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CBEPX3BYKOBOM ®JATTEP CXATOH YJIJIUHEHHOH HAHEJH TIPHU
HAJINYHUHU COCPEJOTOYEHHBIX UHEPIIMOHHBIX MACC U MOMEHTOB

KiroueBble cjioBa: ynpyras yIIMHEHHas MaHeNlb, YCTOWYMBOCTb, CIKUMAIOLIUE CHIIBI,
CBEPX3BYKOBOC OOTCKaHWE, JWBEPIeHIMSA T[aHENHW, JIOKAIM30BaHHAS JUBCPICHITNUS,
MaHeIbHBIN (QraTTep, COCPEeIOTOYCHHBIC HHEPIIUOHHBIC Macca H MOMEHTHI

B nuHeliHO# nocTaHoBKe HccleyeTcs 3aBUCUMOCTb BUIOB IOTEPH YCTOWYUBOCTH HEBO3MYLIEHHOTO COCTOSIHUS
paHOBecHsl TOHKOM YNPYrodl yIJIMHEHHOH NpPAMOYIrOJbHOH IJIACTHHKM OT Xapakrepa HepBOHAYalIbHOIO
HaNpsDKEHHOTO COCTOSHMSI NPU HAJMYUMHM COCPEJNOTOYEHHBIX MAacChl M MOMEHTOB Ha €€ CBOOOJHOM Kpae B
NPEeINOIOKEHHY, 4YTO IUIACTHHKA C)KaTa B HANpaBICHUH, IEPIEHIUKYIIPHOM CKOPOCTH OOTEKaIOIEero
CBEpPX3BYKOBOT'O IOTOKA Ta3a, Haberaromero Ha ee cBoOOIHBIH Kpaii. HalineHo aHanmTHuecKkoe pemeHne 3agadun
YCTOHYHMBOCTH BO3MYIIEHHOIO JIBH)KEHUS JUHAMHUYECKOH CHCTEMBI «IUICTHHKA-TIOTOK». YCTAaHOBJIEHO, YTO IpU
00TeKaHUH NIePBOHAYAIBHOE HANPSHKEHHOE COCTOSHUE, 00YCIOBICHHOE CKUMAIOIMMHY yCHIMSAMY, IPUBOJUT KaK
K CYIIECTBEHHOH JIeCTaOMIN3aIMY, TaK U K CTAOMIN3AI[IN COCTOSHUS HEBO3MYIIEHHOTO PABHOBECHS IIACTUHKH, B
3aBHCHMOCTH OT HaPaMETPOB CHCTEMBI «IIJTaCTHHKa—TIOTOKY.

Ud. Pmpkljut , U.k.Uwpnhpnuyut

Ahpduyiiughtt qugh hnupmu ubnuyws plupwdhq uwh drwnkph vp tmph dwuhi jrnpnimgyus
hukpghni quiqubutph b dndkbnikph wnjuynpyuip
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By analyzing, as an example, a thin elastic compressed elongated plate streamlined by
supersonic gas flows, we study the influence of the initial stress state of the plate on the
stability of the disturbed motion of the dynamic system “plate — flow” under the assumption
of presence of concentrated inertial masses and moments on its free edge. We establish the
relationship between the characteristics of natural vibrations of the plate and the velocity of
the streamlining supersonic gas flow, which enables one to drow some conclusions
concerning the stability of disturbed motions of the system depending on the stress factor
and the relative thickness of the plate. For various values of the «essential» parameters of
the system, we determine the critical velocities of the gas flow leading to the divergence
and flutter instability.

Introduction. It is known [1- 4] that the specific features of the influence of the initial
stress state of the plate on the stability of distributed nonconservative systems are still of
great theoretical and practical interest up to the present, since the question concerning
elastic stability inevitable arises during disign calculation of any flying mashine to ensure
flight safety.
The model problems of the stability of an elastic rectangular plate streamlined by a
supersonic gas flow is a mathematical description of the conditions of divergence,
localized divergence and panel flutter appearance, excited by air flow.
A huge number of works are devoted to the study of static and dynamic instability of plates
and shells, a review of which is mainly contained in monographs and articles [1-10].
However, here, with the exception of A.A. Movchan, approximate solutions are
constructed, and an effective estimate of the accuracy of these approximations is not given.
A.A. Movchan [4] received the first fundamental theoretical results in such statement at
research of a problem about a flutter of the rectangular plate streamlined by supersonic gas
flows.
In this article, in a linear statement, we investigate the influence of the initial stress state on
the dynamic behavior of the disturbed motion of the "plate-flow" system near the
boundaries of the stability region under the following assumptions. A rectangular plate with
one free edge and three hinged edges is compressed in a direction perpendicular to the
velocity of a supersonic gas flow, incident on its free edge, along which concentrated
inertial masses and moments are applied [2, 11]
Here, in contrast to [1-10], based on the method described in [15], we obtained an
analytical solution to the stability problem for the dynamic system “compressed rectangular
plate — supersonic gas flow”.
The results of the work can be used in the processing of experimental studies of divergence
and flutter of the skins of supersonic aircraft, as well as in the study of a wide class of
problems of stability of dynamic systems.

