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KuarwueBble ciioBa: HOJ’ISy‘IQCTB, peiaakcanus, KIACCHYCCKUE MOJCIIN, COBPEMECHHBIC
TCOPUHU IMOJI3YUCCTU

Mexanuka Moa3ydecTd SIBJISETCA YacThblO0 HHKCHEPHOW MeXaHMKH. PasBurue ucciaegoBaHHMM B
9TOH ob0nacTH OBUIO MOTHBHPOBAaHO HEKOTOPHIMH aBaphsIMH, HMPOU3OMIEANIMMH B 19-oM Beke.
IlepBoie Teopum ObuUIM  CHOPMYJIMPOBAHBI Kak OJHOMEPHBIC YPaBHEHHS C HECKOJIBKUMU
napamerpami. [To3xe 3T ypaBHEeHHs ObUIM paclipOCTpaHEHbl HAa TPEXMEPHBIE YPAaBHEHHMS, IIPH STOM
CKaJISIpHbIE HANPSDKEHUS M AedopManiy ObUIM 3aMEHEHBI TEH30PHBIMHU BEIpaxkeHHssMH. Kpome Toro,
JUISL JIyYIEero CpPaBHEHUS C OJHOMEPHBIMH DPE3yIbTaTaMM JOJDKHBI HCIONB30BAaThCS THUIOTE3BI
9KBUBAJICHTHOCTH JUIsl HANIPSHKCHHUH 1 iepopMaruid.

Jlo cux mop He CymeCTBYeT TEOPHH IION3y4YeCTH, KOTopas Oblra ObI HACTOIBKO CTPOTOH, Kak
MeXaHUKa CINIOMHBIX cpe. OJHAaKO CyIIecTBYeT MHOTO HMHXKEHEPHBIX TEOPHH, HA OCHOBE KOTOPBIX
MIOJy4YECHbl OY€Hb M OYEHb MHOI'O pEIICHWH I MPAaKTUYECKUX 3aiad. JTa CTaThs IPEACTaBIACT
co0oif 0030p paboT MO MEXaHUKE IOJI3YYECTH METAUINYECKAX MAaTEPHAJIOB M KOHCTPYKIUH M3 3THX
MAaTepHaoB.
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Creep mechanics is a part of engineering mechanics. The developments in this research field were
motivated by some failure cases in the 19th century. The first theories have been formulated as
uniaxial equations with only a few parameters. Later, these equations were extended to three-
dimensional equations, substituting the scalar stress and strain by tensorial expressions. In addition,
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for better comparison to one-dimensional results, equivalent statements for the stresses and the strains
were introduced.

Up to now, there is no creep mechanics theory which is as strict as continuum mechanics.
However, there are many engineering theories through which more and more solutions for practical
cases can be obtained. The paper is a state of the art report of creep mechanics for metallic materials
and structures composed from these materials.

1 Introduction

Creep mechanics is a part of engineering mechanics with a history of more than 100
years and numerous technical applications. In the first part of this paper, the motivation and
a brief outline to the history are presented. After that, some approaches in creep mechanics
are discussed. In the final part, references to several applications are given. For further
reading, [1,2] can be recommended.

In the case of three-dimensional relationships, the direct (symbolic) tensor notations are
used. The basics are presented, for example, in [2-4].

1.1 Motivation

Mechanics has been established as a science since antiquity. The first steps in this field
were done by Archimedes of Syracuse (born c. 287 BC, Syracuse, Sicily, died c. 212 BC,
Syracuse) which today are known as the Archimedes’ principle, Archimedes’ screw,
hydrostatics, levers, infinitesimals, ... But the description of the mechanics' purpose that we
are familiar with nowadays only began with the corresponding developments in
mathematics during the 17th and 18th century (for example differential and integral
calculus). Mechanics is often seen in connection with physics, as a branch of physics but at
the same time, there is still a perception that mechanics can be viewed as an application for
mathematical theories [5]. This is not correct any more, ever since the development of
engineering mechanics for application purposes. Today, engineering mechanics can be seen
as an independent scientific discipline, which in a special way, based on a theoretical
foundation (increasingly formulated axiomatically), brings the problems of engineering
practice to a solution.

If one investigates creep problems, three questions arise:

o A suitable material description must be found first of all. This task is not trivial, since

the different concepts, based on considerations of material physics, materials science
and continuum mechanics have advantages and disadvantages. It is important to
ensure that the effort and benefit are in an appropriate relationship and that the
identification of the parameters in the equations describing the material behavior can
be solved in a satisfactory manner. It should be noted that not every conceivable
experiment to determine material parameters can actually be carried out in the
laboratory.
Another problem is related to the fact that a suitable structural mechanical description
must be made. Components are geometrically complex structures. Hence, their
geometrical description and the structural mechanical implementation are usually
associated with the introduction of models. These simplify reality and thus enable
practical problems to be analyzed with less effort. However, it must be clarified if the
use of certain models is allowed within the limits of the simplifications. For example,
it is known that thin-walled components (they are typical for creep mechanics
applications) can often be analyzed with two-dimensional equations. Which theory
has to be used e.g. in the case of plates (Kirchhoff, Mindlin, Reissner, Ambartsumyan,
von Kéarman, ...) has been the subject of numerous studies.
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e The third problem - the selection of a suitable numerical analysis method (finite
element method, boundary element method, etc.) - is also important, but it is not
supposed to be content of this paper. For further reading, [6] is recommended.

In this work, the focus is on creep of components, where typical thin- and thick-walled
elements, which can be modeled as beams, plates, pipes, pipe bends, etc., are examined.
These components can be found in, for example, power plants and in chemical apparatuses,
where moderate mechanical loads but increased operating temperatures are typical. The
material behavior of metals and corresponding alloys (these are the main used construction
materials) is then characterized by irreversible time-dependent creep processes and material
degradation. The long-term behavior is influenced by mechanisms of the time-dependent
stress redistribution and the increasing damage, which occur especially in the areas of
joints, connecting elements and welds. The continuum damage mechanics, that establishes
the constitutive equations for the tensor of creep rates and the evolution equations for the
phenomenological damage variables, leads to a nonlinear initial boundary value problem
for structural mechanical analysis [7].

Creep analyses are particularly important at those points in a component where several
parts have to be connected. Welded connections are often preferred, however this is a
complex problem since the different creep behaviors in the base material, in the weld metal
and in the heat affected zone have to be taken into account. In [8], it is reported about the
lifespan increase in a petrochemical plant with respect to the creep behavior. The pipeline
system considered was analyzed with the help of the methods of classic structural
mechanics, however, only taking into account the change in thickness and ovality in the
pipe bends lead to the additional effects and adjusted the values for the stresses and strains
to the values observed in the experiment or in practice. A possible classification of the
creep damage and the corresponding measures in operating systems is given in [9]. The
starting point is the creep strain-time curve known from materials science. To determine the
time-dependent changes of state of the structure, micrographs of the material are generated
and evaluated. The following stages can be observed: (A) isolated cavities, (B) oriented
cavities, (C) micro cracks, (D) macro cracks, (E) fracture. The following actions should be
performed: (A) only observation, (B) observation with fixed inspection intervals, (C)
limited operating time until repair, (D) repair. The last stage (E) should always be avoided.

