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PacnpocTpaHenne ru6pHIHbIX 3J1eKTPOYNPYTUX BOJH B IEPHOINYECKH NONEePeYHO-HEOJHOPOHOM
Nbe303JIeKTPHYECKOH CTPYKTYype
KiioueBble cjI0Ba: JJIEKTPOAKYCTHYeCKasi TuOpPUIHAsL BOJIHA, MEPHOAMYECKAasi HEOJHOPOIHOCTD,
MbE302JIEKTPUIECKAs Cpelia, BOJIHOBOH CHUTHAJI, HC &KyCTI/I‘IeCKI/Iﬁ KOHTAaKT, p€30HAaHCHAs YacToTa.

B npe30anexTpraecKkoM KOMIIO3UIIHOHHOM MaTepHalie 0OHapyKeHO CyIeCTBOBAaHNUE HOBOI THOPHIHOI BOIHBL,
COCTOSIIIEH U3 CABUTOBOI 3JIEKTPOAKYCTHIECKON BOJHBI M 3JIEKTPOAKYCTHYECKON BOJHBI IUIOCKOH AehopManum.
IIbe303eKTpHYecKHe CIOH W3TOTOBJIEHBI M3 PA3HBIX MaTepHAJIOB M HAXOMATCS B HEAKyCTUYECKOM KOHTAKTe.
Jloka3aHo, 4YTO e€cIM OAWMH W3 MaTepualoB JIOIyCKAaeT pa3JelbHOE BO30YXKIEHHE M PaclpOCTpaHEHUE
9JIEKTPOAKTHBHOH BOJIHBI UYHCTOTO CJABHUra, a JpPYrod Marepuan JIOMYCKAaeT pasfelbHOe BO30YXKIEHHE U
pacrpocTpaHeHHe 3JIEKTPOAKTHBHOM BOJHBI [MIATallUM, TO B HEOJHOPOJHOM CTPYKTYpe BOJHOBOM CHIHAI
HPUBOJMUT K PACIPOCTPAHEHHWIO TMOPHAHONW 3JIEKTPOAKYCTHYECKOi BONHBI. McciaenoBaHbl pacrpesieneHus
BOJIHOBBIX MOJ| KOMIIOHEHT THOPHIHOH 3IE€KTPOAKyCTHYECKOH BONHBI, a TaKXKe IOIYyCTUMBIE YacCTOTHI €ro
PacIpoCTpaHEHHUI.

Kax gacTHbIe ciTydad, Taioke HCCISIOBAHBI PACHPOCTPAHEHUS DIEKTPOAKYyCTHIECKOTO BOJHOBOTO CHTHATA B
Pa3HBIX OJHOPOJIHBIX MBE30IEKTPUUECKUX CPEaX C CUCTEMON OECKOHEUHBIX ONEPEUHBIX TPEIHH.
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In a piezoelectric composite material, existence of a new hybrid wave, which is consisting of shear
electroacoustic wave and electroacoustic wave of plane deformation is revealed. In the composite, layers are made
of different piezoelectric materials and they are in non-acoustic contact. It is proved that if one of the materials
allows separate excitation and propagation of electroactive wave of pure shear, and the other material allows separate
excitation and propagation of electroactive wave of dilatation, then the wave signal leads to the propagation of hybrid
electro-acoustic wave in the heterogeneous structure. The distributions of the components of hybrid electro-acoustic
wave modes, as well as the corresponding permissible frequencies are investigated.

As special cases, the propagation of electro-acoustic wave signal in different homogeneous piezoelectric media, with
a system of infinite transverse cracks is studied.

Introduction

Inhomogeneous composite waveguides of piezoelectric crystals are widely used in
nowadays high-accuracy technologies as transformators, filters and resonators of
electroacoustic wave signal. For the comprehensive review of perspectives, current state and
future areas of development in analysis of wave processes in periodic structures, sec Hussein
et al. [1]. During the analysis of wave processes in periodic structures, the main attention is
paid to the character of these structures as frequency filters or resonators of propagating
waves.

Occurrence of frequency locking zones for one-directional wave in periodic elastic
structure has been obtained in Rayleigh [2]. The analysis of the impedance role on existence
of locking zones has been carried out in Avetisyan & Ghazaryan [3, 4]. It has been shown
also that when the impedance of periodically inhomogeneous 1D structure is constant, then
locking zones do not exist.