1. Statement of the Problem.

Consider a thin elastic elongated plate occupying, in a Cartesian coordinate system OXyZ,
a domain 0<Xx<a, 0<y<b, -h<z<h. We assume that ab' <0.2. The
Cartesian coordinate system OXYZ is chosen as follows: the OX - and Oy -axes lie in the

plane of the indisturbed plate, and the OZ -axis is perpendicular to the plate and directed to
the side of the supersonic gas flow streamlining it on one side in the direction of the OX -
axis with an undisturbed velocity V . It is assumed that the gas flow is plane and potential.
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Suppose that the edge X =0 of the plate is free, whereas the edges X=a, Y=0 and
Yy =Db are hinged. The hinges are assumed consider to be perfect. We also assume that

concentrated inertial masses M, and rotation moments I . to the free edge X= 0 are
applied [2, 11].

Let us assume that initially, even before the flow around, the plate is subject to the action of
compressive forces Ny = 2hO'y uniformly distributed along the edges Y =0 and Y=D

of the plate and as a result of heating or some other reason; compressive stresses o, are

assumed to be constant throughout the middle surface of the panel, and unchanged with a
change a deflection W= W(X, Y,t) of the plate [1, 2]. Under the influence of certain
factors, the undisturbed equilibrium state of our plate can be broken down, and it will begin
to perform disturbed motion with the deflection W= W(X, Y,t).

The deflection W=W(X,Y,t) will cause an excess pressure AP onto the upper
streamlined surface of the plate from the side of streamlining gas flow, which is taken into

ow
account by the approximate formula of the “piston theory” [13,14]: AP =-a,p, a—,
X

where @, is the sound velocity in undisturbed gas medium, and p, is the density of
undisturbed gas flow. We also assume that the deflections W= W(X, Y,t) are small as

compared with the plate thickness 2h.

Let us find out the conditions under which the loss of stability of the unperturbed state of
equilibrium of the dynamic "plate-flow" system is possible, when the bending of the
rectangular plate is caused by the corresponding aerodynamic loads AP, compressive

stresses 0, in the middle surface of the plate, concentrated inertial masses M, and
rotation moments | .- We assume that the compressive forces o, are small as compared to

the critical stresses (O'y)cr‘ (tabl. 1) that can produce buckling of the plate in the absence of

flow.

Note that in this work, as in work [15], in order to obtain the possibility of an analytical
study in the considered problem of the dynamic stability of the “plate — flow” system, the
distributed mass of the plate is conditionally replaced by concentrated inertial masses and
moments of rotation applied along the free edge of the plate [2, 11]. Such a replacement
does not at all lead to a distortion of the dynamic picture of the phenomenon - loss of
system stability; perhaps, up to numerical values of the critical gas flow rates, which can be
somewhat overestimated.

Then, under assumption of the validity of the Kirchhoff hypothesis and the "piston theory"
[13, 14], the small bending vibrations of points of the plate median surface satisfy the
differential equation [2, 8]:

o*w

DA*w+ N, Y: +8,p, ‘Z—vazo, w=w(X,Y,t); M

and the corresponding boundary conditions [2, 11]:
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w=0, Z%Vzo,x:a; (3)
2
w=0, gy\ivzo, y=0and y=Db. (4)

Here, A*W= A(AW), A is a Laplace’s operator; D is the cylindrical flexural stiffness of

our plate; Vv is Poisson’s ratio.
In the parameter space of system (1)—(4), it is required to determine the critical velocity

V

. of the supersonic gas flow:

Vcr.e(aOMO’aOMZCosm)’ MOZ\/E’ MZcosm.z33'85; (5)

under the assumption

0y <(0y)a. <(0)) . ©)
M, and M,_,, are the boundary values of the Mach number corresponding to the

interval of permissible values of supersonic and hypersonic velocities [1]; (Gy)cr_ is the

critical stresses, leading to buckling of the plate in the absence of flow (V =0) [17];
(O'y) pr. 18 the lower limit of fluidity.

In [15, 16], an analytical solution was obtained for the stability problem for the dynamic
system “plate — flow” in the case in which the influence of the initial stress state of a
rectangular plate is not taken into account. And in [17] an analytical solution for the
problem of static stability of a panel with loaded edges, both in a streamlined and in the
absence of a streamlining are found.

Thus, the analysis of the stability of the disturbed motion of the considered dynamical
system “plate — flow” (1) - (4) is reduced to the study of the differential equation (1) with
the corresponding boundary conditions (2) - (4) for the deflection under the the assumption
(5) and (6).

2. General solution of the problem. For finding the general solution of the problem of
stability of the plate (1)-(4), we will reduce it to a problem on eigenvalues for the ordinary
differential equation.

