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Oraunsn C.K.

[lpe.m)M.neHue U OTpakeHue CABHUIOBOIi BOJIHBI OT CJIOS € ABYMS CHMMETPUYHO U AHTUCUMMETPUYIHO
PacnoJI0KeHHbIMU MaTEepHATIaAMHU

KuawueBble ciaoBa: CIBHUTOBas BOJIHA, Koad)qmunem‘ MPOXOKIACHMS, OTPAKEHUE, MAaTpHULIa PACIIPOCTPAHECHUA

B nanHO# paboTe H3y4yaeTcsl pacpoCTpaHEHNE CABUTOBOI BOJIHBI B IPOCTPAHCTBE Yepe3 CIOH ¢ CHMMETPHIHO U
aCUMMETPUYHO PpACIOJIOKEHHBIMH JBYMsI MaTepuajaMu. 3ajada pelleHa ¢ IIOMOLIbI0 METOJa MAaTpHIIbI
pacIpoCTpaHEHUs M HOJy4YEHO pelieHue B obmieM Buzae. i 4acTH4YHOro ciydas Ko3(hQHUIMEHTH Nepenayun
SHEPrUM PACCUMTAHBI YUCIECHHO U IPE/ICTABIICHbI HA TpaduKax.

Ohwiywh U. 4.

Uwhph wihputiph piljnudp b wigpuywpdnudp vhdtnphl b hwljwuhdbnphy nuuwdopdus tpyne
iyniphg Yuqudws ghpunid

Zhdumpwnkp. Uwhph wihp, tkpputhwigdwi gnpswljhg, winpunupdnid, mupusdwb duwnphg

Znupwdsnid nuunidtwuhpynud £ Eplne Jhuwinwpusnipniitipp pwdwing  updbnphl b
hwljwuhdbwnphly quuwynpdus gkpunnid uwhph whph wwpwsnudp: Yhunwplynny puunhpp msyty k
oquuugnpstiny mwpwddwh dwnphgh dkpnnp, nnipu o phipyty inusnwdubph punhwipugyws wkupbpp:
Uwutwnp nhwyph hudwp junwpgby E pquiht hwpquply b gpudhynpht yunltply b wihph
ubpputhwigdwi Eukipghuwh gnpswljhgutiph jujujwsdnipniup puljunn wihph wulyniuhg:

In this paper shear wave propagation through a symmetrically and asymmetrically arranged bi-material layer
sandwiched between two semi-spaces is studied. The problem was solved by propagator matrix method and solution
in general form was obtained. For partial case transmission energy ratios are numerically calculated and graphically
represented.

Introduction

Numerous problems of wave propagation in elastic multilayered medium were considered
by Brekhovskikh [1]. In this paper special cases of shear wave reflection refraction problem
in layered structure is studied. Electromagnetic reflection problems in stratified dielectric
media is studied in [2]. SH wave reflection and transmission from elastic/piezoelectric and
piezoelectric/piezoelectric interfaces are considered in [3]. Wave transmission through
piezoelectric phononic crystal are considered in [4, 5]. Electroacoustic wave transmission
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from non-acoustic interface of piezoelectric materials of different symmetries is investigated
in [6].

Statement of the problem
Bi-material layer composed of symmetrically and asymmetrically arranged elastic layers
sandwiched between elastic semi-spaces are considered. The SH wave propagates from the

lower X € (—0;0] semi-space partially reflects at the interface of layered structure X=0 and

partially transmits to upper Xe€[d;o0) semi-space. We consider two cases of layered

structure sandwiched between two semi-spaces.

X

\ case a case b
Upper semi-space (1) Transmitted 511—“7(
dl_ — — — - e e e e ol e e e e _——— o e )
d, B i
) B
0 (.‘jl A dj !{2 A - Y
Lower semi-space (1) Incident SH wave
Reflected SH wave

Fig. 1. Wave propagation in bi-material structure, asymmetrical layer (case a) and symmetrical
layer (case b)

Layered structure in case @) is composed of two sub-layers with thicknesses h, =d, and

h, =d,, in case b) layer consists of three sub-layers with thicknesses h, =d,/2, h; =d,.