The Floquet-Lyapunov theory has been applied for analyzing elastic wave propagation in
periodic structures in Lee [5] and Lee & Yang [6]. From mathematical point of view, the
spectral theory of transversal vibrations of periodic elastic beams has been developed in
Papanicolaou [7, 8]. The dispersion relations of SH-waves propagating in periodic
piezoelectric layered composites has been derived and studied in Qian et al [9]. The spectrum
of Floquet-Bloch type waves propagating in elastic periodic waveguides has been studied in
Adams et al. [10, 11]. In mentioned papers, the wave-field is homogeneous and the character
of normal wave propagating in the waveguide does not change.

The phenomenon of coupled (simultaneous) propagation of waves of heterogeneous
elastic deformations can be applied in various areas of technical electronics and high-
precision measuring equipment.

It is well-known that not in all anisotropic piezoelectric materials, electric vibrations that
are accompanied by elastic deformations allow separate excitation and propagation of pure
shear electroelastic wave or electroelastic wave of plane strain. The possibility of separate
excitation and propagation of electroactive elastic fields in specific sagittal surfaces of
anisotropy of piezoelectric crystals has been studied in Avetisyan [12] without taking into
account the hypotheses of

i) undeformed normal of the sagittal surface,
ii) absence of pressure of material surfaces onto each other,
iii) non-extensible material sagittal surface.

Problems of separate excitation and propagation of electroelastic plane or anti-plane
stress-strain states in homogeneous piezoelectric crystals has been studied also in Avetisyan
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[13]. Formulations of 2D electroacoustic problems in homogeneous piezoelectric crystals are
considered taking into account the above hypotheses. Necessary and sufficient conditions for
separate excitation and propagation of electroacoustic states of mentioned types in
anisotropic piezoelectric media are obtained. Constitutive laws and the quasi-static equations
of electro elasticity, for all piezoelectric materials in all three sagittal surfaces of
corresponding crystal texture are also received.

The electroactive waves of anti-plane deformation, after their discovery by Bluestein J.
L. [14], have been extensively investigated. A thousand works are known.

In contrast, electro-clastic waves of plane deformation in piezoelectric crystals (electro-
acoustic waves of the Rayleigh type) have been studied relatively little by Singh B. & Singh
R. [15], Chaudhary S., Sahu S.A. & Singhal A. [16], Vashishth A.K. & Sukhija, H., [17]
et al.

The problem of propagation of high frequency acoustic waves of plane strain (electro-
acoustic Rayleigh waves) at different electric boundary conditions for mechanically free
surface of a piezoelectric half-space are discussed in Avetisyan & MKkrtchyan [18]. The
possibility of a new localization of wave’s plane strain, under certain electrical conditions at
a surface is shown. It is revealed that the presence of a concomitant electric field, the waves
of plane strain result in both quantitative and qualitative changes of the characteristics of a
localization of electro-acoustic Rayleigh waves.

In this paper, we suggest a simple scheme for analysis of propagation of 1D electroactive
hybrid elastic waves in compound transversally inhomogeneous periodic piezoelectric
medium.

1. Problem statement. Electro elasticity equations and main relations for
transversally inhomogeneous periodic piezoelectric medium

Let us consider the propagation of electroelastic 1D normal waves in transversally
inhomogeneous periodic piezoelectric medium referred to Cartesian coordinate system 0x)z
(see Figure 1). The medium consists of alternating infinite plates
an (xs )@ Z) é {x € [n(al + az )5 al + n(al + a2 )]a y € (—OO, +OO)’ S (—OO’ +OO)} (1 1)
QZn (X, ys Z) é {X € [al + n(al + az )5 (n + 1)(611 + aZ)]s y € (—OO’ +OO), S (—OO,—{-OO)} '
made of piezoelectric crystals. Linear sizes of these plates towards 0y and 0z are much
larger than the wavelength of the propagating high-frequency wave.

Above, n€N" is the number of the repeating cell of two sub-layers with section
Q,(x, 1) =€ (x,¥) U (x,y) in x0y plane, where
Qlo(xay) 2 {x € [0,(11]; S (—OO,-}-OO)}; on(xa y) 2 {x € [_azao]; ye (—OO,-i—OO)} . (12)

For the sake of definiteness, we assume that in x0y plane, the material of layers with
sections € (x, ) allows separate excitation and propagation of electroactive elastic shear,

while the material of layers with sections €2, (x,y) allows separate excitation and

propagation of electroactive plane stress-strain state.