We try to find the General solution to the boundary-value problem defined by equation (1)
and by the boundary (2) - (4) in the form of harmonic oscillations

WX, Y,t) = D" C, f,(X)-sin(u,y)-exp(At), p, =nb™'; ™
n=1

where N is the half-~waves number in the direction of the plate side b .

Then, in accordance with the expression (7), the considered problem of the panel flutter
(1)~(4) is reduced to the following boundary value problem on eigenvalues A of
nonselfadjoint operator for the ordinary differential equations on the forms of vibrations
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v 2611 11 4 42
for 00 —=2u, £ () +8,0VD™ £ () + (py =N, D7) £,(x) = 0; (8)

fol — v £,(0=1.D7"2*f (), ©)

fo' =t 2=v)f () =-mD72*f (x), x=0;

f(x)=0, f'(x)=0, x=a.
The boundary value problem (8) and (9) consists of investigating the behavior of the
eigenvalues A is relation to the velocity V' of gas flow. The equilibrium of the plate
streamlined by gas flow is stable if all the eigenvalues A lie in the left-hand half-plane of
the complex variable. The lowest value of the velocity at which even one of the eigenvalues
A crosses into the right-hand half-plane is the critical flutter velocity. Transition into the
right-hand half-plane indicates instability of the oscillatory type: there is the panel flutter.
The one exception is when transition takes place through the point A =0; this case
obviously corresponds to the divergence of panel. Here, the coupled interaction of different
degrees of freedom is of considerable importance also in the case of panel flutter.
Depending on the relation between the parameters, the critical flutter velocity can be either

smaller or larger than the critical velocity of divergence.
The particular solution of the differential equation (8) takes the form

-1
f.(X)=C, exp(n,rx), p,=nnb", (10)
Cn — are the arbitraries constants, which are not equal to zero simultaneously.

Substituting the solution (10) in the differential equation (6), we obtain the characteristic
equation, which is the algebraic equation of the fourth degree

r*=2r’ +oor +(1-p1) =0, o, =a,p,VD 'p.>, B =N, D' 2, (11)

which, in accordance with Ferrari's solution, will be represented as [17]:

(r2 +2(9+Dr +g9-./9 —1+[32y)-(r2 —~/2(q+1)r+q+1/q2—1+Bzy):0.

(12)
Here ( is the parameter of the velocity V of the gas flow. Parameter ( is the real root of
the cubic equation

8-(q+1)(q° —1+B})—ay =0, (13)
In this case, the parameter ( satisfies the condition [17]:
C]E(qo,oo), (14)

6 =(~1+2,4-38 )/3 BL<4/3 and Gy =1, B> 4/3 @bl.1). (1)

Bi is the compressive stress coefficient, deternined by expressen (11).

Table 1.
BZ 0 0.3 0.5 0.8 1.0 1.21 1.333 > 1.333
y
o 1 0.840 0.721 0.510 0.338 0.072 -0.333 1
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In accordance with relation (6), we have

By <(B)a.» (By)a. =2h(0,)e D1y =B (N7, V) (16)
Y is a relation of the width @ (downstream side) of the elongated plate to its length b :
y=ab™', y<0.2; (17)

(Bi)cr_ is the critical stress coefficient (Table 2) [17].

For all y € (0,0.2) when B?, < (Bi)Cr (Table 2) the non-streamlined elongated plate

loses its static stability in the form of panel instability.

Table 2.
1% 0.125 0.25 0.3 0.375 0.5
Y

0.0001 5.31-107 4.559-10’ 4.255-10’ 3.8-107 3.04-10’
0.001 5.31-10° 4.559.10° 4.255-10° 3.8-10° 3.04-10°
0.01 5.31-10° 4.559.10° 4.255-10° 3.8-10° 3.04-10°
0.10 54.092 46.554 43.521 38.880 31.289
0.30 6.822 6.029 5.695 5.180 4272

Note that the stability of non-streamlined rectangular plates under various boundary
conditions and different values of the relation sides Yy of the rectangular plate was

considered, in particular, in [1, 3, 6, 7].
In [17], using graphoanalytical research methods, it was shown that in the admissible
interval of values of the velocity parameter (15), characteristic equation (11) has two real

roots I, <0, 1, <0, and a pair of complex conjugate roots I, , € W with a positive real

part, which are easily found as solutions of quadratic equations - factors of relation (12):

r, =-0.5\2(q+1) i\/,/q2 —1+B7 -0.5(q-1), (18)
My =0.5«/2(q+l)ii\/,/q2 —1+B; +0.5(q-1). (19)

Moreover, in accordance with condition (15), we have [17]:

<0, 1, <0, when B €[0,1), qe((—1+2,/4—3ﬁi )/3,00); 20)
<0, 1,>0, when B2 (1, 4/3], qe((—1+2 4-3p2 )/3,00) and Q1)

