( 1) (3( 1) 2 )yq q        

2 2
11 ( )yq sh n B       2sin( )exp( 2( 1) ) 0;n B q n        

where                                    
2 2

1 1 0.5( 1),yB q q      2 2
2 1 0.5( 1).yB q q                      (34)  
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For all admissible values of the velocity parameter 0( , )q q   (Table 1), stress 

coefficient 2 2
.( )y y cr    (Table 2), parameters 1n   and (0, )   it is obviously  that 

2
1 1( , ) 0yB B q   and 2

2 2 ( , ) 0yB B q   , whence the validity of the inequalities 
follows: 

2
0 0 ( , , , ) 0yA A q n    , 2

2 2 ( , , , ) 0yA A q n    .                                               (35) 
Introducing the notation 

1
n n nk     ,                                                                                                                 (36) 

characteristic determinant (28), in accordance with conditions (29) and (35), can be 
rewritten in the form 
 4 1 1 2 1 1 1

1 2 0 0 3( ) 0n n n nk A A A A A             , 0n  , 0n  , 0nk  .         (37) 
The analysis of the stability of the unperturbed equilibrium state of the dynamic system 
"plate-flow" (1) - (4) is reduced to the study of the behavior of the roots k of the 
characteristic determinant (37), which determine the proper motions of the system in the 
space of «essential» parameters  2( ), , , , ,y nq V n k     . There are have the most 

significant effect on the dynamic behavior of the system. The values of the other parameters 
of the system are taken to be fixed.  
4. Partitioning the parameter space   of the system «plate–flow» into domains of 
stability and instability. 
Let us introduce into consideration in the parameter space   the domain of stability 0  

and the domain 1 2 3, ,    of instability. In the domain 0  all roots k  of the 
characteristic equation (37) are in the left-hand side of the complex plane. The domain 

1 2 3, ,   , respectively, is one positive root among the roots k , or there are two 
positive roots, or there is a pair of complex conjugates roots with positive real part. It is 
clear that the perturbed motion of the system is stable for values of parameters from the 
domain 0  and unstable for values of parameters from 1 2 3, ,    domains.  

The system “plate–flow” in domains 1  and 2  loses its stability in the form of panel 

divergence, and in domain 3  in the form of a panel flutter. The panel divergence in 

domain 2  is more pronounced. 

The stability domain 0   is determined by the relations: 

1 2 0nk A A  ,   3 0A  ,   0  .                                                                               (38) 

And the instability domains 1 2 3, ,    will be determined, respectively, by the relations: 

3 0A  , 0  ; 0  , 1 2 0nk A A   and 3 0A  , 0  .                                 (39)    
Here,  is the discriminant of the characteristic determinate (37): 

2 2
1 2 0 3( , , , , ) ( ) 4y n n nn k k A A k A A         .                                                      (40)   
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It is obviously, that under the conditions (38) the equation (37) has two pairs of purely 
imaginary roots 1,2 1i    , 3,4 2i    . The rectangular plate in this case performs 
harmonic oscillations about the undisturbed equilibrium state.  
The boundaries of the stability domain 0   under the condition 1 2 0nk A A  are 

hypersurfaces 3 0A   and 0   [12, 15]. The characteristic equation (37) on the 

hypersurfaces 3 0A   and 0   has one zero root 0 0   of multiplicity 2 and a pair 

1,2 i     of purely imaginary roots respectively.  

On the boundary 0  ,   1 2 0nk A A  , 3 0A   of the stability domain 0  the 
disturbed motion of the “plate-flow” system loses its static stability in the form of the panel 
divergence at flow velocities . .cr divV V  under the condition  2 2

.y y cr
   (Table 2). 

Substituting the first root .cr divq  of the equation (33) in the formula (24), we obtain the 

reduced critical divergence velocity  1 3
. 0 0cr divV D a a  .   