It has been shown in [13] that there are 15 possible formulations of electroactive anti-
plane states in distinct sagittal planes of piezoelectric crystals. It has also been shown therein
that there are 10 possible formulations of electroactive generalized plane stress-strain state in
distinct sagittal planes of piezoelectric crystals. Therefore, there are a large number of
possible material pairs for preparation of the proposed inhomogeneous structure.



Without losing the generality of reasoning, we assume that the material of layers
Q,,(x,y,z) allowing electroactive anti-plane stress-strain state is a piezoelectric of

Figure 1. Transversally inhomogeneous periodic composite waveguide with non-acoustic contact
between sub-layers

hexagonal symmetry class 6mm or is a piezoelectric of tetragonal symmetry class 4mm . In
these piezoelectrics, the anti-plane stress-strain state in x0y plane is possible when the axis
of 6 order symmetry of hexagonal piezocrystal, P4 , or when the axis of 4™ order symmetry
of tetragonal piezocrystal, respectively, coincide with Oz axis. Then, the sagittal plane of
piezoelectric crystals x,0x, coincides with coordinate plane xOy .
The non-zero components of mechanical stress tensor and of electric displacement vector
in layer with section Q,,(x,y) = {x €[0,a4,]; ye (-, +oo)} can be written as [13]
oV (x,y,t)=cl) (0w, /ox)+el (3, /Ox); G%)(x y,t)=cl (0w, /oy)+ell (09, /oy) (1.3)
D (x,y,t)=e}] (0w, /0x)=e} (09, /0x); D}"(x,p,t)=e}; (O, /dy)~¢}) (09, /dy) (1.4)
The quasi-static equations of electroactive anti-plane stress-strain state describing

separate propagation of electroelastic waves of SH-type in current layer have the well-known
form

2W§1)/8x2 + 82W§1)/8y2 = 61;2 -ﬁzwgl)/@tz
00, [ox* + %, Jov* = (e [ )-[ W Jox* +0*w ! [oy* ]
Coefficients ¢t} , e, € ”, P, and speed Clt \/(c(l)/p1 [14.(@1(;)) /(C(l) o } of

SH-wave in (1.3)-(1.5) characterize the piezoelectric of the class 6mm .
Without losing the generality of reasoning, we also assume that the material of
Q, (x,y,z) is a piezoelectric of hexagonal symmetry class 6m2 . In piezocrystal of that

(1.5)

class, the excitation of separate plane electroactive stress-strain state is possible both in
sagittal plane x;0x; and in x,0x, . For the sake of clarity, here we consider the case when the

electroactive plane stress-strain state is possible in sagittal plane x,0x, coinciding with x0y

, and the inverse axis of 6™ order symmetry of the hexagonal piezocrystal, p, is directed
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along 0y . Then, non-zero components of the mechanical stress tensor and of electric

displacement vector in x0y plane of layers Q, (x,,z) made of piezoelectric of 6m2 class
of hexagonal symmetry are as follows [13]:

o (x,y,t)=c{} (du,/ox)+cl; (ov,/oy)+ ety (09, /ox),
o (x,y.0) =3 (Qu, /ox)+ciy (Ov, [oy), (1.6)
ff,)(x ,b) = c(z)(avz/éx)+c§i) du, /dy)

D (x.7.0) = 7 (0, /o) ~ 7 (8, /o),
DO (x,,0) =8 (39, /2v).

Taking into account the compatibility conditions of mechanical stress G (x y,t)=0

(1.7)

and the third components of electric displacement vector D'”(x,y,t)=0 [13], the quasi-

static equations of electroactive plane stress-strain state describing the separate excitation
and propagation of P&SV-type waves have the following simplified form:

(P —c39,)(07u,/ox* )+ (0°u, /0y ) -y (1+9,,)(0°9/ax” ) = p, (67w, /0r*)
e (Ov,/ox’ )+ (e —c29,5)(87v, /0" )~ e)'9,5 (870, [axdy) = p, (7v, [or )

e} (0%, /ox” ) +&() (0%9,/0y* ) e} (6°u, [ox") =0 (1.8)
Coefficients ¢, 2, ¢, e, &, o, 6. 1) p,. 9y, =(c +c)) /e
9, = (clf) +cfj) / ¢ in (1.6), (1.7) and (1.8) characterize the piezoelectric of the

symmetry class 6m2 .
It is evident from equations (1.8) that, according to the model of generalized stress-strain
state, the reduced elastic extension stiffnesses decrease and have the following form:

a2 2 /.(2) a2 2) [ .(2)
¢, =0 [1—812( - /c )] =3 [1—813( 2/0 )] (1.9)
The reduced coefficients of direct p1ezoelectr1c effect have the following form:
ey =e, (1+9,): e, =8¢ (1.10)