1.2 History

A historical overview of creep mechanics is given for example in [10,11]. There were
publications on creep mechanics already in the second half of the 19th century. However,
systematic investigations were summarized for the first time in [12,13]. Until today, the
Norton-Bailey law can be described as the most important creep law [14,15], which is a
power law in the sense of mathematics. Even in this case, it can be shown that the material
description in the creep range requires more effort in comparison to the elastic range. The
uniaxial Hooke's law contains only one material parameter (elastic or Young's modulus)
whereas two parameters are necessary for the Norton-Bailey law (magnitude and creep
exponent). Various industrial applications from energy machine construction were initially
in the focus of creep mechanics. Already in 1933, Stodola reported about applications in the
area of gas turbine construction [16]. Because generally, mechanical loads are
multidimensional, the stress and the strain states need to be, too. Therefore, Odqvist (1933-
1936) [17] and Bailey [15] suggested a corresponding theory for isotropic material behavior
using invariants of the stress and the strain tensors. A consistent tensorial description was
made by Prager (1945) and Reiner (1945), which also includes anisotropy. Missing matches
with experimental results led to the development of further modifications of the creep
equations, e.g. the strain hardening theory presented by Nadai (1938) [18] and Soderberg
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(1938) [19]. Due to applications related with stability problems, e.g. discussed by Hoff
[20,21], elements of the geometrically nonlinear theory had to be developed. A new class of
problems arose with the massive use of polymer materials, where analogies between
viscoelasticity and creep can be seen. However, the viscoelastic behavior is often
mathematically described with the help of integral equations, see Rabotnov (1948) [22]
among others. Another application field is creep in concrete which was studied, for
example by N.K. Arutyunyan [23].

There are numerous textbooks and monographs on creep mechanics which mainly
contain established research results. The authors prefer the engineering (inductive)
approach meaning that based on experimental observations, creep equations in the simplest
form are suggested and generalized step by step. It seems that there is no book that
represents creep mechanics as strict as continuum mechanics (for the elasticity theory or
plasticity theory there are several).

For studying creep mechanics, the following books can be recommended [2,6,10,24-
36]. While reading, one notices that theories for static (or quasi-static) applications in the
case of monotonous loads and under isothermal conditions are well established. Dynamic
loads and their consequences for the creep behavior are under discussion and require further
research.

Up to now, creep mechanics is in the focus of many research teams worldwide, selected
conferences include presentations about the topics and activities devoted to creep problems.
The International Union for Theoretical and Applied Mechanics (IUTAM) organises an
IUTAM symposium Creep in Structures since 1960 every 10 years: 1960 - Stanford/U.S.A.
[37], 1970 - Goteborg/Sweden [38], 1980 - Leicester/U.K. [39], 1990 - Krakoéw/Poland [40]
and 2000 - Nagoya/Japan [41]. The rather long time interval between two symposia is
relatively easy to explain: the research is related to time-dependent processes and their
verification in the field of metals and alloys needs long-term tests over several years. Only
recently, due to the arising questions concerning creep problems of plastics and composite
materials, shorter time periods for experiments are possible, which was also accepted
during the Nagoya meeting in 2000. However, this series of symposia is continued, but
caused by some technical issues, the next after Nagoya was only held in 2012 in
Paris/France [42].

There are more special conferences and courses devoted to selected creep problems, for
example [43-45]. The International Association for Applied Mathematics and Mechanics
(GAMM) offered plenary lectures and in 2001, one of the main topics was dedicated to
creep mechanics [46]. In the next few years, further impulses for research are mainly
expected from the following areas: power plant construction, aircraft construction and
microsystem technology. The first two represent traditional fields of application. Since the
performance and efficiency improvement leads to a further rising of temperature, the
tendency to creep and damage also increases. In microsystem technology, the influence of
temperature also cannot be neglected, like the different reactions of various materials to the
loads and temperatures. In addition, in microsystem technology, all components are
arranged in a confined space, so that their interactions become interesting as well.

2 Basic Model

The creep behavior is always analyzed from two different perpectives: of the material
and of the component. Material creep always includes creep and creep recovery processes
which are both accompanied by time-dependent microstructural modifications in the
material as a result of moderate mechanical loads (below the yield limit) at elevated

temperatures (> 0.3 of the melting temperature Tm ). The creep in components is also a

time-dependent process leading to changes in strain and stress states. One differentiates
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among other things between creep, recovery and stress redistribution. For this, multi-axial,
inhomogeneous stress states are typical.

2.1 Description Possibilities

There are different ways to describe the creep behavior. Considerations of the materials
science and physics, macroscopic observations or continuum mechanical methods are the
starting point. Until today, special phenomenological approaches based on macroscopic
experimental observation remain the beginning of the models. This concept is already
described in [12] and still dominates the literature on structural mechanical analyses. The
advantages and disadvantages of different description possibilities should be evaluated
thoroughly. For example, material science approaches and creep equations based on them
are most suitable to characterize processes at the microlevel. At the same time, three-
dimensional generalization is often complicated because the necessary equivalent stress
concepts only rely on engineering ideas, meaning there is no overriding principle in
analogy to the balance equations, etc. The phenomenological description within
engineering mechanics is not always strict enough to meet all aspects of the modeling
requirements. On the other hand, the corresponding three-dimensional creep equations can
be easily implemented into existing commercial finite element codes. A strict continuum
mechanics formulation should be preferred but at the moment, we are far from solving this
problem of including it into the existing calculation software.

2.2 Three Creep Stages

Creep curves show strains at constant mechanical load over time where the small elastic
range is often neglected. Three stages of creep behavior can be observed. The first one
(primary or delayed creep) is characterized by a decline in the slope of the creep curve, that
means the creep rate decreases. This correlates with microstructural observations, since
hardening occurs due to obstruction of dislocation movements. One can also observe
relaxation, i.e. rearrangement of lattice defects. The subsequent secondary (or stationary)
creep is indicated by an equilibrium of hardening and softening. The resulting creep rate
takes a stationary value, which is also its minimum. The tertiary (or accelerated) creep is
particularly denoted by damage (formation, growth and coalescence of cavities at the grain
boundaries, microstructure aging, etc.). This rough classification, which can be found, for
example, in [47-49] is a suitable basis for the formulation of phenomenological models of
creep mechanics. Note that temperature effects are either neglected or, for the simplest
models, are assumed to be constant because the temperature dependency is often very
complex. In addition, the form of these three stages varies for different materials.
Generally, in many cases, the secondary stage lasts significantly longer in comparison to
the primary and tertiary creep ranges but there are also materials without any secondary
creep range [50-53] (only the minimum value of the creep curve can be estimated).
Regardless of the arguments given for classification and simplification, creep curves
usually provide trustworthy statements for uniaxial creep tests, presuming material
isotropy.