On the boundary 0  ,  1 2 0nk A A  ,  3 0A   of the stability domain 0 , as well as 

on the boundary 0  ,  1 2 0nk A A  ,  3 0A    the static instability domain 2  the 
disturbed motion of the system «plate–flow» loses its the dynamic stability: the plate makes 
the flutter oscillations.  The critical velocities . .cr flV  of the gas flow that corresponds to the 

first root . .cr flq   of the equation (40): calculated according to the formula (24)., delimits or 

When the velocities . .cr flV V  of the gas flow is “soft” (“smooth”) transition to 

oscillations of increasing amplitude (i.e. to the flutter oscillations). In the first case, the 
harmonic oscillations are gradually moving in the flutter oscillations, while in the second 
case, the transition in the flutter oscillations occurs along with a monotonic “buckling” the 
surface of the plate.  
From the equations (33), (40) we can drow certain qualitative and quantitative conclusions 
concerning the influence of a number of parameters on the stability of the plane form of the 
plate.                                                                                                             
 Thus, the critical velocities of divergence instability .cr divV  and of flutter instability . .cr flV  

of the disturbed motion of the rectangular plate, corresponding, to the roots . .cr divq  and 

. .cr flq  of the equations (33) and (40) respectively, are determined by the formula (16) with 

sufficient accuracy. At .cr divV V  and . .cr flV V  velocities there is the “soft” loss of 

stability of disturbed motion of the system «plate–flow» in the forms of divergence and  
panel flutter forms respectively.  
5. Numerical results. Using the graphic-analytical and numerical methods of analysis, we 
constructed the family of curves 2{ ( , , , , )}y nq n k    parameterized properly in the multi-

parameter space   of our problem.  
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Numerical calculations carried out for various values of the number of half-waves n  have 
shown that for fixed values of the remaining parameters of the system, the value 1n   
corresponds to the smallest values of the critical velocities of divergence and flutter. 
Tables 3–10 present the numerical results of solving the original problem of stability (1) - 
(4), characterizing the most representative cases of the dependence of the reduced critical 
velocities of divergence and flutter on moderate values of the «essential» parameters of the 
problem as applied to the interval of super- and hypersonic velocities (26) for the elongated 
plate ( 0.2  ).  
For a clear illustration of the dynamics of the state of the "plate - flow" system in the space 
 , we will compose chains of transitions from domain l  to domain k , based on the 
analysis of numerical results. 
Chains of transitions have the following representation: 

0
1 0 1

crdivV V    , 0nk  ;                                                                         (41) 

02
1 2 3 0 1

crfl crdivV V VV 

     , 0nk  .                                  (42)   

Hence, it can be seen that at gas flow velocities 0 0 0 2V a M a   the “elongated plate 
– flow” system is statically unstable: there is a panel divergence. However, in accordance 
with chain (5.1), when 0nk   the “plate – flow” system becomes stable at velocities gas 

flow 0V V , after which it loses stability again at velocities .cr divV V  in the form of 
panel divergence. In the case, the flutter is absent.  
According to representation (5.2), in the case 0nk  , the system at the gas flow velocities 

2V V  transitions into the domain of the panel divergence 2 , from where, at 

. .cr flV V , it transitions into the domain of the flutter oscillations 3 .  
If, after that, the plate material does not destruction, then with a further increase in the gas 
flow velocity, the disturbed motion of the system at velocities 0V V   becomes stable, 

after which, at gas flow velocities .cr divV V , it loses static stability. 
                                                                                                                             Table 3.  
 

                     
                2

y  
 γ =0.1 

      
       0 
 

      
       1 

      
       5 

      
      10 

      
     20 

      
      30 

 1 3
0 0 0V D a a   

( 1 0k  );  

 1 3
2 0 0V D a a   

   76.764 
   76.823 
   76.893 
   77.003 
   77.155 

  77.753 
  77.867 
  77.942 
  78.112 
  78.195 

  80.246 
  80.394 
  80.501 
  80.618 
  80.756 

  83.608 
  83.713 
  83758 
  83.937 
  84.125 

  90.199 
  90.326 
  90.464 
  90.612 
  90.730 

  96.815 
  96.954 
  97.086 
  97.257 
  97.497 

 1 3
. . 0 0cr divV D a a 

( 1 0k  ) 

 485.671 
 484.509 
 484.045 
 483.580 
 482.188 

 486.720 
 485.673 
 485.209 
 484.512 
 483.351 

 490.721 
 489.554 
 488.982 
 488.783 
 487.847 

497.367 
495.962 
495.611 
494.862 
493.622 

509.391 
507.974 
507.503 
506.795 
505.381 

 521.747 
520.320 
519.844 
518.893 
517.349 
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Note that the limiting velocity 2V  at 0nk   is exactly equal to the velocity 0V  at 0nk  . 

