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Mxurapsin C.M.
O nHanps:xEéHHO-1e(POPMALHOHHOM COCTOSIHMH YNPYToii 6€CKOHEYHOM NIACTHHBI C TPELIMHOM,
pacummpsiiomeiics nocpeAcTBOM BAABJIHBAHHS B He€ IJ1aIKOr0 TOHKOI'0 BKJIIOYEHHSI
KiioueBble ciaoBa: ympyras IUIaCTHHA, TpeIWHA, BKIIOYEHHE, DACKPBITHE TpPeIUHBL, Kod(HIeHT
MHTEHCUBHOCTH Hanpsbkenuii (KUH).

PaccmatpuBaeTcs mnockas 3aada 00 onpeeIeHHH KOMIIOHEHT HAPsDKEHHO-Ae(OPMUPOBAHHOTO COCTOSHHUS
YIpyrol H30TPONMHONH OECKOHEUHOH IUIACTUHBI C MPSAMOIMHEHHOH TpEeIIMHOM KOHEYHOH JIMHEL, B KOTOPOU
BCTaBJICHO TOHKOE a0CONIOTHO »KECTKOE BKIIIOUCHHE C IJIafKOW IOBEpXHOCTHIO. I[Ipenmmonaraercs, 4ro sTa
MIOBEPXHOCTh 00NajaeT HEHTPAIbHOU U OCEBOH cUMMeETpHell, uMeeT (opMy THIA CIUIIOCHYTOIO JJUIMIICA HIU
(hopMy TOHKOTO CTEpIKHS IIPSMOYTOIBFHOTO CEUSHUs U IPY BAABIMBaHUHM IIOTHO IIPUIIEraeT K OeperaM TPeUIuHEL,
a Ha 00pa3oBaBLIEMCs IIPH ITOM KOHTAKTHOM y4acTKe JNEHCTBYIOT TOJIBKO HOPMaJIbHbIE KOHTAKTHEIE HAIPSDKCHYS.
Pemenne obOcyxnaeMoil 3amauu CBeJEHO K PEIICHHIO HHTErPalbHOrO ypaBHeHHs Ppearoimbma mepBoro poaa ¢
CHMMETPUYECKUM JIorapHMHUIECKUM SIpoM. I1ocTpoeHs! TOUYHOE M YHCIEHHO-aHATUTUYECKOe MPHOMIKEHHOES
pELIeHHs 9TOr0 ypaBHEHMs. PaccMOTpeHbI yacTHbIE Cilyyad, IPOBEIEH MX YMCICHHBINH aHAJIU3 U MCCIIEOBAHbI
3aKOHOMEPHOCTH H3MEHEHHS XapaKTePUCTHK 3aJauu.
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The plane problem of determining components of the stress-strain state of an elastic isotropic infinite plate with a
rectilinear crack of finite length, in which a thin rigid inclusion with a smooth surface is indented, is considered. We
assumed that the inclusion surface has a centrally-axial symmetry, its shape is an oblate ellipse part or a thin
rectangle, and during the indentation, the inclusion surface is tightly adjoined to edges of the crack, and only normal
stresses act in the formed contact region. Solving the problem is reduced to solving the Fredholm integral equation
of the first kind with a logarithmic symmetric kernel. The exact analytical and approximate numerical-analytical
solutions of this equation convenient for engineering calculations are constructed. The main characteristics of the
problem (such as contact normal stresses in the region of contact between inclusion and crack edges, the cracks gap
(opening) outside the inclusion, normal breaking stresses outside the crack on its location line, their stress intensity
factors (SIF)) are represented by explicit analytical formulas. In particular cases, the numerical analysis of these
characteristics is carried out, regularities of their changes are revealed. The phenomenon of infinite increase of SIF
is established at infinite approach of the end points of inclusion to the crack tips. As a result, the crack begins to
propagate and brittle fracture of the plate occurs. Proceeding from this, as an application of the obtained results, an
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estimation of crack resistance of a plate with a crack is given; namely, the critical value of the relative length of the
rectilinear inclusion, at which the crack propagation begins, is determined.