Coordinate surfaces of non-acoustic contacts x,, =—a, +n(a, +a,) , x,, =0+n(a, +a,)

and x,, =a,+n(a, + az) are free of mechanical stresses:

V(x,y,0)=0; o (x,y,0)=0; ¢ (x,p,0)=0; (1.11)
and electric field conjugacy conditions are satisfied:
¢, (%, 3,0 =0, (x,»,0); D (x,,) =D, (x,,1). (1.12)

2. Solution of the mathematical boundary-value problem

In order to determine the characteristics of propagation of excited 1D forms of
electroelastic hybrid waves in transversally inhomogeneous periodic piezoelectric structure,
let us apply the Floquet-Lyapunov theory of periodic structures [9, 15]. Then, the
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mathematical boundary-value problem of normal wave signal propagation in inhomogeneous
structure is formulated for the cell (x, y) =€), (x, 1) W, (x,»).

The following system of one-dimensional quasi-static equations of anti-plane
electroactive deformation obtained from (1.5) will be solved in layer with section €2,(x, y) :

2y () /A2 252 m 260 /A2 _ (D /o) A2y () /A2
W [ox? =—’C7 - W, PP fax = (el [e) )-0° W, [ ax @.1)
Here, C, lzt = Eﬂ) / P, is the speed of transverse electroactive wave in the piezoelectric of the
symmetry class 6mm, Eﬂ) = cf&) (1+ xlz) is the reduced shear stiffness and

X12 = (el(;) )2 / cfé‘)sfll) is the electromechanical connection coefficient of the piezoelectric of

the symmetry class 6mm .
The following system of one-dimensional quasi-static equations of plane electroactive
deformation obtained from (1.8) will be solved in layer with section €2,,(x,»):

(0’0, /ax*) =(-o’/C) U,

(0@, /ox*)=(e}/e))(0°U, /ox)
(0°V,/ax*)=(-0’/C3, )V, 2.3)
Here, C;. =(1-8,, (2 /e =751+ 9,,))(c7 /p, ) is the speed of longitudinal

(2.2)

electroactive wave, szt = cﬁ) / p, is the speed of transverse elastic wave in the
piezoelectric of the symmetry class 6m2 .

It is evident from the expression of the longitudinal electroactive wave speed C,. that
for values of the electromechanical connection coefficient satisfying
1 >1-[(c +c)(e? + cf?)]/[cflz)(cfzz) +c3 +c)], the tensile stiffness (or

compression) becomes negative. This is possible in case of relation c}'c?} > ¢’ (cl(32) + cfj))

because 0 <5 <1 always holds.

According to the theory of Floquet-Lyapunov, instead of electromechanical boundary
conditions (1.11) and (1.12), considering the periodicity of the structure, on the finite interval
—a, < x < a,, boundary conditions of quasi-periodicity of the considered cell are fulfilled.

Then, based on one-dimensional problem, the full system of boundary conditions will have
the following form:

e dw,(0) o d®,0) _, (2.4)
dx dx

c® du,(0) +e? d®,(0) -0 (2.5)
dx dx

cﬁ’ av,(0) -0 (2.6)
dx

CA(;L) dW,(a;) +e1(;) do,(a,) -0, 2.7
dx dx
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d0,(-a,)

e dUzag;az) Lol ) - 0 (2.8)
(@ M) 2.9)
dx
Conjugacy conditions for the electric field are as follows:
D, (0) =D,(0), (2.10)
D (a)=p-Dy(-a,) or Dy(a)=p-D(-a,) (2.11)
dW, (0 do,(0 du,(0 do, (0
el(;) 1( )—8511) 1( )261(12) 2( )_gﬁ) 2( )’ (2.12)
dx dx dx dx
dw (a :yal) do (a >)’J) dUu (_a ayat) do (_a ayat)
el(;) 1d; Sﬂ) 1d; = 61(12) 2 dxz Sﬁ) 2 dxz (2.13)

In (2.9) and (2.11), p=explik(a, +a,)] is the Floquet parameter characterizing the

periodicity of the structure, kK = 27t/ is the Floquet-Bloch wave number perpendicular to

the interface of sub-layers, A is the length of propagating wave and @, +a, = L is the width
of repeating cell.