This means that, in this case, even an arbitrarily small value of the turning moment cI  
leads to significant destabilization of the state of the system.  
According to representation (5.2), it is clear that . . 0 . .cr fl cr divV V V   at all 0.2   and  

0nk  .                                                                      
                                                                                                                                Table 4.                                                    
 

    1k    
2
y       

    
   0.1 

   
   0.3   

    
  0.5 

  
    1 

   
    5 

 
   10 

 
  20 

 
  200 

 0 264.95 222.49 208.09 193.75 175.56 171.19 168.32 163.53 
30 242.12 208.65 197.46 186.43 172.26 169.14 166.86 163.21 

 
                                                                                                                           Table  5. 
 

         2
y   

 1k       

      0       1        5       10       20      30 

      0.1   92.615   93.206   95.514   98.293 103.682   108.577 
      0.3 114.863 115.299 117.047 118.516 122.940 125.931 
      0.5 123.892 124.192 125.834 127.338 130.364 132.808 
      0.8 131.087 131266 131.808 133.336 136.369 138.734 
      1.0 133.953 134.205 134.831 136.363 138.696 140.575 
      5.0 148.690 148.928 149.021 149.825 151.120 152.467 
    10.0 152.545 152.837 153.135 153.452 154.280 154.952 
    20.0 155.240 155.323 155.496 155.833 156.506 157.021 
  200.0 159.255 159.324 159.393 159.523 159.770 159.943 

 
Tables 3–5 and 6–8 give the values of the reduced critical velocities,  1 3

0 0cr divV D a a   

and  1 3
0 0 0V D a a   (Tables 3 and 6), (Tables 4 and 7),  1 3

0 0 0V D a a    and 

 1 3
0 0cr . fl .V D a a   (Tables 5 and 8) for 0.1   and 0.01  , respectively, in relation 

to the interval (5) at condition (26) when 1n  . 
The reduced critical divergence velocity of the panel  1 3

0 0cr divV D a a   does not depend 

on 1
n n nk    , but depends only on the Poisson's ratio  , parameter   and stress 

koefficient 2
y : less in plates made of materials with a high Poisson's ratio  , decreases 

with decreasing  , and with increasing 2
y  the critical divergence velocity increases 

(Tables 3 and 6). The values  1 3
0 0cr divV D a a   at the same 2

y  correspond, respectively, 

to values   of 0.125; 0.25; 0.3; 0.375 and 0.5 (Table 3). Note that with a decrease  , 
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starting approximately from 0.01  , the influence of the parameters   and 2
y  on the 

critical velocity  1 3
0 0cr divV D a a   becomes imperceptibly small. 

                                                                                                                             Table 6.  
 
                      
                  2

y  
 
 γ =0.01 
 

      
      
       0 
 

    
       
     100 

    
      
     500 

    
     
    1000 

   
    
     2000 

   
   
    3000 

 1 3
0 0 0V D a a   

( 1 0k  ); 
 1 3

2 0 0V D a a    

( 1 0k  ) 

 
 
75.764 

 
 
77.014 

 
 
78.914 

 
 
82.172 

 
 
88.883 

 
 
95.159 

 1 3
. . 0 0cr divV D a a 

( 1 0k  ) 

 
484.898 

 
487.134 

 
490.721 

 
494.225 

 
508.322 

 
520.171 

  
                                                                                                                                   Table 7.  
 