3 Extensions

In the case of extending the classical one-dimensional models, two aspects should be
considered. Since the loading state is generally three-dimensional, a suitable three-
dimensional description of the material behavior is needed. In addition, the anisotropies in
material behavior are also important for creep processes. There are originally isotropic
materials which may show anisotropic behavior (damage-induced anisotropy) in the tertiary
creep stage but there are also a priori anisotropic materials (initial anisotropy).
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The simplest creep test is an analogy to the tensile test for which only a normal stress is
considered in the tensile direction resulting from a constant load (force). Another simple
creep test is the torsion test, where a shear stress can be noticed as a result of a constant
acting torsional moment. Both tests can be superposed, in this case, one gets a complex
stress state described by the following stress tensor G [2]

c=ck®k+1(e, Ok +k ®e, ) 3.1)

where k is a unit vector in the normal creep direction and e, denotes a unit vector in the

circumferential direction. ¢ and T are the normal stress in the Kk -direction and the shear
stress in the circumferential direction e, ® is dyadic product. The inelastic material

behavior is often assumed to be independent from the hydrostatic stress state. In addition to
the stress tensor, the stress deviator § needs to be introduced

s:o(k®k—§E]+r(eq,®k+k®e¢) (3.2)

with E as the second rank unit tensor. Furthermore, to ensure a better comparison of one-
dimensional and three-dimensional states, an equivalence hypothesis should be found. In
the simplest case, the von Mises equivalent stress can be suggested as

Gy = %s s =4/6” +31° (3.3)

with § as the stress deviator and the double scalar product - -. Considering the three creep
stages, the uniaxial description is made based on the secondary stage with the following
approach

er = f(o,T) (3.4)

cr

émin is the minimal creep rate, G is the existing stress responsible for the creep and T is

the temperature which is assumed to be constant in order to simplify the model. The
experimental verification is straightforward. From the literature (for example, [2]) several
approximations for the function of the minimal creep strain rate are known. The power law
is the one used the most. However, there are also reasons to use other approximations like
the exponential function or a hyperbolic sine function.

The ansatz for the secondary creep can be extended by a hardening term ( H denotes a
hardening variable)

£ = f(o,H,T) (35)
completed with an evolution equation

H=H(c,H,T) (3.6)
For tertiary creep, a damage variable ® can be introduced

£ = f(o,H,0T) (37
and a damage evolution equation is postulated

o=d(c,H,n,T) (3.8)

The procedure presented here is not limited to uniaxial behavior. By introducing
suitable tensor variables for the stress and the strain rate as well as corresponding
equivalent variables, multiaxial constitutive and evolution laws can be established. It
should still be noted that equivalence concepts for the stresses and the strains are always
just engineering hypothesises, therefore, any concept and potential modifications must be
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examined again to determine whether the assumptions made are valid. More information on
equivalence hypotheses is presented in [54,55]. The procedure is not limited to only one
hardening variable and one damage variable, which could only be assigned to one
mechanism.

The concept has to be changed, if the anisotropy must be included since anisotropy
tensors should be justified and described. For the damage-induced anisotropy, evolution
laws have to be added and presented mathematically in a proper manner. Models become
very complex and the identification effort is increasing dramatically.

The derivation of the basic equations for isotropic creep behavior can also be performed
as follows. Assuming constant temperature and constant or slightly variable loads, the
infinitesimal creep rates are first introduced as tensor quantities

D% =& = f(o) (3.9

f is an arbitrary second rank tensor function. The potential hypothesis with the creep

condition [56]

i oW (o

D" :—( ) (3.10)
oo

and the creep potential W , taking into account the dissipation power

P=D"..6>0

then leads to a general isotropic creep equation. In addition, the isotropy conditions must be

considered

f(@e:Q0") = 0 f(0)0",
W(Q-¢-0") W(a),
Q is an orthogonal tensor. In the case of isotropy, Q is

Q=Ecoso+e®e(l-cosm)+exEsinm

where e denotes the unit vector along an arbitrary axis of rotation with the arbitrary angle
® . Finally, the following tensorial non-linear creep equation can be established

vQ:0-Q'=E, detQ=+1 (3.11)

D = f(6)=dwE+dio+da0”, &i=adi(l,l,,1,), (3.12)
with the invariants

2 3
I, =tre, |, =tre”, |, =tro (3.13)

Assuming W =W(l ,1,,1,),
D” =%E+2%0+3%02
al, al, al,

can be established. tr(...) denotes the trace of the tensor. The integrity condition for the

(3.14)

Q; is presented in [33].

The chosen set of invariants is not the only possible one. One can prove that for second
rank tensors three linearly independent invariants exist. The different sets of invariants are
discussed in the literature (e.g. [56,57]). It can be shown that from the mathematical point
of view or material theory, a preference for a certain set of invariants cannot be justified.
However, one can easily recognize that the form of presentation has consequences for the
experimental verification of the parameters in the constitutive equations. So, the question
arises if certain invariants have constructive interpretations for the experiment. It is obvious
that the first invariant of the stress tensor relates to the hydrostatic stress state. Same thing

30



applies to the equivalent stress according to von Mises, which is connected to the second
invariant of the stress deviator. Unfortunately, the meaning of the third invariant is not
straightforward. In this case, it is better to consider the Lode parameter [58] which has a
practical meaning behind it. The considerations for the invariants are trivial in the case of
isotropy. Introducing other constitutive laws regarding transverse isotropy or orthotropy,
such considerations may help to structure the necessary experimental work since a lot of
information can be drawn from the theory for planning the tests [34]. The general form of
the isotropic creep law mentioned here is also given in [25,33].

Some special but yet elementary cases can be deduced. Using the separation of the
stress tensor into hydrostatic and a deviatoric part

1 1
=0, E+s, trs=0 = szgtm:glp (3.15)

the following representation of the potential is valid4
1 1
W=W(,,3,,,35p), I,p =—5trs2, NI =—§trs3 (3.16)

Since the set of possible invariants is exchangeable, the invariants of the corresponding
stress deviator can be used instead of the stress tensor's. That means the last representation

of the potential is equivalent to W(I,1,,1,) . Then the tensor of creep strain rates can be

expressed
pr W W W (sz —1trs2E] (3.17)
o, 8l 8, 3

It is obvious that the assumption of classic material behavior (inelastic behavior is not
influenced by the hydrostatic stress state [59,60]) can be considered directly: the
dependence on the first invariant should be eliminated

trD” =3%=0 (3.18)
al,

The classic creep equations will result, if the following assumption is still valid

oW

=0 (3.19)
0Jd,,
In this case, no more tensorial non-linearity is considered in the creep law and one gets
. 3¢ A oW(c
DY =="Mg o}, =-3),,, & _ Wow) (3.20)

20, 0G

This expression does not differ from [11,25,31]. For application purposes, it is
important that the latter law is not the only possible expression. For porous materials and
materials with a similar microstructure, it is better to also consider the first invariant in
order to adapt the results closer to the experiment. For materials that show tensorial
nonlinear behavior as well as so-called second-order effects (which cannot be neglected),
the inclusion of the third invariant is useful. It can be seen that the constitutive equations
discussed here can also be used if large deformations occur. In this case, a suitable choice
of the strain and the stress tensor and the time derivative is not trivial [61].