2.1 Formation of electroacoustic hybrid waves in 1D transversally inhomogeneous
periodic composite.
Considering the infiniteness of the structure in y direction, wave forms of 1D elastic

displacements and electric field potential in homogeneous layers are represented as a plane
wave: f(x,y,t)= f, expli(kx — ot)].

Vibrations of electric shear and corresponding vibrations of electric potential in
homogeneous layer €,(x,y) made of piezoelectric of the symmetry class 6mm are

characterized by system (2.1) along with boundary conditions (2.4) and (2.7) and are given
by

I/I/I(x) = Dlw COS(k]W((D) : 'x) ’

®,(x)=D,, cos(klw((o) : x) +v,D,, cos(k,,(w)-x) (2.14)
Here, k,(®) and k (w) are formation parameters or moduli of wave numbers of
electroactive shear waves in €,,(x, y) perpendicular to the surface of non-acoustic contact,
Y, = (el(é) / Sfll) ) is the piezo-dielectric parameter of the piezoelectric of the symmetry class

6mm characterizing the connection of electromechanical fields.
Wave forms of 1D elastic extension and electric field potential in €2,,(x,») made of

piezoelectric of the symmetry class 6m2 are described by system (2.2) along with the
boundary conditions (2.5) and (2.8) and are given by:

U, (x) = D,, cos(k,(®)-x),
®,(x)=D,, cos(km (®)- x) +7v,D,, cos(k,(®)-x) (2.15)
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Taking into account (2.3) along with boundary conditions (2.6) and (2.9), we obtain
V,(x)=D,, cos(k,(w)-x) (2.16)
In (2.15) and (2.16), k,(w) and k,, (®) are formation parameters or moduli of wave
numbers of dilatation waves in Q,(x,y) perpendicular to the surface of non-acoustic

contact, Y, = (el(lz) / 85?) is the piezo-dielectric parameter of the piezoelectric of the

symmetry class 6m2 characterizing the connection of electromechanical fields, k, (o) is

the formation parameters or modulus of wave numbers of shear waves in €, (x, )

perpendicular to the surface of non-acoustic contact.
The eigenfrequencies of vibrations corresponding to wave forms in sublayers

Q,,(x,») and Q,(x, ) are as follows:
oy, =nnC, Ja,, o, =nnCy./a,, o, =nnC,,/a,, neN. (2.17)

It is evident from (2.15) and (2.16) that 1D longitudinal elastic vibrations in £,,(x, )

are electroactive, while the transverse vibrations are not related to electric field vibrations.
The corresponding electric field in that layer is related only to the displacement

U, (x)-exp(—i®t). The character of connection of extensional (or compressing)
displacements with electric potential @, (x)-exp(—i®?) in Q,(x,y) is the same as the
character of the connection between W,(X)-exp(—i®f) and @,(x)-exp(—icx) in
Q,(x, ).

2.2. Propagation of 1D electroacoustic forms in transversally inhomogeneous
periodic composite.

Substituting expressions (2.14) + (2.16) into boundary conditions of quasi-periodicity
(2.10) + (2.13), we obtain the following dispersion equation of propagation (frequency
filtration) of electroacoustic waves (as in [4] and [19]):

~ [1-(cosk, (w)g, )]2 +[ 1-cos (k,(w)a, )]2
2 [1 —cos(k, (w)g, ):I . [1 —cos(k, (0)a, ):I
Substituting the expressions of formation coefficients k, (®) and k,(®) into (2.18), the

solution of the dispersion equation can be represented as

k((’)):;-arccos [I_COS(O)GZ/CZI*)] J{I_COS((’)al/Cu ):I
(a,+a,) 2[1—cos(mal/(j“):|.|:1_Cos(maz/cy*):l

The region of allowed frequencies in the layered structure is determined from the
obvious constraint |cos[k(a] + az)]| <1. Since for the right-hand side of (2.18), the inequality

[1 —(cosk, (w)a, ):'2 + [1 —cos(k, (0)a, )]2 >1, (2.20)
2 [1 —cos(k, (0)a, )] [1 —cos(k, (w)a, )]

cos[(a, +a,) - k(®)]

(2.18)

(2.19)
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holds only when COS(kW (w)a, ) = cos(ku (w)a, ) , then the set of allowed frequencies

consists of the following two groups:

o e 2m,nC,,, o e 2mln(~fh
" a, |:1_(a1C21*/a2C1t):| o al[l_(azcn/alczl*):l

It is evident from the obtained dispersion equation of frequency filtration that the
electroacoustic wave signal propagates in the layered composite under study as an
electroactive hybrid wave of pure shear and as a wave of pure dilatation with two groups of
discrete frequencies (2.21).