Sub-layers are under ideal contact conditions with adjacent interfaces.

For anti-plane shear wave we have the following equation of motion
axcxz_'_aycjyz :pat,tuz (1)
where stresses obey the Hooke’s law

G, =M0,U,, 6, =pnoU, ()

zZ°

here UZ(X, y,t) is the elastic displacement, p,p are shear modulus and bulk density of

material, respectively. For propagating SH wave the solution of equation of motion can be
represented as

u, (X y,t)=u(x)exp[i(k y—wt)] ?3)

where K, ® are wave number and frequency respectively.
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Solution for functions U®® (X) within S= A B materials of the layer can be found as

u® (x) = af® exp(ig,X) + ot exp(—ig,X) (4)
here qszw/mz/ci —-k?, ¢2=p./p; . S=AB. L, ,pg are shear moduli and bulk

(s)

(s)

densities respectively, O .

,0” are complex amplitudes.

According to (2) one can define G(ZXS) as

o9 =19 () exp[i(ky—ot)] )

2 (X) = ip 0, o exp(ig,x) — ol exp(-igX) | ©)

At the interfaces of two materials the transmission conditions of the stress and displacement
continuities can be imposed as

u? (x)=u®(x), ¥ (x)=1(x), x=h, (casea) (7)
For case b) besides of condition (7) we have additional condition
u® (x)=u?(x), 1 (x)=1"(x), x=h,+h; ®)

Since the interface continuity conditions are imposed on functions u® (X) R T (X) it is

convenient to introduce the following column vectors

(s u(S) A(s 0Li(S)
U”(x):( (S)), A”:[ (S)] ©)
T o,

In matrix form the solutions (5, 6) can be cast as

U (x)=E® (x)- A (10)

where

B (x)= [ eeliax), - exp(iax) j
ing0g exp (ig.X), —im 0, exp(-ig.x)

Let note that the transmission conditions (7,8) lead to the conditions of continuities of the

an

field vectors U*® (X) at separation interfaces of the sub-layers.
Propagator matrix method
The solution of observed problem can be drawn by linking vectors U™ (X), ue® (X)

between top X=d and bottom X=0 surfaces of the layer with help of propagator matrix

method [7]. According to this approach we need to consider first two points Xl(s) , Xés) within

each material in domains of the sub-layers S= A B. For values of field vectors L_J(S)(X)

following conditions are valid
g® (X](S) ) —F® (XI(S) ) LA , ge (XES) ) - F® (Xés) ) LA® (12)
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Eliminating vectors A® from (12) the relation linking U® vector field values within each
material can be found as

U(S)(XéS)):T(S)(Xl(S),)éS))U(S)<X1(S)) (13)

herein T (xfs>, X ) =F® (xf’ )(13(5’ (xfs) ))71 is the transfer matrix in each sub-layer.

cos (qS (X;S) - X )) (TR )71 sin (qs (XéS) -% ))

T® Xl(S)’ XES) —
( ) _qus Sin(qs(X£S) _XI(S))) COS(qs(Xﬁs) _)(1(8)))

(14)

Let now consider the layer with two sub-layers case of the structure.
In the case &) using the continuity conditions of field vectors U(S)(X) at interface X=0, we

come to the matrix equations

U™ (d)=MU® (0) (15)
where
M=T®(d,d +d,)T®(0,d,) (16)

Herein M is the propagator matrix for shear wave field, which links the field vectors at the
top and bottom of the layered structure.

