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I'uGpuHOe ynpaBiieHHe ABUKEHNEM (GeCIUIOTHOrO JETATEILHOI0 ANNapaTa, HeCylero
nepeBepHYThIii MASITHUK
KiroueBble ¢/10Ba: IMHAMHUYECKHE CHCTEMbI, TMOPHIHOE YIPAaBICHHE, OITHMAIbHAS CTaOMIM3ALHs,
KBaJIPOKOITEP TEePEBEPHYTHIN MAsATHHUK, (ha30BbIC TPACKTOPHH, BUPTYaIbHOE MOJICIIMPOBAHHE.

PaccmaTpuBaeTcs mpo6iieMa ynpaBiIeHUs IBIDKEHHEM OeCHMIOTHOro JeraTensHoro ammapara (BITIA),
HECYILIEro IIepeBepHyThIH MasTHUK. OnucaHa B3aUMOCBSI3aHHAS JMHAMUKA OCCIIMIIOTHOTO JICTaTEIBHOIO
anmapara M IEPEeBEPHYTOro MasiTHHKA. s pelleHus, JMHEapu30BaHHOW Ha OCHOBE BHPTYalbHOTO
MOJIETIUPOBAHUSI CHCTEMBI MaTeMaTH4YeCKOH 3ajaud YIpaBICHUS, NPUMEHEH HOBBIA: T'MOPHIHBIA METOX
yIpaBlleHHs cUCTeMOM. PellleHa iMHeapr30BaHHas 3a/1a4a yIpaBiIeHUs] CHCTEMOM.

VYipasisirolye Bo3/ACHCTBIS Ha CUCTEMY, a TaKkxke (ha30BbIe TPACKTOPHH ABMKCHHUS COCTABIISIOIIMX CHCTEMBI
MIPHBEIIEHBI B BUJIE TPadUKOB (yHKITHI.
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The control problem of the movement of an unmanned aerial vehicle (UAV) carrying an inverted pendulum is
considered. The interconnected dynamics of an unmanned aerial vehicle and an inverted pendulum are described.
To solve the control mathematical linearized problem on the basis of virtual modeling of the system, a new one
was applied: a hybrid method of the system control.

The linearized system control problem is solved. The control actions on the system, as well as phase trajectories of
the components of the system are given in the form of graphs of functions.

1. Introduction

Unmanned Aerial Vehicles (UAVs) are, in general, flying vehicles which do not require a
person onboard to be controlled. UAVs can be also considered as flying robots. The history
of UAVs starts from 1880s when those robots were used mainly in military purposes. One
of the first ways people used UAVs was as high-altitude photographers. However, these
extremely simple flying drones were not popular until the times of first world war. Several
years after drones acquired popularity they were applied in military missions like
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elimination of unexploded bombs, assessment damaged buildings in an area, exploration of
enemy forces, etc. [1].

Decades later when science and technology developed side by side UAVs also became
more advanced and they are capable of completing much more complex missions not only
in military forces but also for civilians. Nowadays applications of UAVs include missions
like mapping, pollution and land monitoring, powerline inspection, fire detection,
agriculture, and among other applications.

Among all UAVs, the quadrotors of most interest amongst scientists and researchers
because of their structure simplicity, cheap price and extremely huge dynamic potential. A
decent amount of papers are dedicated to dynamics and control of these kind of robots
namely papers present control techniques like Proportional Differential (PD) control [2, 3],
Proportional Integral Differential (PID) control [4, 5], control of position and orientation by
vision [6], sliding mode control [1, 7], fuzzy logic [8, 9], and adaptive control in [10].

In [12] a UAV is considered with an inverted pendulum mounted on its body. The paper
makes trajectory constraints on the UAV-Pendulum system and, hence derives a Linear
Quadratic Regulator (LQR) controller to stabilize the system along the trajectory or the
hover point. First, they make the system hover in a point and stabilize around that point and
then they want the UAV to move around a point center in a circular trajectory

In this paper dynamics of a UAV is considered alongside with an inverted pendulum
mounted on the UAV. The dynamics of the pendulum is presented with respect to the UAV
and then both models are combined into one using some rules and theorems of the
Theoretical Mechanics. After linearizing the model, a novel hybrid method of control is
applied to the system to solve the control problem.