Taking into account the values of eigenfrequencies (2.17), from (2.21) it follows that the

., m,m, €N (2.21)

main allowed frequency (D:;u with number m, =1 is always smaller than main discrete

eigenfrequencies ®;, and ®;, with number n=1. Therefore, the main frequency

cozu (m, = 2) may be of resonant type if and only if

®,, (m, >2) > min {(DOu (n<m,))=nnC,./a,; o, (1<m)= nnélt/al} (2.22)
In electronics and related fields, piezoelectric plates of magnitude of 1.0 mm or even

thinner are used for which {[[al ]];ﬂaz ]]} <107 m, and elastic wave speed has the amplitude

of order {[[Ch ]];IICZI* ]]} ~10° m/s. Then, from (2.17) and (2.22) it follows that the first main

frequency (JJZU (1) of electroacoustic hybrid vibrations has the order ®,, ~ 10° Hz.

Choosing the parameters of the composite according to a,C,. ~a,C,, it is possible to
achieve greater values for the second main frequency of electroacoustic hybrid vibrations:
®,, ~10°+10" Hz In these cases, the second main frequency cozw(l) of the

electroacoustic hybrid vibrations can always be of resonant type, i.e.,
®,, (m, >1)>min {(DOM (n)=nnC,./a,; o,,(n)= nné’lt/al} (2.23)

Comparably larger values of allowed frequencies co;w (1) will be of resonant type in sub-
layer €Q,,(x,») when the geometric and material characteristics of the composite satisfy
a,/a, =C,. / 2C, . On the other hand, comparably larger values of allowed frequencies
O)EW (1) will be of resonant type in sub-layer €,,(x,») when a,/a, =3C,/C,,. .

From (2.19), we obtain the length of propagating mode of electroacoustic hybrid waves
as)h, (®) =4(a, +a,)/(1+2m). The groups of allowed frequencies are determined as
intersection points of phase curves and line A(0) = 4(a, +a,) (see Figure 2).

In numerical computations below, we consider the following values of characteristics:

- for widths of sublayers - ¢, =10~ m and a, =2x10"m,

- for the piezoelectric material of hexagonal symmetry class 6mm —

) =1,639x10° N/m*,  p,=5,302x10°kg/m*, &) =8,786x107" F/m,
el =0,23 C/m*, C, =1,7585x10° m/s .
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- for the piezoelectric of hexagonal symmetry class 6m2 - ¢ =8,612x10'" N/m*
¢ =4,852x10"° N/m*, ¢ =1,045x10"° N/m? 2 =10,71x10° N/m*
c? =5,86x10" N/m* p2=2,648><103 kg/m3’ 8%?):4,25X10711F/m,
ey =4,63x10™" F/m, ¢} =3,21 ¢/m*, 8, =1,4231, C,. = 2,189x10° m/s.

w10®

25

Figure 2. Intersection points of phase curves and the line determines the groups of allowed
frequencies
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Figure 3. Wave surfaces of elastic displacements of hybrid electroactive wave in composite cells

Distributions of elastic displacements W, (x) - exp(—i®?) and U, (x) - exp(—i®t), as well
as the potentials of electric field @, (x)-exp(—iwt), @, (x)-exp(—iow?) in sub-layers

Q,,(x,») and Q,,(x,y) are determined by (2.14) and (2.15), respectively.

In the case of comparably smaller and comparably greater allowed frequencies of wave
signal, these distributions are plotted in Figures 3.a, 3.b, 4.a and 4.b, respectively.
From boundary-value problem (2.5), (2.7) and (2.14) it follows that in the case of layered

piezoelectric medium, the shear displacement v,(x,y,?) does not occur in the piezoelectric
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of the symmetry class 6m2 . The corresponding electric field in that sub-layer is connected
with u,(x, y,?) only. The character of the connection between extensional displacement and
electric potential in that sub-layer is the same as that between shear displacement w,(x, y,t)
and electric potential in the first sub-layer.