" {mn mlzj
My My,

The explicit expressions of the unimodal propagator matrix M elements can be derived as

m, = cos(dlql)cos(dzqz)—cc:l%sin(dlq1 )sin(d,0)

2572
_ cos(d,q,)sin(d,q, ) . cos(d,q, )sin(d,q,)
qZ“Z ql“l (17)
m,, =—-0,H, COS(dlql )Sin(dzqz)_ am, COS(d2q2 )Sin(d1Q1)
m, = cos(dlql)cos(d2q2)—%sin(dlql)sin(dzqz)

11

2

For the case b) the M matrix is constructed in a similar way
M=T®(d/2+d,,d)T®(d /2,d,/2+d,)T®(0,d,/2)
matrix elements of which are
. : 2.2 2.2
sin(d,q, ) sin (d,q, ) (ap; +qru3)

m,, = cos(d,q, )cos(d,q, ) - T ,
11252
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1 ) ) . (1
cos’ (2 dlqu sin (dzqz ) Op4 CcOS (dzqz ) sin (dlql)_qzuzsmz(dzqz )Sm [2d1q1)

m,= =
a1, qf“l2

(qulz(cos (dlql )_l)"'qzzu; (COS( d,q, )'H)) Sin(dzqz )
20,1, (18)
sin(d, 0 )sin (d,q, ) (ofp; +cu3)

204,051
Reflection and transmission coefficients

For shear wave propagating in lower (I) and upper (II) semi-spaces we write solutions in
the form

u (% Y, =, (X)exp(i(py—ot)), u, (% Yy,t)=u, (X)exp(i(py-ot))

u, (X) = Aexp(ic, )+ A exp(-ig, X), U, (X)=A exp(iq, X)

T (%) =ik, G (A exp(ig,X)— A exp(-ig X))

T, (X) = A, g, exp(ig, X)

where (| :W, c:=p./ps, S=1,11, A,A,A are amplitudes of

incident, reflected, and refracted (transmitted) waves, respectively, Ll are shear moduli and

m,,=—0u, cos(d,q, )sin(d,q, )

m,, = cos(d,0}, )cos(d,0,)—

P are bulk densities of lower and upper semi-spaces respectively.
At the interfaces x =0, x =d the conditions of stresses and displacements continuities

are imposed

u, (O) =U, (0), 7,(0)=1,(0)

u, (d) =u, (d)a Ty (d)= Tz(d)

or in matrix form

oo o)

Taking into account the transmission condition (20) and the link relation (15), the amplitudes

(19)

A, A, via A can be found by solving the following matrix equation

M( A+A, )]:[ A, exp(ig,d) j @)

ip, (Ai_Ar iw, g, A exp(iq”d)

Solution of (21) can be found in the form
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A —A (q|“|q|lu||ml2+mu)+i(mzquul _qnunmn)
r I(Q|”|quu||m12_nEl)+i(nE2q|”| +qnl'lnmu)
2A g exp(—iq,,d)
(M0 o+ G by M) =1 (G 1 G 1y M, =1, )

Energy flux conservation is then expressed via reflection and refraction amplitudes by the
following algebraic identity

(22)
A, =

q|H||A|2+q”Hn|A|2=Q.M||A|2 (23)
Here
40,9y 1 1
|A|2=A2 1 e Thad R adl
(le)2+(mll)2 CI|2M|2+2CI| Oy 1y 1y +qﬁ |~l|2| (mzz )2‘*‘(mlz )2 C1|zl-‘~|2
(24)
AN’ g

Al =
(mz1)2 +(m“)2 Q|2H|2 +20,0, 11y, +Qﬁ H|2| ((mzz)2 +(m12 )2 c]|2Pl|2| )

From equations (24) the transmission and reflection energy ratios coefficients can be written
as

W ;AL
Al Al

Numerical calculation results

For numerical calculations we consider that materials of the upper and lower semi-spaces
are the same. In this case we have that R+ T =1

We will consider the three layouts of material arrangements within layer which is
represented in Table 1.