The hybrid model we applied is as follows. We first stabilize optimally the pendulum using
the motion of the UAV as control inputs and then we use the optimal stabilizing control
inputs to drive the UAV-Pendulum system to a desired position.

The results we gained i.e. the control inputs and state trajectories are shown in form of
graphs which were generated from virtual simulations.

2. Modelling of the System
To derive the pure theoretical dynamics of a UAV let us fix a coordinate system Oxyz . Let

O be the origin. We will also need another coordinate system OgX;YgZ; fixed in the
center of mass O, of the UAV (fig. 1). The torques and forces generated by each of the
propellers are shown in the Figure 1. The propellers are numbered 1 to 4 [13].
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describe the inclined position of the UAV about the point O, using yaw, pitch and roll
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angles. Let ® be the pitch angle, ® be the roll angle and, finally, let ¥ be the yaw angle.
Then we will have two vectors describing the position of the UAV. Those are the
following:

E=(x y 2), n=(@ © ¥) (1)

In the coordinate system the linear velocities V; and the angular velocities V are the

following
— T _
VB:(VBX VBy VB) H V:(p q r)T (2)
In this setup we will have the dynamics of the system as given below [13; 15].
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Where the following notations are used:
C,=cosa, S, =sina, M =m,,, +m,

Ik(—a)22 +a)f)
=17 |= |k(—w12+a)32) (4)
Ty Zri

T=YF=Xke, T=(0 0 T)

As for the mathematical model of the pendulum we will consider its dynamics in the
coordinate system OgXg Vg Z; .

So, the dynamics of the pendulum will be as shown below. [4]
3% = (L = y2 )%= 253 (V%Y — (L - V2) %)
0 (Vo +%,9, =< (9+2))

O N
XD_(Lz_y’zj)ézz

(LY, %39+ V3 (6 - £ (94 2)+ (-6 - %, + £ (9+2))) )
y =—1 . —y:y—(Lz—Xﬁ)y—zy:(xpxpyp_(ﬁ_x:)y)
p (|_2_x:)é'2 +y;()'(§)+xp§(p_é’(g+2))

+p (~L%,%, 538, 436 (3 - (9+2) + L (-5 - 73+ (9+2)))

Using the formula of center of mass of a system
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X = mr, +mp,
s
m+m,
where T, =¢& :(X y Z)T and T, =T, = (Xp Yo Z, )T , we can find the coordinates of
center of mass of our UAV-Pendulum system in the coordinate system Oxyz. Let

m =m, =1, then we will have

{XC = x+%xp; Yy, = y+%yp; zZ.=z+ x+%m
To get the state space model of the UAV-Pendulum system we introduce the notations as
shown below

X=X X=X %=V X =Y

X% =Z; X=Z4; X=0; X%=0;

=Y Xo=p X=0 X;=I

X3=Xps  Xa=Xp X5 =VYp> X6 =Yp
We linearize the dynamics around the origin of the fixed coordinate system. So, we finally
get.

(6)

X =% X == X35 X3 =%y X =——Xs;
21 21

p p
X5 = X5 X = Uy; X7 = X5 X=X
. g 9 o W 9 o Y (7
X9 = X35 X10:| B X5 X :I__I_X13’ X2 :I_’

XX XX yy yy z
XA =X Xm0 D Xa X=X, —gx + 3 x
13 = X45 14 =—0% | % %is = Xe X6 = 0% | s

p p

T
where u, :V—g, U =74, Uy =75, U =7.

Using Kalman’s rule one can check that the system (7) is fully controllable. So, now we are
in a point where we can define the problem and we can go ahead to show the way we
solved it.

3. Problem Definition:

Given the system (7), the initial position of the system X (O) =X, 1= m and the final

position X (tl) =X, 1 =1,16, find control inputs U, i =1,4 such that it drives the system
from the given initial position to the given final.