3.1 Anisotropy
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There are various application examples for anisotropic creep behavior. These include
the fiber-reinforced materials (see e.g. [62,63]) and the single crystal alloys [64,65].
However, the description is associated with numerous problems. The presumed symmetries
are difficult to verify, since the scatter of the measurement data may be up to 20%. The
symmetries that appear during creep also depend on loads applied in the past and the
damage already done [66]. There is also a clear temperature dependence (aluminum alloy
DI16AT - samples from rolled sheets: at 275°C anisotropic creep, at 300°C isotropic creep
[67]).

Symmetry considerations in connection with the direct tensor notation allow an
effective way to develop anisotropic creep equations in a simple manner. One has to
distinguish between material and physical symmetries. Material symmetries are symmetries
on the micro level (crystal symmetries in metals and alloys, symmetries as a result of the
arrangement of fibers and particles, etc.) whereas physical symmetries are the symmetries
of the constitutive equations and result from the experimental observations. Orthogonal
tensors @ are used to describe them. The following symmetries occur most frequently: the

transverse-isotropic symmetry and the orthotropy. In these cases, orthogonal tensors can be
specified as follows. For a reflection, there is

On)=E-2n®n (3.21)
with n as the normal to the mirror surface. For rotation follows
O(em)=m@m +cos(E —m @ m)+sinpmx E (3.22)

with the rotation axis m . Both tensors are sufficient to characterize the corresponding
symmetries.

Transverse-isotropic creep equations are discussed briefly below. The starting point is
the condition

W(Q-0-0")=W(o), (3.23)
which should be proven for
O(om)=mOm+cos@(E—mOm)+sinpmxE (3.24)
with =T <@ < T, m =const, m-m =1. At first, one gets
ow
(mxo—-oxm)--——=0 (3.25)
0o
This differential equation yields the following characteristic system [68]
(g
—=mXo6—06XxXm (3.26)
ds
with the general solutions
6“(s)=Q(sm)-of-Q"(sm), k=1,2,3 (3.27)
and the corresponding integrals lead to
tr(e), tr(¢’), tr(¢’), m-6-m, m-¢°-m, m-6’-(mxc-m) (3.28)

Such sets of transverse-isotropic invariants are also derived in [69]. From the
mathematical viewpoint, the characteristic system only has 5 independent integrals [68]. In
[70,71], it was shown that the six integrals introduced are not completely independent from
one another.

The creep equations can be presented as follows. Firstly, the stress tensor should be
splitted

c=m-cmm®®m+6,+7, OmM+mOT (3.29)
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where m is the direction of the transverse isotropy (normal to the isotropy surface),
G, is the plane part of the tensor 6 in the surface, which is orthogonal to the direction of

the transversal isotropy, and T, is a shear stress vector. With the split of G,

1
op:sp+5tr6p(E—m®m), trs, =0 (3.30)
the following invariants can be introduced
lw=m-c-m, |, =—tre, Iy = trSs,
2 (3.31)
L =T Tos s =T Sy T lom :m-(rm S, x‘rm)
The constraint for the invariants yields
Lo = Ll am =15, (3.32)
The ansatz for the potential is
W =W (1, s Lo Lis L5 ) (3.33)
Assuming, incompressibility one gets
oW
a—o_-.E:O = W=W(2l,,, =Ly 5ms Lamo s ) (3.34)

with 21, =1, =3m-6-m—tre =3m-s-m. In addition, if there is an analogy to

the classic von Mises-type material, the equivalent stress Ceq will be introduced as

quadratic with regard to the arguments: 21, —1, .1, .1, .|, . Then, the definition is
the following

2 2
O, =Jo +3aJ, +30,d,, o, >0, a,>0 (3.35)

where the abbreviations below were introduced
1

J,=m-6-m-—tr¢,, tré6, =tre6—m-c-m,
2 P P

2J, =trs, =tr6’ —2m-o’ -m+(m-cs-m)2 —%(trcp )2 , (3.36)

2
J,=1,-T,=m-¢"-m—(m-c-m)
With the Norton-Bailey-Odqvist potential

a
W = G:q“ (3.37)
n+1
one gets the creep equation
. 3 1
D ZEaGS: {‘]0 (m ®m—§E]+oc1sp +0,(1, ®m+m®T, )} (3.38)

The classical constitutive equation results from o, = 0, =1. The parameter identification

is presented in [34,70].
The anisotropic creep law derived here for transverse isotropy (initial isotropy) can also
be extended to the case of tertiary creep. The starting point is the creep law already
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discussed and a postulated damage that is described by its evolution. The effective stress
concept is used as in the isotropic case

Do =%a6”_1 J, (m ®m—%EJ+al§p +o,(7,®m+m®7,) (3.39)

eq

() denotes effective values of the variables. However, it should be noted that there are

no consistent suggestions on the formulation of these effective variables (see e.g. [72-74]).
In addition, evolutionary equations for anisotropic damage have to be found but even here,
the variety of options shows that there is still a need for further research. The current state
of research is reported in [34,44].

4 Examples

The following examples on the one hand are supposed to demonstrate the application of
creep mechanics to lower-dimension structural problems (shells, plates, beams, ...).
Sometimes the dimension reduction will yield unexpected difficulties, if initially three-
dimensional creep damage laws are used. On the other hand, these examples can be seen as
benchmarks for testing commercial finite element software.

4.1 Beams

The classic beam theory according to Euler-Bernoulli is based on simplified kinematics.
It is assumed that cross-sections that were orthogonal and straight to the beam axis before
the deformation still have these properties after the deformation. The validity of these
assumptions can be proven experimentally for classic construction materials and linear-
elastic material behavior for small deformations. In connection with creep damage
problems, however, one must assume that the above-mentioned effects no longer exist. The
reason for this is, among other things, that the creep processes are no longer expected to be
distributed uniformly across the cross-section and that the deformations are non-linear in
the direction of the cross-sectional coordinates. Therefore, the theory according to Euler-
Bernoulli has to be improved. The simplest form is the Timoshenko theory.

If the elastic solution is neglected, the creep problem can be solved analytically in the
simplest case. For a beam that is simply supported on both sides and loaded with a constant
distributed transverse load, the Euler-Bernoulli theory yields a polynominal of the
order 2N+ 2, where N is the creep exponent. It is known from strength of materials theory
that the elastic solution is a polynomial of 4th order. For classic creep materials, the value
of the creep exponent ranges from 3 < N < 7 (there are also examples where N goes up to
12 and higher). In conclusion, it can be said that for tasks about stationary creep treated
with variation methods, the test functions need to at least be of 2N+ 2 degree. It should
also be emphasized that the degree is material-specific, since the polynomial order also
depends on the creep exponent. If the elastic approximation is taken as a starting solution
(as is often recommended), the results can be far from reality.

Even in the simplest case, no analytical solutions can be calculated for the creep damage
case. The corresponding tasks have to be treated approximately with the use of semi-
analytical methods. The qualitative and quantitative statements known from the stationary
case are principally still valid.