(25)

Table 1
Layout Semi-spaces Material A Material B
0 Cu Si Au
B Au Cu Si
3) Si Au Cu
The material properties are presented in Table 2.
Table 2
p(kg/m) | 1 (GPa) | c(m/s)
Cu 8960 40 2113
Au 19300 27 5387
Si 2330 68 1183

For different values of the layer dimensionless thickness h=kd on the Fig. 2-7 the energy

transmission ratios R(0) are presented in dependence of angles of incident wave

0 = arcsin(kc, /®) , where ¢, = /[, /p, is velocity of the incident wave.
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Relative thickness of sub-layers is denoted by o= dl / d where d= d1 + dz (see Fig.1).

Cu—5Si—Au Cu=Si— Au

10—
0.8
0.6/
0.4/
02
00— 40 e 80

Angle of Incidence Angle of Incidence Angle of Incidence

Transmission Energy Ratio

Fig. 2. Layout (1), h=0.2, h=0.4, h=0.8,5 = 0.4 for two layered (solid curve) and
0 =0.2 for three layered cases (dashed curve)

Au-=Cu-S5i Au=Cu-8i Au-Cu-8i

0.4
02|
0.0 | I

Transmission Energy Ratio

Angle of Incidence Angle of Incidence Angle of Incidence

Fig. 3. Layout (2), h=0.2, h=0.4, h=0.8,5 = 0.4 for two layered (solid curve) and
0 =0.2 for three layered cases (dashed curve)

Si—Au-Cu Si—Au-Cu

Transmission Energy Ratio

. e,
Angle of Incidence Angle of Incidence Angle of Incidence

Fig. 4. Layout 3), h=0.2, h=0.4, h=0.8,5 = 0.4 for two layered (solid curve) and

0 =0.2 for three layered cases (dashed curve)

o Cu-Si-Au
§ 1.05'__-'? ---------------- i 1.0x
508 0.8
z )
Z06 0.6:
204 0.4}
202 02|
E gt L 1 110 ¥ 00—
= 20 40 60
Angle of Incidence Angle of Incidence Angle of Incidence

Fig. 5. Layout (1),h=0.2, h=1, h=2,8 = 0.5 for two layered (solid curve) and 6 = 0.25
for three layered cases (dashed curve)
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o Au-Cu-S8i Au-Cu-5i Au-Cu-5i
2 1.0 g S P e 10— N R P i L
5 .
E:O'S T
w
Z06
204
Z 02
= 20 40 6l 80
Angle of Incidence Angle of Incidence Angle of Incidence

Fig. 6. Layout (2), h=0.2, h=1, h=2,6=0.5 for two layered (solid curve) and 6 =0.25
for three layered cases (dashed curve)

o S1—Au-Cu Si—Au-Cu

= 1.0 . 1.0 g e 1.0 e e e

] . m

508 olf’ 0.8

o o b

8 0.6 U.G: 0.6

204 0.4 0.4

Z02 02 02!

g 00— I L L | H oob—ur | S . L 0.0 L I — I

= 20 10 60 80 20 40 60 80 20 10 60 80

Angle of Incidence Angle of Incidence Angle of Incidence

Fig. 7. Layout (3),h=0.2, h=1, h=2,8 = 0.5 for two layered (solid curve) and & = 0.25
for three layered cases (dashed curve)

As it follows from above data the values of energy transmission ratios qualitatively not
considerably differ in the considered cases of symmetrically and asymmetrically arranged
materials. By observation of differences between energy transmission ratios we can note that
when wave propagate from hard semi-space (material Au) the values of transmission energy
ratios are higher in asymmetrical case for all incident wave angles.

Conclusion

The problem of shear elastic wave propagation through a stratified bi- material layer was
studied for asymmetrically and symmetrically arranged layers. By means of matrix
propagator methods the amplitudes and energy ratios coefficients for incident and
transmission waves are obtained analytically both for the symmetrical and asymmetrical
layer. The numerical results and analysis are represented. For both cases the energy ratios are
also plotted against the angle of incidence. Based on these results it is established that when the
SH wave propagates from hard media the values of transmission energy ratios are higher in
asymmetrical case comparing with symmetrical case.
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