By >4/3, ge(l,);
<0, r,=0,when ﬁi,ZI,QE(l/:’),OO). (22)

Therefore, the General solution of equation (1), in accordance with the expression (10), will
be written as a double row:

o 4
W(X’ y’t) = ZZan ’ eXp(MnrkX+ }\’t) Sin(“’n y) » My = ﬂ.nbil ’ (23)

n=1 k=1
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an is arbitrary constants; N is the number of half-waves along the side b of the plate; I

are the roots of the characteristic equation (11) determined by expressions (18) and (19).
In accordance with the notation (11), from relation (13) we determine the explicit form of

the dependence of the gas flow velocity V' on the parameters of the “plate — flow” system:

V(a.n.7.B2) =2,2(q+1)-(q* - 1+B2) Ty’ D(a,p,a’) " . 24)

Taking into account condition (5), it follows that

V(a,n,7,B;) €(V(an7,B; )8 Magen ) < (3Mg8) Mo ) (25)
E-(2hy’

Hence, taking into account the value of the cylindrical stiffness: D =————_, it

12-(1-v?)
follows that the permissible intervals of the wvalues of the reduced velocity
\ (q, n,y, Bi) -D! (a0p0a3 ) corresponding to the velocity (24) will have the form:

\ (qa n, Y B?/) D_l(aOpOaS) € (\/(qu n, yﬂﬁi)D_l(aOpOaS )’ a0M2cosm\Pl)(;

c (@M, M, m ) (26)
where
¥ =12(1-v)a,p,E'(2ha ), M, =2, M,_ ~33.85. @7)

The length of the interval (26): d,(v,2ha™)=a,(M M,)¥, is a decreasing

2cosm.
function both of the parameter 2ha™" at fixed values of the Poisson's ratio V ,and of Vv at

fixed values of the relative thickness parameter 2ha™.

3. Sufficient Criteria for the loss of stability of the perturbed motion of the "plate-
flow" dynamic system (1)—(4).

Substituting the general solution (23) of the differential equation (1) into the boundary
conditions (2) - (4), we obtain a homogeneous system of fourth order algebraic equations
with respect to arbitrary constants an. The determinant of this system of equations

equated to zero - the characteristic determinant - after simple transformations is reduced to
the form of the biquadratic equation:

LS AL+ (nA +8, AL + A =0, (28)
where
§,=mD'b’(zn)”, x,=1.D"'b(xn)", §,>0, %,>0, (29)

are the reduced values, respectively, of the concentrated inertial masses M, and moments

of rotation | . applied along the free edge X =0 of the plate;

A = A(GN7.B) =20+ 1) (1-exp(-2y2(q+ 1) -mny)- BB, - (30)
2B, (q+ 1+Jo* — 148 )-exp(—«/2(q+ 1) - 7ny) - sh(nnyB, ) - cos(nnyB, ) —
2B, (q - -1+8 )-exp(—,/z(q+ 1) - 7ny) - ch(nnyB, ) -sin(nmyB, ) :
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A =AGny.B) = (31)
= 2(q+ )] (@=fo ~1+B))+ @+ Ja" ~1+B} ) exp(-2y2(a+ Dy | BB, +

128, [\/2(q+1)(q2 —1+B2) ~(q+1+4/(q2 —1+B2 )sh(;m@)+
+2B,((29-D(g+1D)+ Bi) ch(rnyB, )] cos(nnyB, ) exp(—/2(q+1)mny) +
+2[Bl\/2(q+1)(q2 —1+B2) (q+1—,/q2 —1+B2 )ch(nnyBl)+
+Q+1)(g—1+p;)sh(znyB, )] sin(nnyB, ) - exp(—/2(q+nny) ;

A, = A, (@.07.53) = 2q+ 1)1+ exp(-2y2(a+ Dany) | BB, - 62)
—-4(q+1)B,B,ch(nnyB,) cos(mnyB, ) exp(—/2(q+ )mny) +

+23(9* - 1) + 2[3?,)Sh(7tnyB1 )sin(nnyB, ) exp(—+/2(q+1)mny) ;

AS = As(qa n, 'YavaBi/) = (33)

- ,/2(q+1){(q+1—1/q2 —1+7 )2 —2(q+1)-v—(1—v)2}Ble—
_ /2(q+1){(q+1+1/q2 -1+ 4; )2 —2(q+1)-v—(1—v)2}Ble.

exp(—2y/2(q+ Dmny) + 2{[(40” +20-DyJq* =1+P}, — (20" —4q+1)(q+1)—
—(q-1-J0’ =1+ )P} — 2((24-D)(q+1) —gy/0’ =1+ B +B5)v+
Hg+1+q* —1+B2) v sh(rnyB) + 2,/2(q+ (0’ —1+B2) - (q+ DB -
.ch(nnyB))} B, cos(mnyB,) exp(—y/2(q+D)mny) +