For the first time, an improved theory considering the transverse shear was proposed in
[75]. The basic idea is analogous to the elastic case but with an added rotatory degree of
freedom (rotations of the cross section, so that it is plane, but no longer orthogonal after
deformation with respect to the beam axis) to the translatory degree of freedom
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(deflections). A corresponding theory was derived based on the principle of virtual
displacements, assuming specific distributions of the displacements and/or stresses over the
thickness. From the classic elasticity theory, it is known that the normal stresses are
linearly, the transverse shear stresses are parabolically and the normal stresses are cubically
distributed in the transverse direction. Is an initially unspecified distribution law regarding
the shear stress over the beam thickness chosen, one will get the usual equlibrium
conditions after applying a mixed variational principle. In addition, there is an equation for
the transverse shear force, which can be interpreted as a constitutive relationship. If this
equation is written in the way known from elastic Timoshenko beams, it can be seen that
this constitutive equation contains a correction factor (analogy to shear correction). It
depends on the previously introduced and yet not specified distribution function. In the case

of the postulated linear law, the value of the correction is K =1. Using a cubic approach, it
follows K = 5/ 6, i.e. the Reissner approximation is obtained. The best correction for
station creep is

k:3n+2
4n+2

It is obvious that the correction of the material-specific creep exponent depends on N.
The correction becomes smaller the more the creep exponent grows. The increase of the
creep exponent is associated with an increase in the creep rate. Since the damage also is tied
to this effect, it can be assumed that this results in a further decrease of the factor.

@.1)

4.2 Pipe Bend

The second example should give a brief insight into the problems that can be expected
when dealing with practical tasks. In [76], the creep damage analysis is extensively
presented for a pipe bend. The focus was on the question whether this thin-walled
component should be computed with two- or three-dimensional finite elements. The
internal pressure load case is assumed, the temperature was kept constant. Just translatory
(only displacements), but also the combination of translatory and independent rotatory
degrees of freedom were chosen as boundary conditions. The pipe bend was made of 316
steel. The creep damage behavior was described using the Kachanov-Rabotnov-Leckie-
Hayhurst model [77-79], whereby all parameters were known from the literature. For the
case considered, the evolution of damage can be influenced by two stresses: the maximum
tensile stress and the von Mises equivalent stress. It has been confirmed experimentally that
the damage for the given steel is mainly influenced by the maximum tensile stress.

All calculations were carried out with the help of the commercial finite element system
ANSYS, using the elements SHELL43 and SOLID45 recommended for plastic and creep
calculations. First, the elements were tested for the elastic case. Here, the calculations based
on the two-dimensional and the three-dimensional elements showed a very good agreement.

The transition to creep damage calculations did not result in such a correspondence any
more. The first calculation was made for the correct material model (damage caused by the
maximum stress) and the obvious boundary conditions (purely translatory). The results for
the stresses and for the damage showed no similarity especially with regard to the critical
areas (maximum stress, maximum damage). Further calculations, for which the boundary
conditions or the material model were changed, brought a qualitatively and quantitatively
satisfactory agreement, i.e. an "incorrect material model" and "non-classical boundary
conditions" led to this.

Those effects are difficult to explain. In this case, a brief analysis of the material model
shows that the von Mises equivalent stress is not sensitive to tension and pressure or
generally to the type of stress state. However, creep damage processes are highly sensitive
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to the type of stress state, if the tension stress is increasing, so does the damage while the
pressure does not "heal". The effects associated with the change in boundary conditions
indicate that the cross sections are simulated too stiff using only translatory boundary
conditions. With the introduction of a computational model in the sense of Timoshenko
(shear-soft model), the two-dimensional and three-dimensional calculations could be
adapted much better. In addition, it was demonstrated that the integration over the thickness
using the SHELL43 element is not provided with enough Gauss points (here 5). Test
calculations with other commercial software showed that 17 integration points yield a very
good match [34]. Other interesting effects in thick-walled pipes are described in [80].

5 Further Developments
As it was shown in the previous sections, the application possibilities of the presented
theories are suggested. Below, some brief information is added.

5.1 Rheological Models

The method of rheological modeling is one possibility to establish constitutive
equations for complex material behavior. The basics are presented, for example, in [60].
The approach was later developed for general continuum mechanics purposes in [81,82]
(note that [82]} is the translation of the Russian original book from 1976). In [83], a phase
mixture model is suggested for simulating the mechanical behavior of tempered martensitic
steels at high temperatures. Assuming only two phases (hard phase and soft phase) with an
unified description of the rate-dependent deformation including hardening and softening,
the model starts from an iso-strain approach (similar to composite mechanics) along with a
hard and a soft constituent. For both phases, a two-element model (elastic and inelastic
branch connected in series) was suggested and the elastic part in both branches was
assumed to be identical. Finally, they were connected in parallel, the parameters were
calibrated for the uniaxial model, which can easily be extended to the three-dimensional
case.

After the implementation of the model in a finite element code and testing the
correctness of the numerical solution by simple benchmarks, the behavior of an idealized
steam turbine rotor during a cold start and a subsequent hot start was simulated. The heat
transfer analysis was conducted, while prescribing the nonstationary steam temperature and
the heat transfer coefficients. The resulting temperature fields served as input for the
structural analysis of the rotor.

The original constitutive and evolution equations were proposed in [50,51],
computational tasks were discussed in [84] and the calibration procedure was described in
detail in [85]. Note that a similar approach was used in [86] for POM.

5.2 Double Power Law

The Norton-Bailey law is used in many technical applications - the law is simple, so is
its calibration and it can easily be extended to the primary and tertiary creep ranges. The
disadvantage of this law is the validity in a limited stress range. With respect to the need to
simulate creep behavior even for small and moderate stresses, in [87], a double power law
was suggested. Published experimental data for advanced heat resistant steels indicate that
the high creep exponent (in the range 7-12) may decrease to the low value of
approximately unity within the stress range which is relevant for engineering structures like
the transition from the power law to the viscous law and vice versa. The double power law
matches the behavior in both ranges in an acceptable manner and the transition region itself
is described by a smooth function.

5.3 Hyperbolic Sine Stress Response Function
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A classic conventional material behavior model can be extended, if varying thermo-
mechanical loading should be taken into account in wide stress ranges. In [88], a creep
constitutive law in the form of a hyperbolic sine stress response function is used. The
original proposal was suggested by Nadai [18]. For the analysis of a failure case in a power
plant, the original model was extended assuming a damage process described by a scalar
damage parameter and appropriate evolution equation in the sense of Kachanov—Rabotnov
[77-78]. In addition, several parameters were added to reflect the hardening and recovery
effects under cyclic loading. The uniaxial simulations were compared to cyclic stress—strain
diagrams and other experimental data (creep curves, tensile stress—strain diagrams,
relaxation curves, etc.) for the austenitic steel AISI type 316 at 600°C in a wide stress
range.