Wix)
1.0 —\
os | Wy, o
a) Forms of electroelastic shear
0.0092 W (x,0,) and W (x,0,)
in cases of allowed frequencies
s of composite
-1.0
ux)

b) Forms of electroelastic shear

1.0

! U, (x,o,) and U (x,0, )

0.5 Wy, in cases of allowed frequencies
Wo 5 of composite

Figure 4. Formation of elastic displacements of hybrid electroactive wave

3.1 Electroactive SH-waves in piezoelectric medium with system of infinite cracks
When the layers of the composite are made of piezoelectric material of the symmetry
class 6mm (or 4mm) only, and separated from each other by a system of infinite cracks,

planes of which are parallel to the polarization axis of the piezocrystal p, (resp. p,), then
the quasi-periodicity boundary conditions are simplified to

dW,(0)) d®,(0.) dw,(0,) do,(0,)

R e e

iy dw;ioi) +e? dq):iioi) =0, (3.2

(Dl (ali) =u- (Dl(oi) > (3.3)

el(;) dW,(a,,) _8511) do,(a,) = H'(el(? M_gﬂ) %J (3.4)
dx dx d dx
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Nonetheless, the solution of (2.1) will have the same form (2.14). Note that the continuity
conditions of the electric potential, as well as the periodicity conditions of mechanical

stresses on all cut-offs x = na, are fulfilled.

The dispersion equation for determination of phase velocity is obtained by substituting
(2.14) into (3.1) + (3.4) and has a simpler form

cos(a,k) = (1 +cos’(oa,/C, ))/2 cos(oq,/C,) (3.5)

From (3.5) it follows that electroactive SH-wave can propagate in this case as well.
Solution of dispersion equation (3.5) for wavelengths is obtained as

AMo) =2mna, - [arccos [(1 +cos’ (mal/élt))/(2 cos(coal/(j”lt))ﬂ_1 (3.6)

Therefore, the phase velocity will be of dispersion type

V,(0) = [aloa/arccos [(1 +cos’(oa, /én ))/(2 cos(ma, /éu ))ﬂ (3.7)

Despite the case of homogeneous space (space without periodic cracks), in this case,
zones of forbidden frequencies occur (see Figure 5.a). Actually for short waves, when they
are of the order of width layer, there are two groups of forbidden frequency zones. It is clear
that in one group of zones of permissible frequencies, the phase velocity first decreases, and
then increases. In the second group of zones of permissible frequencies, the phase velocity
first increases and then decreases (see Figure 5.b).

M) Valw)
0.05
0.04
i 0.02f j
0.004 [
I 0.01} \_— .
0.002 [ . J L . LAl i) 1B . ( 1 w108
T R W TRl : 5 10 15 20 25

@) Zones of allowed (and forbidden) lengths b) Phase velocity of electroelastic shear wave Vw (w)

IIX( m)]] of electroelastic shear wave

Figure S. The case of propagation of electroactive shear wave in piezoelectric with a system of infinite
parallel cracks

In Figures 6.a and 6.b, distributions of elastic displacements and electric potential along
width of two neighboring piezoelectric sub-layers respectively are shown.
From the figures it follows that a periodic cell is formed of two identical interlayers. At the

edges of cracks x,, =0%2na, between the piezoelectric layers, the elastic displacement has
an underlined maximum, and the electric field potential has an increased background.
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Figure 6. Distributions of elastic displacements and electric potential in case of propagation of electroactive
shear wave

At the edges of the cracks x,, =a, £2na, between the piezoelectric layers, the elastic
displacement and the electric field potential smoothly pass into the next cell.

A similar picture is obtained in problem of the propagation of electroactive dilatation
waves in a piezoelectric medium of the hexagonal symmetry class 6m2, with a system of
transverse infinite cracks.

3.2 Electroactive elastic waves of dilatation in piezoelectric medium with system of
infinite cracks

When the layers of the composite are made of piezoelectric material of the symmetry
class 6m2 only, taking into account one-dimensional solutions (2.13), (2.14) and quasi-
periodicity boundary conditions (2.4)+(2.11), the plane stress-strain state of the layered
structure is described by

o dU,(0) e do,0.) _, (3.8)
dx dx
91(12) dU,(0.) —sﬁ) do,(0.) _ 61(12) du,(0,) _83) do,(0,) (3.9)
dx dx dx dx
@D, (a,)=un-D,(0) (3.10)
e du,(0) @ do,(0) _ o [61(12) dU,(a,) _g® dq)z(az)j 3.1
dx dx dx dx

In this case also, the continuity conditions for electric potential and the periodicity
conditions for mechanical stresses are fulfilled on cut-offs x =0+ na, .