As one can notice this control problem is not an optimal control problem.

Problem Solution.

Our approach to the problem solution was the following. First, we ensure that the pendulum
remains where it should be. We do this by applying optimal control input stabilizers inside
the coordinate system OgX;YzZ;. And after we know that the pendulum will remain

inverted (will not drop) we proceed to the control problem. Let us now define a subproblem
of optimal stabilization for the subsystem
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. 9., . . 9

{)(13 =X45 X4 =—9Us +|_X13» X5 =65 X6 = Qg +|_X15 (®)
p p

Note that here we use the notation

X% =Us; X =Ug )

Now the subproblem will be the defined as follows.

4. Problem Definition: Given the system (8), the initial position of the system

% (0)=Xx,,i=13,16, find control inputs u’ = (u? ul )T such that it drives the system

from the given initial position to asymptotically stable position while minimizing the linear
quadratic regulator

J[e]= T(xf4 + X+ U +U; )de
0

Solution: Notice that the system (8) can be divided into two subsystems which are

{XB = Xi45 X4 =ngl3 — Qus (8.1)
p

v oy -9 8.2

XIS_X16’X16_I X5 + QU (8.2)
p

We will show the solution steps for one of the systems (say (8.1)) as both of them are
solved absolutely identically.
We choose to solve the optimal stabilization problem by using Lyapunov-Bellman method.

In general, the method says that the optimal control input u” has to satisfy the optimization
equation as given below

min(VV (x)(Ax+Bu) +(X'Qx+u"Ru)) =0 (10)
Where
B[e]=VV (X)(Ax+ Bu)+(xTQx+uTRu) (11)

(11) is Bellman’s expression for the linear time-invariant control systems. So, in our case
for the system (8.1) we will have

oV ov (g o
B |e|=—X,+—| =X, —0Us |[+X,+U 12
[] 5‘X13 14 axm[lpxw gs} 14 5 ( )
It is obvious that the value of Ug which optimizes (10) is the extremum of (12). Thus, we
will have
Y
w-9N (13)
2 0%,
By substituting (13) back into (12) we get the following.
5 2
ﬂxM Exnﬂ_g_ N +X =0 (14)
OX,3 l, “ox, 41\0x,

Here V =V (X, % 4) is the Lyapunov function for the system (8.1) and we search for it in
the form
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1
V:E(CHX123+2C|2X13X14+C22X124) (15)
Putting (15) into (14) we get a algebraic equation which have the form

2
(6% + €% )% 12 (K, + €% )%, = (G +CoX,) 3, =0 (16)

p
From (16) the following system of equations will follow

g g, 2 |gl,+4
e 8 29 _“ /_
|pC12 4 C» G, X J,

g2 2 4
C,——0C, +1=0 = Cp=—7 (17)
2T 2 2 glp

C11+Igcz2_g?C12C22:0 szzz glp+4
P gy d,

Here the shown solutions are the ones which make V =V (Xx;,X,) positive definite.

Finally, to get u{ =u{ (Xm X, ) we put (17) into (15) and put what we get into (13). That

gives us
2 gl, +4
U =%+ =% (18)
p g,
To obtain u{ =u{ (t) we simply need to substitute (18) into (8.1) and integrate the system.
We will get
fornfyy) {orle]
0 gl p +4 e 21 —e 21y
. | 21 )
g p P (19)
{ g, [ l*} t[glp g, % |+ J [ dy-dl, g' J [gl -d, g'|+]
[, +4le e ™ e M +e
J, ol ol

Taking the exact same steps for the system (8.2) we will get u =u? (t) which will be

(a5t mmj

| _ |
T . (20)

2

SRCEICE LoolF) g ofF) (ol ol

5. Back to Core Problem.
Now, that we have the solution for the subproblem, we can proceed to our main problem.

Recall that the control inputs in the sub problem which are uj =ug (t) and ug =ug (t) are
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actually X, and x; in the system (7). In that case one can notice that two subsystems of (7)
can be simply integrated. Those subsystems are the following.