6 Outlook

The outlook formulated below is purely subjective and does not claim to be complete.
Only perspectives on the questions discussed in the article are given. Likewise important
problems, such as the behavior during dynamic load changes, etc., are not taken into
account, although there is still a great need for research. Those load changes are the usual
case in practice, however, the experimental validation of certain facts and the theoretical
basis for their description have not yet been sufficiently developed. Adapting static
solutions by modifying the equations to dynamic processes is not the most elegant way out.

6.1 Own Challenges

Creep mechanics is still not entirely discovered, since numerous questions have not
been adequately or finally clarified. Taking the three tasks described in the beginning as a
starting point, the following main problems can be formulated. In connection with the
description of the constitutive behavior, an open question is the formulation of uniform
laws for the low, moderate and higher stress ranges. Different creep mechanisms occur in
the range of lower stresses in comparison to higher ones. As part of the phenomenological
concept, an analytical equation must be formulated which applies to the entire range of
stresses. It should be as simple as possible (linear laws are used at low stresses, the power
law is usually applied at higher stresses). As simple as possible also means that not too
many material parameters have to be determined and that the expansion to three-
dimensional stress states and non-isothermal processes can be carried out elementarily.
First approaches to include the temperature dependencies are shown in [89-91]. Since creep
processes are sensitive to the type of stress state, new ideas concerning this must be
employed. Finally, it should be clarified whether the concept treating anisotropy introduced
in [70] can also be transferred to all cases of anisotropy. In the contribution named above,
only the case of transverse isotropic creep is discussed even though at least the orthotropy
would be of special interest for practical applications.

6.2 Open Questions

There are numerous problems with the open questions, from the theoretical point of
view which also have not been solved yet. This includes for example a consistent
continuum mechanical representation of the theoretical foundation considering
thermodynamics and the theoretical justification of creep equations. A lot of creep
mechanics problems are related to thin-walled structures, which in the sense of structural
mechanics are treated as one-dimensional or two-dimensional models. The starting point
for such models is often the three-dimensional theory. The derivation of the governing low-
dimensional equations can be realized with the help of hypotheses or mathematical
techniques. Also, the direct formulation of one- or two-dimensional structural mechanics
equations can be applied. In the case of creep problems, there are still no fully satisfying
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approaches. This is due to the fact that creep-damage yields strong inhomogeneities over
the thickness. In addition to the known problems with the derivation or the establishment of
two- or one-dimensional equations, the direct approach results in the difficulty of finding
suitable constitutive laws. Finally, it also is not clear whether micro-macro approaches in
analogy to the plasticity theory can be applied. These concept are focused on solving the
problem within a reduced representative volume first and then using appropriate
homogenizations known from composite mechanics to get the solution on the macro level.
However, the limits and possibilities are not yet well enough described so that it remains
open whether this approach can be used in creep mechanics.

References

[1] Altenbach H., Eisentrdger J., Introduction to creep mechanics. Encyclopedia of
Continuum Mechanics (Eds H. Altenbach & A. Ochsner), 2020, Berlin, Heidelberg,
Springer, pp. 1337-1344

[2] Naumenko K., Altenbach H., Modeling High Temperature Materials Behavior for
Sructural Analysis. Part I: Continuum Mechanics Foundations and Constitutive Models.
Cham, Springer, 2016 (Advanced Structured Materials series, vol. 28)

[3] Lurie A.L, Theory of Elagticity. Berlin, Springer, 2005

[4] Lebedev L., Cloud M., Eremeyev V., Tensor Analysis with Applications to Mechanics.
World Scientific Publishing Company, 2010

[5] Altenbach H., Zu einigen Aspekten der klassischen Kontinuumsmechanik und ihrer
Erweiterungen// Technische Mechanik 1990, vol. 11, issue 2, pp. 95-105

[6] Naumenko K., Altenbach H., Modeling High Temperature Materials Behavior for
Sructural Analysis. Part I1; Solution Procedures and Sructural Analysis Examples. Cham,
Springer, 2019 (Advanced Structured Materials series, vol. 112)

[7] Hayhurst D.R., Wong M.T., Vakili-Tahami F., The use of CDM analysis techniques in
high temperature creep failure of welded structures// JSME Int. J. Series A 2002, vol. 45,
pp. 90-97

[8] Le May 1., da Silveria T.L., Cheung-Mak S.K.P., Uncertainties in the evaluations of
high temperature damage in power stations and petrochemical plant// Int. J. of Pressure
Vessels & Piping 1994, vol. 59, pp. 335-343

[9] Neubauer B., Wedel U., Restlife estimation of creeping components by means of
replicas. Advances in Life Prediction Methods (Eds D.A. Woodford & J.R. Whitehead),
1983, ASME, pp. 307-314

[10] Odqvist F.K.G.; Hult J., Kriechfestigkeit metallischer Werkstoffe. Berlin u.a., Springer,
1962

[11] Odqvist F.K.G.: Historical survey of the development of creep mechanics from its
beginnings in the last century to 1970. Creep in Structures (Eds A.R.S. Ponter \& D.R.
Hayhurst), 1981, Berlin, Springer, pp. 1-12

[12] da C. Andrade E.N., On the viscous flow of metals, and allied phenomena// Proc. R.
Soc. Lond. A 1910, vol. LXXXIV, issue 567, pp. 1-12

[13] da C. Andrade E.N., The flow in metals underlarge constant stresses// Proc. R. Soc.
Lond. A 1910, vol. XC, issue 619, pp. 329-342

38



[14] Norton F.H., Creep of Seel at high Temperatures. New York, McGraw-Hill, 1929

[15] Bailey R.W., The utilization of creep test data in engineering design// Proc. Inst. Mech.
Eng. 1935, vol. 131, issue 1, pp. 131-349

[16] Stodola A., Die Kriecherscheinungen, ein neuer technisch wichtiger Aufgabenkreis der
Elastizittstheorie// Zeitschrift fiir angewandte Mathematik und Mechanik 1933, vol. 13,
issue 2, pp. 143-146

[17] Odgvist F.K.G., Mathematical Theory of Creep and Creep Rupture. Oxford, Oxford
University Press, 1974

[18] Nadai A., The influence of time upon creep. The hyperbolic sine creep law.
Contributions to the Mechanics of Solids dedicated to Stephen Timoshenko by his friends
on the occasion of his sixties birthday anniversary. Macmillian, 1938, pp. 155-170

[19] Soderberg C.R., Plasticity and Creep in Machine Design. Contributions to the
Mechanics of Solids dedicated to Stephen Timoshenko by his friends on the occasion of his
sixties birthday anniversary. Macmillian, 1938, pp. 197-210

[20] Hoff N.J., The necking and the rupture of rods subjected to constant tensile loads//
Trans. ASME Journal of Applied Mechanics 1953, vol. 20, issue 1, pp. 105-108

[21] Hoff N.J., Buckling at high temperature// Journal of the Royal Aeoronautic Society
1957, vol. 61, issue 563, pp. 756-774

[22] Rabotnov Yu.N., Elements of Hereditary Solid Mechanics. Moscow, Mir, 1980

[23] Arutyunyan N.K., Some Problems in the Theory of Creep. Oxford, Pergamon Press,
1966