+2{-B [(40° +20-1){/q’ —1+B; + (29" —4q+1)(q+1)+

+(A=1+/0 = 1+B5)B} + 2(2a-1)(q+ D +0y /> 1+ +p5)v -
~(q+1=4J0” =1+B)v* |- ch(nmyB) - \2(q+1)-(3(d” 1) +2B})-

JO —1+B; -sh(znyB))} - sin(mnyB, ) exp(—/2(q+Drny) = 0;

where

B = @ —1+B, ~0.5(a-1), B,=/Ja’ ~1+B} +0.5q-1). G4)
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For all admissible values of the velocity parameter € (q,,0) (Table 1), stress
coefficient Bi < (Bi)cr (Table 2), parameters N>1 and ¥ € (0,00) it is obviously that

B =B,(q, B?,) >0and B, = B,(q, B?,) > 0, whence the validity of the inequalities
follows:
2 2

Ay =A(Q,n,7.B,)>0, A =A(Q,n,y,B,)>0. (39)
Introducing the notation

-1
Ky =208, (36)
characteristic determinant (28), in accordance with conditions (29) and (35), can be
rewritten in the form

4 1 p-19 2 g1 p-
Mk A+A AN +38AA=0,8,>0,%,>0,k >0. (37
The analysis of the stability of the unperturbed equilibrium state of the dynamic system
"plate-flow" (1) - (4) is reduced to the study of the behavior of the roots kk of the
characteristic determinant (37), which determine the proper motions of the system in the

space of «essential» parameters 3= {q(V ),n,y,v,Bi,kn}. There are have the most

significant effect on the dynamic behavior of the system. The values of the other parameters
of the system are taken to be fixed.

4. Partitioning the parameter space 3 of the system «plate—flow» into domains of
stability and instability.

Let us introduce into consideration in the parameter space I the domain of stability 3,
and the domain J,,3,,3, of instability. In the domain 3, all roots A, of the
characteristic equation (37) are in the left-hand side of the complex plane. The domain
3,,3,,3,, respectively, is one positive root among the roots A, , or there are two

positive roots, or there is a pair of complex conjugates roots with positive real part. It is
clear that the perturbed motion of the system is stable for values of parameters from the

domain 3, and unstable for values of parameters from 3,,3,, 3, domains.

The system “plate—flow” in domains I, and I, loses its stability in the form of panel
divergence, and in domain J, in the form of a panel flutter. The panel divergence in
domain 3, is more pronounced.

The stability domain 3, € J is determined by the relations:

K.A+A >0, A>0, A>0. (38)
And the instability domains 3, ,, 3, will be determined, respectively, by the relations:
A<0,A>0;A>0,KA+A <0 and A >0, A<O0. (39)

Here, A is the discriminant of the characteristic determinate (37):

A=Ay, V,B2,K,) = (kA +A) -4k AA. (40)
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It is obviously, that under the conditions (38) the equation (37) has two pairs of purely
imaginary roots 7\.1,2 = iico1 , K3,4 = ii(oz. The rectangular plate in this case performs
harmonic oscillations about the undisturbed equilibrium state.

The boundaries of the stability domain I, € I under the condition K A + A > Oare

hypersurfaces A =0 and A=0 [12, 15]. The characteristic equation (37) on the
hypersurfaces A, =0 and A =0 has one zero root A, =0 of multiplicity 2 and a pair
7\‘1,2 =i of purely imaginary roots respectively.

On the boundary A>0, K A+A >0, A =0 of the stability domain T, the
disturbed motion of the “plate-flow” system loses its static stability in the form of the panel

divergence at flow velocities V >V, under the condition Bi, <(B§,) (Table 2).
cr.

cr.div.

Substituting the first root (], 4, of the equation (33) in the formula (24), we obtain the

cr.div

reduced critical divergence velocity V. , D™ (a0p0a3 ) :

On the boundary A=0, KA+ A >0, A >0 of the stability domain I, as well as
on the boundary A=0, k A+A <0, A >0 the static instability domain J, the

disturbed motion of the system «plate—flow» loses its the dynamic stability: the plate makes

the flutter oscillations. The critical velocities V,, , of the gas flow that corresponds to the

first root (, ; of the equation (40): calculated according to the formula (24)., delimits or

When the velocities V >V

o f of the gas flow is “soft” (“smooth”) transition to

oscillations of increasing amplitude (i.e. to the flutter oscillations). In the first case, the
harmonic oscillations are gradually moving in the flutter oscillations, while in the second
case, the transition in the flutter oscillations occurs along with a monotonic “buckling” the
surface of the plate.

From the equations (33), (40) we can drow certain qualitative and quantitative conclusions
concerning the influence of a number of parameters on the stability of the plane form of the
plate.

and of flutter instability V

Thus, the critical velocities of divergence instability V o il

cr.div

of the disturbed motion of the rectangular plate, corresponding, to the roots {, 4, and

Oy g of the equations (33) and (40) respectively, are determined by the formula (16) with
and V 2V,

o f1. Velocities there is the “soft” loss of

sufficient accuracy. At V >V,

cr.div
stability of disturbed motion of the system «plate—flow» in the forms of divergence and
panel flutter forms respectively.