    1k    
2
y       

    
   0.1 

   
   0.3   

    
  0.5 

  
    1 

   
    5 

 
   10 

 
  20 

 
  200 

 0 170.62 166.53 165.23 163.90 162.22 161.84 161.51 161.03 
3000 168.49 165.06 164.10 163.21 161.92 161.59 161.35 160.99 

 

The reduced critical stability velocity  1 3
0 0 0V D a a   at 0nk  , as well as the reduced 

divergence velocity of the panel  1 3
2 0 0V D a a   at 0nk  , depends on the parameters  

 , 2
y  and  : decrease with decreasing  , increase with increasing 2

y , and less in plates 
made of materials with a lower Poisson's ratio   (Tables 3 and 6). 
The reduced critical stability velocity  1 3

0 0 0V D a a    (Tables 4 and 7) decreases with 

decreasing  , decreases with increasing parameters 2
y  and nk , and, more in plates made 

of materials with a large Poisson's ratio  . The reduced critical flutter velocity 

 1 3
0 0cr . fl .V D a a 

 
increases with decreasing  , increases with increasing parameters 

2
y  and nk , and more in plates made of materials with a high Poisson's ratio   (Tables 5 

and 8). In this case, in contrast to the reduced critical velocity of the panel divergence in the 
panel  1 3

0 0cr divV D a a  , the effect of Poisson's ratio   on the reduced critical 

velocities of stability and flutter is imperceptibly small. 
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                                                                                                                          Table 8. 
 

         2
y   

 1k       

      
      0 

     
    100 

    
    500 

   
    1000 

   
    2000 

   
    3000 

      0.1 151.314 151.645 152.103 152.260 152.893 153.684 
      0.3 155.271 155.367 155.590 155.748 156.385 156.624 
      0.5 156.545 156.689 156.864 157.023 157.342 157.582 
      0.8 157.502 157.568 157.662 157.821 157.982 158.301 
      1.0 157.820 157.902 157.982 158.094 158.301 158.542 
      5.0 159.504 159.541 159.583 159.664 159.744 159.824 
    10.0 159.905 159.922 159.936 159.965 160.017 160.049 
    20.0 160.178 160.189 160.209 160.225 160.242 160.306 
  200.0 160.644 160.648 160.652 160.658 160.676 160.692 

 
As follows from the results of numerical analysis, as the parameter   decreases, the 
dependence of the reduced critical velocities of stability, divergence and flutter of the 
“plate-flow” system on the parameters  ,  2 2

.y y cr
   and Poisson's ratio   becomes 

imperceptibly small. Therefore, at 1 , the reduced critical divergence velocity can be 
considered constant, and the critical stability and flutter velocities depend only on the 
coefficient 1 0k  , which is in full agreement with the results of [15]. 

It is easy to find the minimum relative thickness  1
min

2ha  [2] of an elongated 

rectangular plate ( 0.2  ) at which the perturbed motion of the dynamic “plate – flow” 

system at gas flow velocities near 0 2a  is stable. 

Indeed, assuming that  0 0max 2V a  for all 0nk  , from the definition of the reduced 
gas flow rate and the expression of the cylindrical stiffness, we obtain the formula for 
calculating the minimum relative thickness of the plate: 

     31 2 10
0 01 3min

0max 0 0

22 12(1 )
( )

aha a E
V D a a

 


    


.                                  (43) 

Substituting into expression (43) the corresponding values    1 3
0 0 0maxV D a a   (tabl. 

3 and  6) and     1 3
0 0 0maxV D a a    (tabl. 4 and 7), we obtain the following values 

 1
min

2ha  for the steel plate: 

 1
min

2ha  0.0045 for 0nk   and for all  0 0.2   ;                                  (44) 

 1
min

2ha  0.00345 for 0nk   and 0.1  ; 

 1
min

2ha  0.00398 for 0nk   and 0 0.01   . 



72 

Then, for all    1 1
min

2 2ha ha   and 0.2  , the system becomes stable near 

0 2a , and the transition chains will have the following representation: 

for 0.1   

0 11 0 11
crdivV      ( 0nk  );                                                               (45) 

. .. .
0 11 12 11 0 3 0 11

cr flcr div VV       


 (0 0.1)nk  ; 
. .. .

0 11 12 2 3 0 11
cr flcr div VV      


  ( 0.1)nk  ; 

 for 0.01    
. .

0 11 0 11
cr divV      ( 0nk  );                                                              (46)                                                   

. .. .
0 11 12 2 3 0 11

cr flcr div VV      


  ( 0)nk  . 

Moreover, it is obviously for all 0.2   that 0 . .cr divV V  at 0nk   and 

0 . . . .cr div cr flV V V    at 0nk  . 