[24] Hult J.A., Creep in Engineering Structures. Waltham, Blaisdell Publishing Company,
1966

[25] Rabotnov Yu.N., Creep Problems in Sructural Members. Amsterdam, North-Holland,
1969

[26] Penny R.K., Mariott D.L., Design for Creep. London, Chapman & Hall, 1995
[27] Kraus H., Creep Analysis. New York, Wiley & Sons, 1980

[28] Malinin N.N., Raschet na polzuchest' konstrukcionnykh elementov (Creep calculations
of structural elements, in Russ.). Moskva, Mashinostroenie, 1981

[29] Boyle J.T., Spence J., Sress Analysis for Creep. London, Butterworth, 1983

[30] Lemaitre J., Chaboche J.-L., Mechanics of Solid Materials. Cambridge, Cambridge
University Press, 1990

[31] Skrzypek J.J., Plasticity and Creep. Boca Raton, CRC Press, 1993

[32] Skrzypek J.J., Gancarski A., Modelling of Material Damage and Failure of Sructures.
Berlin, Springer 1998 (Foundation of Engineering Mechanics)

[33] Betten J., Creep Mechanics. Berlin, Springer, 2005

[34] Naumenko K., Altenbach, H., Modeling of Creep for Sructural Analysis. Berlin,
Springer, 2007 (Foundations of Engineering Mechanics)

[35] Hyde T.H., Sun W., Hyde J.C., Applied Creep Mechanics. New York, McGraw Hill
Education, 2013

39



[36] Lokoshchenko A.M., Polzuchest' i dlitel'naya prochnost' metallov (in Russ., Creep and
Long-term Strength of Metals). Moscow, FIZMATLIT, 2016

[37] Hoff N.J. (Ed.), Creep in Sructures. Berlin, Springer, 1962

38] Hult J. (Ed.), Creep in Sructures. Berlin, Springer, 1972

39] Ponter A.R.S., Hayhurst D.R. (Eds), Creep in Sructures. Berlin, Springer, 1981
40] Zyczkowski M. (Ed.), Creep in Sructures. Berlin, Springer, 1991

41] Murakami S., Ohno N. (Eds), IUTAM Symposium on Creep in Sructures. Dordrecht,
Kluwer, 2001

[42] Altenbach H., Kruch S. (Eds), Advanced Materials Modelling for Sructures. Berlin-
Heidelberg, Springer, 2013 (Advanced Structured Materials series, Vol. 19)

[43] Altenbach H., Skrzypek J.J. (Eds), Creep and Damage in Materials and Structures. -
Wien, New York, Springer, 1999 (CISM Courses and Lectures No. 399)

[44] Skrzypek J.J., Ganczarski, A. (Eds), Anisotropic Behaviour of Damaged Materials.
Berlin, Springer, 2003

[45] Ohno N., Uehara T. (Eds), Engineering Plasticity and Its Applications from Nanoscale
to Macroscale. Stafa-Ziirich, Trans. Tech. Publications Ltd., 2007

[
[
[
[

[46] Altenbach H., Creep analysis of thin-walled structures// Zeitschrift fiir angewandte
Mathematik und Mechanik 2002, vol. 82, issue 8, pp. 507-533

[47] Ashby M.F., Gandhi C., Taplin D.M.R., Fracture-mechanism maps and their
construction for f.c.c. metals and alloys// Acta Metall. 1979, vol. 27, pp. 699-729

[48] Nabarro F.R.N., de Villiers H.L., The Physics of Creep. Creep and Creep-resistant
Alloys. London, Taylor & Francis, 1995

[49] Roesler J., Harders H., Backer M. Mechanical Behaviour of Engineering Materials -
Metals, Ceramics, Polymers, and Composites. Berlin, Heidelberg, Springer, 2007

[50] Naumenko K., Kutschke A., Kostenko Y., Rudolf T. Multi-axial thermo-mechanical
analysis of power plant components from 9-12%Cr steels at high temperature// Engineering
Fracture Mechanics 2011, vol. 78, pp. 1657-1668

[51] Naumenko K., Altenbach H., Kutschke A. A Combined Model for Hardening,
Softening, and Damage Processes in Advanced Heat Resistant Steels at Elevated
Temperature// International Journal of Damage Mechanics 2011, vol. 20. issue 4, pp. 578—
597

[52] Naumenko K., Gariboldi E. A phase mixture model for anisotropic creep of forged Al-
Cu-Mg-Si alloy// Materials Science and Engineering A 2014, vol. 618, pp. 368-376

[53] Eisentrager J., Naumenko K., Altenbach H., Gariboldi E. Analysis of temperature and
strain rate dependencies of softening regime for tempered martensitic steel// The Journal of
Strain Analysis for Engineering Design 2017, vol. 52, issue 4, pp. 226-238

[54] Altenbach H., Bolchoun A., Kolupaev V.A., Phenomenological Yield and Failure
Criteria. Plasticity of Pressure-Sensitive Materials (Eds H. Altenbach & A. Ochsner).
Berlin, Heidelberg, Springer, 2014, pp. 49-152, (Engineering Materials series)

[55] Kolupaev V.A. Equivalent Stress Concept for Limit Sate Analysis. Springer, 2018
(Advanced Structured Materials series, Vol. 86)

40



[56] Zyczkowski, M.: Combined Loadings in the Theory of Plasticity. - PWN, Warszawa,
1981

[57] Altenbach H., Altenbach J., Zolochevsky A., Erweiterte Deformationsmodelle und
Versagenskriterien  der  Werkstoffmechanik.  Stuttgart, Deutscher  Verlag  fiir
Grundstoffindustrie, 1995

[58] Lode W., Versuche iiber den Einflufl der mittleren Hauptspannung auf das FlieBen der
Metalle Eisen, Kupfer und Nickel// Zeitung Phys. 1926, vol. 36, pp. 913-939

[59] Odgvist F.K.G., Mathematical Theory of Creep and Creep Rupture. Oxford, Oxford
University Press, 1974

[60] Reiner M., Deformation and Flow. An Elementary Introduction to Rheology. London:
H.K. Lewis & Co., 1969

[61] Billington E.W., Introduction to the Mechanics and Physics of Solids. - Bristol, Hilger,
1986

[62] Robinson D.N., Binienda W.K., Ruggles M.B., Creep of polymer matrix composites. I:
Norton/Bailey Creep Law for transverse isotropy// Trans. ASCE. J. Engng Mech. 2003, vol.
129, issue 3, pp. 310-317

[63] Robinson D.N., Binienda W.K., Ruggles M.B., Creep of polymer matrix composites.
II: Monkman-Grant failure relationship for transverse isotropy// Trans. ASCE. J. Engng
Mech. 2003, vol. 129, issue 3, pp. 318-323

[64] Bertram A., Olschewski J., Anisotropic modelling of the single crystal superalloy
SRR99// Comp. Mat. Sci. 1996, vol. 5, pp. 12-16

[65] Mahnken R., Anisotropic creep modeling based on elastic projection operators with
applications to CMSX-4 superalloy// Int. J. Mech. Sci. 1998, vol. 14, pp. 235-280