ST B . U g
{X1:X27X2:TX13J%:X11>X11:|_3_|_X13 (7.1)
P W
. . g . . u g
{X3:X4;X4:TX15; X7:X10;XIO:|_2_I_X15 (7.2)
P XX XX

As we already have X, =X, (t) and X =X (t) we can simply derive X, =X, (t) from

system (7.1) and X, = X, (t) from system (7.2). As for x =X (t), i =1,4, we will obtain

by integrating X, :%XB and X, =%X15 under the consideration of desired edge
P p

conditions. As a result, we will have the desired state trajectories of the UAV and the

control inputs U, =u, (t) and u, =u,(t) which will drive the system through the desired

trajectories. Of course, those control inputs are not optimal because of the absence of
constraint.
The remaining two subsystems of (7) which are

{%s =X % =y (7.3)

{5‘9 = X235 X, - (7.4)
I z

in this paper are not discussed. The reason is that these are independent of the dynamics of

the pendulum in the linearized model of the system we have.

Another reason is that (7.3) and (7.4) are of no interest because of the simplicity of their

solutions.

6. Simulating the Results.

We have chosen to check the theoretical result of this paper by simulating the motion of the
UAV and recording state trajectories in form of graphs with time being the independent
variable. For the simulation purposes the following values have been chosen for the
parameters

g=981ms?, I =1m |, =1, =04856 Kgnm’ 21
Finally, we are ready to present the graphs describing the motion of the quadcopter (shown
below).

In the Figures 2+5 the phase trajectories of quadrotor are shown, and in the Figure 10 and
Figure 11 the phase trajectories of inverted pendulum are shown.

From the figures it follows that in this problem of controlling the movement of the system a
quadrotor-inverted pendulum, the coordinates of the center of gravity of the quadrotor and
the coordinates of the inverted pendulum increase (Figure 2 and Figure 4, Figure 10 and
Figure 11) and the phase velocities of the center of gravity of the quadrotor are stabilized
(Figure 3 and Figure 5).

In the Figure 6 and Figure 7 the control inputs u, (t) and u, (t) are given, that bring the
system from a given initial position to a given final position. In the Figure 8 and Figure 9
the control inputs u; (t) and ug (t) are given, that bring the system from a given initial
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position to an asymptotically stable position while minimizing the linear quadratic

controller.
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Figure 2. The trajectory of X, (t)

Figure 3. The trajectory of X, (t)
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Figure 4. The trajectory of X, (t) Figure 5. The trajectory of X, (t)
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Figure 6. The graph of u, (t) Figure 7. The graph of u; (t)
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Figure 8. The graph of ug (t)

Figure 9. The graph of ug (t)
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Figure 10. Trajectory of pendulum along x -axis Figure 11. Trajectory of pendulum along y -axis
on the coordinate system Oxyz on the coordinate system Oxyz

Obviously, the control inputs control inputs u, (t), u,(t) and ug (t), quickly converge to

zero. The control input uy (t) also quickly converges to zero, but after impulsive increase.

Figure 12 and Figure 13 show that how different the real trajectory of the UAV and optimal
trajectory of a Pendulum-Free UAV in 3D space.

e o //;
| s P
~ //
| 4 e
///
I > [
& i
m s~ e N
v o o 10 26 30
Figure 12. The real Trajectory of the UAV in 3D Figure 13. The optimal trajectory of a Pendulum-
Space Free UAV in 3D space

To compare this result with the case when there is no pendulum mounted on top of the
UAYV we will present the optimal trajectory of a free-of-pendulum UAV which is driven
from the same initial point to the same final position.

Conclusion

The dynamics of the pendulum is presented with respect to the UAV and then both models
are combined into one. The model is then linearized and the control problem is solved using
proposed hybrid method, which means, we first stabilized optimally the pendulum using the
motion of the UAV as control inputs and then we used the optimal stabilizing control inputs
to drive the UAV-Pendulum system to a desired position. The results we gained are shown
in form of graphs which were generated from virtual simulations.
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