1. Introduction. Cracks and foreign inclusions in deformable solid bodies are stress
concentrators, around which the local stress fields characterized by large and rapidly
changing gradients are formed. The stress concentrations have a significant influence on the
strength characteristics of structures. Therefore, the qualitative and quantitative investigation
of the stress concentrations as well as the development of ways to reduce them have
theoretical and practical significance. Problems of determining the stress strain state of
deformable bodies with cracks and inclusions, issues regarding the interaction of cracks and
inclusions and their influence on strength properties of structures are often encountered in
the mechanics of composites, in geomechanics, in thermoelasticity, and in their engineering
applications. These problems are the subject of numerous studies [1-7]. In [3] the problem
on the development of a crack in the vicinity of the rigid inclusion top was studied, and SIFs
near the crack, on the continuation of the linear rigid inclusion, are determined. Different
cases of combination of cracks and rigid inclusions in an elastic matrix were investigated in
[8]. Many results on this topic are summarized in the handbooks of SIFs [9, 10].

In the present paper, we consider the plane problem of determining components of
stresses and displacements (playing an important role in fracture mechanics) of an elastic
isotropic infinite plate with a rectilinear crack of finite length, in which a thin absolutely rigid
inclusion with a smooth surface is indented. We assume that the surface has a centrally-axial
symmetry, its shape is a part of an ellipse oblate along its length or a thin rectangle. During
the indentation, the inclusion surface is tightly adjoined to the crack edges and only normal
stresses act on formed contact regions. Solving the problem is reduced to solving the
Fredholm integral equation of the first kind with the logarithmic symmetric kernel; its exact
solution is obtained (the necessary formulas and transformations for construction of the exact
analytical solution are transferred to Appendices A, B, C). Based on the Gauss-type
quadrature formulas (like in [11]) in combination with the method of collocation, the
approximate numerical-analytical solution of the governing equation is also obtained.

It should be noted that the problem discussed here represents a flat analog of the
axisymmetric problem, previously considered in [7], where only SIF is approximately
calculated using the model based on the solution of the classical contact problem on the
indentation of a round punch with the flat base into the elastic half-space. Such model is
applicable only for small relative lengths of inclusion. However, while investigating the
problem of crack propagation and clarifying the issue of the maximal inclusion length which
an elastic matrix with a crack can withstand, it is necessary to consider exactly the large
values of the relative length of the inclusion. On the other hand, these problems are closely
related to the problems of wedging elastic bodies by thin, absolutely rigid wedges of various
shapes, widely covered in the handbooks [9, 10]. On this concern let us point out also the
works close to our subject [12-16]. However, the problem formulations are different: in the
problems on wedging elastic bodies, the positions of the end points of cracks and contact
zones are unknown in advance and are determined in the course of problem-solving. In our
case, these parameters are given in advance.

The main characteristics of the problem mentioned above are represented by explicit
analytical formulas. In particular cases, regularities of change in these characteristics
depending on the specific parameters are revealed by the numerical analysis.

As an application of the obtained results, an estimation of crack resistance of a plate with
a crack is given for the rectilinear inclusion. For this case, the critical value of the relative
length of the inclusion, at which the crack propagates occurs, is determined. Thus, a plate
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with a crack cannot withstand inclusion of any length; especially the inclusion with a length
equal to the length of the crack, i.e. when there is a complete contact of the inclusion with
the crack edges.

2. Problem formulation. Assume that an infinite elastic plate with the elastic modulus
E , the Poisson’s ratio v and the thickness / in a rectangular coordinate system Oxy has a
crack along the abscissa axis (mathematical cut) of finite length 2/, L={y =0, -/ <x<I}

(Fig. 1). It is thought that the plate is isotropic, homogeneous, and is in the generalized plane
stress state. Suppose that a thin absolutely rigid inclusion of length 24 (a <) with a smooth

surface is indented into the crack. The surface is described by equations
y=%/(x)(-a<x<a),where f(x) is an even nonnegative function (f (—x)=f(x));

both the function f(x) and its first derivative are continuous on the interval [~a,a] and

A=f(0)= Mgz(f(x) <<a(a<l).
rigid v isotopic IaFnsﬁc plate
inclusion
4 crack
_i$_ -X
+ “a a

(Ev)