For 0.1   and 0.01   the values  1 3
0 0cr .div .V D a a   and  1 3

0 0cr . fl .V D a a 
 
are 

given in tables 3, 9 and tables 6, 10 respectively. As it turned out, in this case, the reduced 
critical divergence velocity do not depend on the relative plate thickness, in contrast to the 
reduced critical flutter velocity, which grow with decreasing relative plate thickness. 
                                                                                                                         Table 9. 
 

         2
y   

 1k       
      0       1        5       10       20      30 

      0.1 1544.185 1547.963 1557.448 1567.503 1594.023 1621.745 
      0.3 1573.336 1575.717 1581.917 1588.723 1604.249 1630.425 
      0.5 1628.700 1631.824 1636.715 1644.566 1658.251 1671.874 
      0.8 1688.219 1688.983 1694.037 1700.213 1712.586 1721.892 
      1.0 1714.703 1716.213 1720.905 1726.572 1738.815 1749.518 
      5.0 1874.636 1874.861 1878.214 1881.316 1887.998 1894.761 
    10.0 1920.410 1920.679 1922.902 1925.923 1930.898 1936.057 
    20.0 1954.703 1955.443 1955.992 1959.131 1962.845 1966.137 
  200.0 2014.922 2015.007 2015.669 2017.064 2018.845 2020.490 

 
                                                                                                                          Table 10. 
 
    1k    

2
y       

    
   0.1 

   
   0.3   

    
  0.5 

  
    1 

   
    5 

 
   10 

 
  20 

 
  200 

 0 1907.6 1967.7 1981.4 2002.2 2024.3 2029.9 2032.9 2040.4 
3000 1925.9 1975.8 1984.3 2005.6 2026.1 2030.4 2033.6 2040.8 



73 

From a comparison of the data in tables 5, 9 for 0.1   and data in tables 8, 10 for 

0.01  , it follows that    1 3 1 3
0 0 0 0cr . fl . cr . fl .V D a a V D a a     an order of 

magnitude or more. 
 
Thus, in the case of elongated plates ( 0.2  ), the reduced critical velocities of 

divergence and flutter are increasing functions of the stress coefficient 2
y  characterizing 

the initial stressed state of the plate: the initial stressed state leads to stabilization of the 
disturbed motion of the dynamic “plate – flow” system, in comparison with the behavior of 
the dynamic system with unloaded panel [15]. However, with decreasing  , when 1 , 
the influence of the initial stress state on the stability of the disturbed motion of the system 
becomes imperceptibly small. 
 
Conclusitions 
An analytical solution to the problem of stability of the disturbed motion of a dynamic 
system “plate – flow” is found under the assumption that the edges of a elongated plate, 
parallel to the gas flow velocity, are loaded even before the flow streamlined by uniformly 
distributed compressive forces. 
Explicit expressions of sufficient criteria for the loss of stability of the perturbed motion of 
the "plate-flow" dynamic system (1)–(4) are received.   
With the help of graphic-analytical and numerical methods of analysis, the multiparametric 
space of the “plate-flow” system was partitioned into a stability domain and the instability 
domain in the form of divergence and flutter. 
The concept of “chain of transitions” is introduced, the links of which are transitions from 
one domain to another. "Chains of transitions" allows you to visually illustrated the 
dynamics of the behavior of the disturbed motion of the "plate-flow" system. in the space of 
its parameters. 
The critical velocities of a supersonic gas flow are found, when exceeding which the 
disturbed motion of the dynamic system “plate – flow” loses stability in the forms of a 
panel divergence and a panel flutter under the assumption that in the plate at the moment   “ 
buckling ”only bending stresses arise. 
For values of parameter 1  is showned, that the effect of the compressive stress on the 
stability of the system becomes imperceptibly small.  
The minimum relative thickness of steel elongated plate determined, at which the 
perturbed motion of a dynamic system near the beginning of the interval of supersonic 
velocities is stable. As it turned out, in this case, the reduced critical velocities of the 
divergence and panel flutter are increasing functions of the stress coefficient. Thus, in the 
case of elongated plates, the relative thickness of which is less than the minimum, the initial 
stress state leads to stabilization of the disturbed motion of the system. 
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