5. Numerical results. Using the graphic-analytical and numerical methods of analysis, we
constructed the family of curves {q(N,7,V, B?,, K.)} parameterized properly in the multi-

parameter space 3 of our problem.
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Numerical calculations carried out for various values of the number of half-waves N have

shown that for fixed values of the remaining parameters of the system, the value N=1
corresponds to the smallest values of the critical velocities of divergence and flutter.

Tables 3—10 present the numerical results of solving the original problem of stability (1) -
(4), characterizing the most representative cases of the dependence of the reduced critical
velocities of divergence and flutter on moderate values of the «essential» parameters of the
problem as applied to the interval of super- and hypersonic velocities (26) for the elongated
plate (y <0.2).

For a clear illustration of the dynamics of the state of the "plate - flow" system in the space
I, we will compose chains of transitions from domain J; to domain J, , based on the

analysis of numerical results.
Chains of transitions have the following representation:

J 3, e 53k =0; (41)

V,

crfl

V,

B 53, k, >0. (42)

~ VO*
‘51

o~ o~ N
3, >3, >3,
Hence, it can be seen that at gas flow velocities V =2 a,M ; = aO\/E the “elongated plate
— flow” system is statically unstable: there is a panel divergence. However, in accordance

with chain (5.1), when kn =0 the “plate — flow” system becomes stable at velocities gas

flow V ZVO , after which it loses stability again at velocities V >V, in the form of

cr.div
panel divergence. In the case, the flutter is absent.

According to representation (5.2), in the case kn > (), the system at the gas flow velocities

\% 2V2 transitions into the domain of the panel divergence J,, from where, at

V2>V

cr.fl.>

If, after that, the plate material does not destruction, then with a further increase in the gas

it transitions into the domain of the flutter oscillations 33 .

flow velocity, the disturbed motion of the system at velocities V ZVO* becomes stable,

after which, at gas flow velocities V >V,

o div» it loses static stability.

Table 3.

2 0 1 5 10 20 30

y

y=0.1

V.D! a 76.764 77.753 80.246 83.608 90.199 96.815
0 P,

76.823 77.867 80.394 83.713 90.326 96.954
(k=0); 76.893 77.942 80.501 83758 90.464 97.086
VZD*1 (aop0a3) 77.003 78.112 80.618 83.937 90.612 97.257
77.155 78.195 80.756 84.125 90.730 97.497

V, 4D (aop0a3 485.671 | 486.720 | 490.721 | 497.367 | 509.391 521.747

o 484.509 | 485.673 | 489.554 | 495.962 | 507.974 | 520.320
(k20) 484.045 | 485.209 | 488.982 | 495.611 | 507.503 519.844
483.580 | 484.512 | 488.783 | 494.862 | 506.795 518.893
482.188 | 483.351 | 487.847 | 493.622 | 505.381 517.349
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Note that the limiting velocity V, at K, > 0 is exactly equal to the velocity V, at k. =0.

This means that, in this case, even an arbitrarily small value of the turning moment |C
leads to significant destabilization of the state of the system.

According to representation (5.2), it is clear that V, 4, <V, <V, atall y<0.2 and

cr.div.
k,>0.
Table 4.
kl
5 0.1 0.3 0.5 1 5 10 20 200
y
0 264.95 | 222.49 | 208.09 | 193.75 | 175.56 | 171.19 | 168.32 | 163.53
30 242.12 | 208.65 | 197.46 | 186.43 | 172.26 | 169.14 | 166.86 | 163.21
Table 5.
ﬁyz 0 1 5 10 20 30
k1
0.1 92.615 93.206 95.514 98.293 103.682 108.577

0.3 114.863 115299 | 117.047 | 118.516 122.940 | 125.931
0.5 123.892 124.192 | 125.834 | 127.338 130.364 | 132.808
0.8 131.087 131266 131.808 | 133.336 136.369 | 138.734
1.0 133.953 134.205 134.831 136.363 138.696 | 140.575
5.0 148.690 148.928 | 149.021 149.825 151.120 | 152.467
10.0 152.545 152.837 153.135 153.452 154.280 | 154.952
20.0 155.240 155.323 155.496 | 155.833 156.506 | 157.021
200.0 159.255 159.324 | 159.393 159.523 159.770 | 159.943

Tables 3-5 and 6-8 give the values of the reduced critical velocities, V., 4, D™ (aop0a3)

cr div

and V,D"(a,p,a’) (Tables 3 and 6), (Tables 4 and 7). V;D'(a,p,a’) and

vV, ,D (a0p0a3) (Tables 5 and 8) for Y =0.1 and 7 =0.01, respectively, in relation
to the interval (5) at condition (26) when N=1.