[66] El-Magd E., Betten J., Palmen P., Auswirkung der Schiadigungsanisotropie auf die
Lebensdauer von Stdhlen bei Zeitstandbeanspruchung// Mat.-wiss. u. Werkstofftechn.
1996, vol. 27, pp. 239-245

[67] Konkin V.N., Morachkovskij O.K., Polzuchest' i dlitel'naya prochnost' legkikh
splavov, proyavlyayushchikh anizotropnye svoistva (Creep and long-term strength of light
alloys with anisotropic properties, in Russ.)// Problemy prochnosti 1987, issue 5, pp. 38-42

[68] Courant R., Hilbert D., Methods of Mathematical Physics, Partial Differential
Equations, Vol. 2. New York, Wiley Interscience, 1989

[69] Bruhns O., Xiao H., Meyers A., On representation of yield functions for crystals,
quasicrystals and transversely isotropic solids// Eur. J. Mech. A/Solids 1999, vol. 18, pp.
47-67

[70] Naumenko K., Altenbach H. A phenomenological model for anisotropic creep in a
multi-pass weld metal// Arch. Appl. Mech. 2005, vol. 74, pp. 808-819

[71] Altenbach H., Naumenko K., Zhilin P.A., A note on transversely-isotropic invariants.
Zeitschrift fiir angewandte Mathematik und Mechanik 2006, vol. 86, issue 2, pp. 162-168

[72] Cordebois J., Sidoroff F., Damage induced elastic anisotropy. Mechanical Behaviors
of Anisotropic Solids (Ed. J.P. Boehler). Boston, Martinus Nijhoff, 1983. - pp. 761-774

41



[73] Betten J., Materialgleichungen zur Beschreibung des sekundédren und tertidren
Kriechverhaltens anisotroper Stoffe// Zeitschrift fiir angewandte Mathematik und Mechanik
1984, vol. 64, pp. 211-220

[74] Murakami S., Sanomura Y., Hattori M., Modelling of the coupled effect of plastic
damage and creep damage in Nimonic 80A// Int. J. Solids Struct. 1986, vol. 22, issue 4, pp.
373-386

[75] Naumenko K., On the use of the first order shear deformation models of beams, plates
and shells in creep lifetime estimations// Technische Mechanik 2000, vol. 20, issue 3, pp.
215-226

[76] Altenbach H., Kushnevsky V., Naumenko K., On the use of solid- and shell-type finite
elements in creep-damage predictions of thinwalled structures// Arch. Appl. Mech. 2001,
vol. 71, pp. 164-181

[77] Kachanov L.M., O vremeni razrusheniya v usloviyakh polzuchesti (in Russ., On the
time to rupture under creep conditions)// Izv. AN. SSSR. Otd. Tekh. Nauk 1958, issue 8,
pp- 26-31

[78] Rabotnov Yu.N., O mechanizme dlitel’nogo razrusheniya (in Russ., A mechanism of
the long term fracture). Voprosy Prochnosti Materialov i Konstruktsii, AN SSSR, 1959, pp.
5-7

[79] Hahurst D., Leckie F., The effect of creep constitutive and damage relationships upon
rupture time of solid circular torsion bar// Journal of the Mechanics and Physics of Solids
1973, vol. 21, pp. 431-446

[80] Altenbach H., Gorash Y., Naumenko K., Steady-state creep of a pressurized thick
cylinder in both the linear and the power law ranges// Acta Mechanica 2008, vol. 195, issue
1-4, pp. 263-274

[81] Krawietz A., Materialtheorie. Berlin, Heidelberg, Springer, 1986

[82] Palmov V., Vibrations of Elasto-Plastic Bodies. Berlin, Heidelberg, Springer, 1998
(Foundations of Engineering Mechanics)

[83] Eisentrager, Naumenko K., Kostenko Y., Altenbach H. Analysis of a Power Plant
Rotor Made of Tempered Martensitic Steel Based on a Composite Model of Inelastic
Deformation. Advances in Mechanics of High-Temperature Materials (Eds K. Naumenko
& M. Kriiger). Springer, 2020 (Advanced Structured Materials series, Vol. 117)

[84] Eisentrager J., Naumenko K., Altenbach H., Numerical implementation of a phase
mixture model for rate-dependent inelasticity of tempered martensitic steels// Acta
Mechanica 2018, vol. 229, pp. 3051-3068

[85] Eisentrager J., Naumenko K., Altenbach H., Calibration of a phase mixture model for
hardening and softening regimes in tempered martensitic steel over wide stress and
temperature ranges// J. Strain Anal. Eng. Des. 2018, vol. 53, pp. 156-177

[86] Altenbach H., Girchenko A., Kutschke A., Naumenko K., Creep Behavior Modeling of
Polyoxymethylene (POM) Applying Rheological Models. Inelastic Behavior of Materials
and Structures Under Monotonic and Cyclic Loading (Eds H. Altenbach & M. Briinig),
Cham, Springer, 2015, pp. 1-15 (Advanced Structured Materials series, vol. 57)

[87] Naumenko K., Altenbach H., Gorash, Y., Creep analysis with a stress range dependent
constitutive model// Archive of Applied Mechanics 2009, vol. 79, issue 6-7, pp. 619—630

42



[88] Gorash Y., Altenbach H., Lvov G., Modelling of high-temperature inelastic behaviour
of the austenitic steel AISI type 316 using a continuum damage mechanics approach// The
Journal of Strain Analysis for Engineering Design 2012, vol. 47, issue 4, pp. 229-243

[89] Kostenko Y., Lvov G., Gorash E., Altenbach H., Naumenko K., Power plant
component design using creep-damage analysis. Proc. of 2006 ASME Int. Mech. Engng
Congress and Exposition, ASME, 2006, IMECE2006-13710, pp. 1-10

[90] Altenbach H., Gorash Y., Naumenko K., Creep analysis for a wide stress range based
on relaxation data// Modern Physics Letters B 2008, vol. 22, issue 31 & 32, pp. 5413-5418

[91] Naumenko K., Altenbach H., Gorash Y., Creep analysis with a stress range dependent
constitutive model// Arch. Appl. Mech. 2009, vol. 79, issue 6/7, pp. 619-630

Information about the authors

Holm Altenbach, Dr. of Technical Sciences, Professor, Dr.h.c.mult., Foreign member of
the Russian Academy of Sciences

Affiliation: Chair of Engineering Mechanics, Institute of Mechanics, Faculty of
Mechanical Engineering, Otto-von-Guericke-Universitit Magdeburg

Address: Universititsplatz 2, 39106 Magdeburg, Germany

Tell: +49 391 67-58814

E-mail: holm.altenbach@ovgu.de

Katharina Knape, M.Sc.

Affiliation: Chair of Engineering Mechanics, Institute of Mechanics, Faculty of
Mechanical Engineering, Otto-von-Guericke-Universitit Magdeburg

Address: Universitétsplatz 2, 39106 Magdeburg, Germany

Tell: +49 391 67-51985

E-mail: katharina.knape@ovgu.de

Received 10.08.2020

43