The obvious similarity of solutions (2.14) and (2.15) and of boundary conditions (3.8) +
(3.11) and (3.1) = (3.4), implies a dispersion equation similar to (3.5). The reduced velocity

n, (0)) takes the form
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() =@ (a0/C,r)
ﬂz ézz* arccos [1+cos2 (maz/éz,* )/4 cos(maz/GZ,*)}

The wave of dilatation is characterized by the same properties, as the share wave in the
case described in section 3.1.

In both cases, phase velocities are dispersive. They differ from phase velocities of hybrid
waves as qualitatively, as well as quantitatively. Figure 7.b shows the dependence of the
phase velocity of electro-acoustic shear waves in a piezoelectric medium of the symmetry
class 6mm with an infinite system of transverse periodic cracks

Nye(®) = [(alco/élt )/arccos [(1 +cos’ (mal/élt))/(2 cos(oaal/@“))ﬂ (3.13)

and the dependence of the phase velocity of electro-acoustic shear waves in a piezoelectric
medium of the symmetry class 6m2, with an infinite system of transverse periodic cracks

MNuw ((D) = [(azo)/éz,* )/arccos [l +cos’ (maz/éz,* )/2 cos(maz/éw )ﬂ (3.14)

respectively.

(3.12)

Ng(0) e W)
' _ a0
20/ \ — D () | ‘ |
| |

~ | ) — @

[ Ny ¢lw)
' 20
I 0.5 1.0 1.5 20 25 1 J \_,/
-10:»\ L

\ 10+ —
| — )

w10

L1 L L 1 L
25000 30000 35000 40000 45000

a) Reduced phase velocities ng (8) and no (6) b) Reduced phase velocities 1, (®) and n, (u)) of

of electroelastic hybrid waves respectively electroelastic share dilatation waves respectively

Figure 7. Phase velocities of hybrid waves as well as of separately propagating electroactive shear waves and
of dilatation wave in piezoelectric with a periodic system of infinite parallel cracks

The zones of permissible frequencies for phase velocities 1, (®) and LI ((D) from (3.13)
and  (3.14),  respectively,  will  be néu / a, <,, < 2TCC~'U / a, and

nC, . / a, <o, <2nC,, / a, From Figure 7.b it is obvious, that the zones of permissible

frequencies of the electro-elastic shear wave can intersect with the zones of permissible
frequencies of electro-elastic wave of dilatation.
From (2.21) it follows that the allowed frequencies of hybrid waves are not dispersive.

However, they depend on the ratio of widths of piezoelectric sublayers & = (a2 / a, ) .
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The phase velocities of hybrid electro-acoustic waves in an inhomogeneous layered structure
constructed of the same piezoelectrics are determined as

My, (8 =C,(1+8)/[1-(C,/C,.)5] (3.15)
M, (®) = G, (1+8)/[8+(C,1./C,) ] (3.16)

which are plotted in Figure 7.a.
From the graphs of the phase velocities of the hybrid wave, it is obvious that, depending on

the parameter O = (a2 / al) , there is a critical value of frequency 03(*) () . In the frequency
interval 0 < ® < 0); (8), the hybrid wave propagates with the phase velocity n;u (8), and

in the frequency interval 0)3 (8) < w <0, the hybrid wave propagates with the phase

velocity m,,,(8) .
The shear component of the wave V,(x,»,¢)=0, as in the case of piecewise
homogeneous composite.

Conclusions

Non-acoustic contact within the piezoelectric layers results in hybridization of dissimilar
electroacoustic waves.

The propagation of 1D electroactive hybrid elastic waves of pure share and pure dilatation
in compound transversally inhomogeneous periodic piezoelectric space made of
piezocrystalls of hexagonal symmetry class 6mm (or of tetragonal symmetry class 4mm )
and 6m?2 is possible. There exist two groups of allowed discrete frequencies. When the ratio
of widths and elastic wave speeds in layers are inverse to each other, then the allowed discrete
frequencies are of resonant type.

The propagation of 1D electroactive shear waves in piezoelectric medium of the
symmetry class 6mm (or 4mm ) with infinite transverse cut-offs is possible with zones of
allowed and forbidden frequencies.

The propagation of 1D electroactive dilatation waves in piezoelectric medium of the
symmetry class 6m2 with infinite transverse cut-offs is possible with zones of allowed and
forbidden frequencies.

The study was carried out with the financial support of the Committee on Science of the

Republic of Armenia within the research project 18T-2C195.
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