The reduced critical divergence velocity of the panel VCr diVD_1 (a0p0a3) does not depend

-1 N .

on kn =%,0, , but depends only on the Poisson's ratio V, parameter Y and stress
koefficient Bi, less in plates made of materials with a high Poisson's ratio Vv, decreases
with decreasing Y, and with increasing Bi the critical divergence velocity increases
(Tables 3 and 6). The values V,, diva1 (a0p0a3) at the same [35, correspond, respectively,
to values VvV of 0.125; 0.25; 0.3; 0.375 and 0.5 (Table 3). Note that with a decrease Y,
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starting approximately from y =0.01, the influence of the parameters vV and B?, on the

critical velocity V4, - D! (a0p0a3) becomes imperceptibly small.

C

Table 6.

0 100 500 1000 2000 3000
y=0.01

V,D" (aopoa3 )

(k=0) 75764 | 77.014 | 78914 | 82172 | 88.883 | 95.159
V,D™ (aopoag)
(K >0)
Vcr div. D_] (a()poa3
. 484.898 | 487.134 | 490.721 | 494225 | 508322 | 520171
(k>0)
Table 7.
kl
) 0.1 03 | 05 1 5 10 | 20 200
By
0 170.62 | 166,53 | 16523 | 163.90 | 162.22 | 161.84 | 16151 | 161.03
3000 | 168.49 | 165.06 | 164.10 | 16321 | 161.92 | 161.59 | 161.35 | 160.99

The reduced critical stability velocity VODf1 (a0p0a3) at K, =0, as well as the reduced
divergence velocity of the panel V, D' (a0p0a3) at K, >0, depends on the parameters

Y, B?, and V: decrease with decreasing Y, increase with increasing Bi, , and less in plates
made of materials with a lower Poisson's ratio V (Tables 3 and 6).
The reduced critical stability velocity VO*Df1 (a0p0a3) (Tables 4 and 7) decreases with

decreasing Y, decreases with increasing parameters Bi and kn , and, more in plates made
of materials with a large Poisson's ratio V. The reduced critical flutter velocity

-1 3\ . . . . o .
V, D (aopoa ) increases with decreasing 7Y, increases with increasing parameters

Bi and kn, and more in plates made of materials with a high Poisson's ratio V (Tables 5
and 8). In this case, in contrast to the reduced critical velocity of the panel divergence in the

panel V,div~D‘1(a0p0a3), the effect of Poisson's ratio V on the reduced critical

Cl
velocities of stability and flutter is imperceptibly small.
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Table 8.

2

K A 0 100 500 1000 2000 3000

1
0.1 | 151314 | 151.645 | 152.103 | 152.260 152.893 | 153.684
03 | 155271 | 155367 | 155.590 | 155.748 156.385 | 156.624
05 | 156.545 | 156.689 | 156.864 | 157.023 157342 | 157.582
0.8 | 157502 | 157.568 | 157.662 | 157.821 157.982 | 158.301
1.0 | 157.820 | 157.902 | 157.982 | 158.094 158301 | 158.542
50 | 159.504 | 159.541 | 159.583 | 159.664 159.744 | 159.824
10.0 | 159.905 | 159.922 | 159.936 | 159.965 160.017 | 160.049
200 | 160.178 | 160.189 | 160.209 | 160.225 160.242 | 160.306
200.0 | 160.644 | 160.648 | 160.652 | 160.658 160.676 | 160.692

As follows from the results of numerical analysis, as the parameter Yy decreases, the
dependence of the reduced critical velocities of stability, divergence and flutter of the

“plate-flow” system on the parameters 7, Bi < (Bi) and Poisson's ratio V becomes
cr.
imperceptibly small. Therefore, at Y << 1, the reduced critical divergence velocity can be

considered constant, and the critical stability and flutter velocities depend only on the
coefficient k1 > 0, which is in full agreement with the results of [15].

It is easy to find the minimum relative thickness (2ha‘1) [2] of an elongated

min
rectangular plate (Y < 0.2) at which the perturbed motion of the dynamic “plate — flow”
system at gas flow velocities near aoﬁ is stable.

Indeed, assuming that (Vo )max < aO\/E for all kn >0, from the definition of the reduced

gas flow rate and the expression of the cylindrical stiffness, we obtain the formula for
calculating the minimum relative thickness of the plate:

(2ha’! )3n = . E?Ol\(/ipoaﬁ) (120-v)ap,E ). (43)

Substituting into expression (43) the corresponding values (V0 )max D! ( a0, a3) (tabl.

3 and 6)and (Vo );ax D' (ao Lo a ) (tabl. 4 and 7), we obtain the following values
(2ha)
(2ha)
(2ha)
(2ha”")

for the steel plate:

min

~0.0045 for K, =0 and forall 0<y<0.2; (44)

min

~0.00345 for K, >0 and y=0.1;

min

2ha™

min

~0.00398 for k, >0 and 0 <y <0.01.
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Then, for all (2ha’1 ) < (2ha") ~and y < 0.2, the system becomes stable near

min
a, \/5 , and the transition chains will have the following representation:
for y=0.1
< Verdiv
~ 23,23 >3, (k,=0) (45)
. Y
Jy—= 53 >3, >3, > F—=3F, 3T, >3, (0<k, <0.1);
Ver div. _)" _)ﬁ —>\7<:r_fl. 3 _),.« —)’ k >01)
S S TR PR g\ 35 S 29 (K, -4
for y=0.01
Vcr. iv. — .
J,—=2>3, >3, >3, (k,=0) (46)

So Ver div. )Sll SN 312 N 32 _‘:’ﬂ_)\s3 N \50 Sll (kn >0)

Moreover, it is obviously for all y<0.2 that V, <V, 4, k,=0 and
V <Vcrdlv cr fl. atkn>0

For y=0.1 and y=0.01 the values V., ;, D' (a0p0a3) and Vcr 4D~ (a0p0a3) are

given in tables 3, 9 and tables 6, 10 respectively. As it turned out, in this case, the reduced
critical divergence velocity do not depend on the relative plate thickness, in contrast to the
reduced critical flutter velocity, which grow with decreasing relative plate thickness.

Table 9.
G
0 1 5 10 20 30

kl
0.1 1544.185 1547.963 1557.448 1567.503 1594.023 1621.745
0.3 1573.336 1575.717 1581.917 1588.723 1604.249 1630.425
0.5 1628.700 1631.824 1636.715 1644.566 1658.251 1671.874
0.8 1688.219 1688.983 1694.037 1700.213 1712.586 1721.892
1.0 1714.703 1716.213 1720.905 1726.572 1738.815 1749.518
5.0 1874.636 1874.861 1878.214 1881.316 1887.998 1894.761
10.0 1920.410 1920.679 1922.902 1925.923 1930.898 1936.057
20.0 1954.703 1955.443 1955.992 1959.131 1962.845 1966.137
200.0 2014.922 2015.007 2015.669 2017.064 2018.845 2020.490

Table 10.
kl
) 0.1 0.3 0.5 1 5 10 20 200
By
0 1907.6 | 1967.7 | 1981.4 | 2002.2 | 2024.3 | 2029.9 | 2032.9 | 2040.4
3000 19259 | 1975.8 | 1984.3 | 2005.6 | 2026.1 | 2030.4 | 2033.6 | 2040.8

72



From a comparison of the data in tables 5, 9 for Y =0.1 and data in tables 8, 10 for

v=0.01, it follows that V. D’l(a0p0a3)>v D"(a0p0a3) an order of

cr.fl. cr.fl.

magnitude or more.

Thus, in the case of elongated plates (Y <0.2), the reduced critical velocities of

divergence and flutter are increasing functions of the stress coefﬁmentBy characterizing

the initial stressed state of the plate: the initial stressed state leads to stabilization of the
disturbed motion of the dynamic “plate — flow” system, in comparison with the behavior of

the dynamic system with unloaded panel [15]. However, with decreasing ¥, when ¥ <1,

the influence of the initial stress state on the stability of the disturbed motion of the system
becomes imperceptibly small.

Conclusitions

An analytical solution to the problem of stability of the disturbed motion of a dynamic
system “plate — flow” is found under the assumption that the edges of a elongated plate,
parallel to the gas flow velocity, are loaded even before the flow streamlined by uniformly
distributed compressive forces.

Explicit expressions of sufficient criteria for the loss of stability of the perturbed motion of
the "plate-flow" dynamic system (1)—(4) are received.

With the help of graphic-analytical and numerical methods of analysis, the multiparametric
space of the “plate-flow” system was partitioned into a stability domain and the instability
domain in the form of divergence and flutter.

The concept of “chain of transitions” is introduced, the links of which are transitions from
one domain to another. "Chains of transitions" allows you to visually illustrated the
dynamics of the behavior of the disturbed motion of the "plate-flow" system. in the space of
its parameters.

The critical velocities of a supersonic gas flow are found, when exceeding which the
disturbed motion of the dynamic system “plate — flow” loses stability in the forms of a
panel divergence and a panel flutter under the assumption that in the plate at the moment
buckling ”only bending stresses arise.

For values of parameter Y < 1 is showned, that the effect of the compressive stress on the

stability of the system becomes imperceptibly small.

The minimum relative thickness of steel elongated plate determined, at which the
perturbed motion of a dynamic system near the beginning of the interval of supersonic
velocities is stable. As it turned out, in this case, the reduced critical velocities of the
divergence and panel flutter are increasing functions of the stress coefficient. Thus, in the
case of elongated plates, the relative thickness of which is less than the minimum, the initial
stress state leads to stabilization of the disturbed motion of the system.
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