Fig.1. Smooth absolutely rigid oblate along its length inclusion with an upper surface y = f (x) and

lower surface y = —f(x) putting pressure on crack edges L = {y =0,—-/<x< l} in an elastic infinite

plate.
In particular, the thin inclusion may be in the form of a strongly oblate along its length
ellipse part
x2 2
—2+y—2=1 (b <<a,—a<x<a,a<a <l).
a b

The minor semi-axis bl of the ellipse is much shorter than the major semi-axis a, . Whence
f(x)=—"+ alz—xz(—aéxéa;a<alﬁl). )

Such a choice of the shape of the inclusion is due to the fact that according to [17-19]
the crack is considered as the limiting case of an ellipse when 5 — 0 (4, =1); in this sense
geometric forms of the thin inclusion and crack are compatible. In addition, under this
limiting transition, the stress state of an elastic infinite plate with a thin elliptic hole becomes

a stress state of the plate caused by a Griffiths crack [19] (pp. 308-309).
Besides the described form, a thin inclusion can also be in the form of a rectilinear

segment with length 24 and height 20 , where & << a (Fig.2).
Hereafter we consider the possibility of approaching the inclusion endpoints to the crack
tips (a — /). In accordance with the crack interpretation as a limiting case of the ellipse (1)

when b, —0 [17-19], and taking into account well-known asymptotic formulas for
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displacements near the crack tips, it will be assumed that the function f(x) has the

following behavior

F(x)=0((1£x)") (x> =),

YA isotropic elastic
rigid plate
inclusion
@ crack
_h X
-L —3 a ]
(Ewv)

Fig.2. Smooth absolutely rigid linear inclusion with length 2a and height 20 (6 <<a,a< / )

putting pressure on crack edges L = { y=0, —=/<x<] } in an elastic infinite plate.

Then we suppose that the thin inclusion with a smooth surface, indenting into the crack
edges, tightly adjoins them along its entire length, i.e. contact region is the line segment
—a < x < a . Because of the smoothness of the inclusion surface, we assume that only normal
stresses arise in the contact region.

Under these assumptions, it is required to determine the pressure of the inclusion surface
on the crack edges or normal contact stresses, crack opening outside the inclusion, normal
breaking stresses outside the crack along the line of its location and SIFs.

Due to symmetry about the x-axis, within a well-known approximation [20, pp. 114-
115], according to which the boundary conditions from the walls of the inclusion can be
transferred to its midline, the posed problem can be formulated as the following mixed
boundary-value problem of the mathematical theory of elasticity for the elastic upper half-
plane y>0:

V(x,y)‘y:m:f(x) (—as xSa,f(—x)zf(x)ZO), V(x,y)‘y:+0 =0 (|x|21),
=0 (—00<x<00), Gy(x,y)‘ =0 (a<|x|<l), (2a-e)

y=+0

W y=40

o (x,y), G, (x,y) T, (x,y) -0 as x +) oo
Here v(x,y) is a vertical displacement of the point M (x, ) of the upper elastic half-

planeand G, © ,» T, are components of normal and tangential stresses, respectively.

xy

Reduce solving the problem (2a-e) to solving an integral equation. For this purpose, we
use the solution of the auxiliary problem from Appendix A. Namely, with the help of (A7)
fulfilling the boundary condition (2a), we arrive at the following Fredholm governing integral
equation (IE) of the first kind with a symmetric kernel for unknown pressure

p (x) (p (—x) =p (x)) of the rigid inclusion on the crack edges:
1 ]‘. n I? —xs+\/(l2 —xz)(l2 —sz)
TE P —xs—\/(12 —xz)(l2 —52)

p(s)ds = f(x) (|x| < a) (3)
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Further, in (3), (A8) — (10) we proceed to dimensionless coordinates and values,
assuming

=x/a, n=sla, p,(&)=p(a€)/E, [, (&)=S(d&)/a,
8, =8/a, p=lla (p>1), ¥,(&)=¥(at)/a, )

K’ =-/nlK, [aE, c,(€)=0(at)/E, o,(E)=0,(a&,+0)/E.

As aresult, these formulas are transformed to the followings:
ljln p*—&n+(p* =€) (p> - 1)
m ot -gn-y(pr-g)(pP - )
1 j \/ﬁ po dn

po(n)dn=£,(&) (-1<&<1); (5)

o, (8)=-0,(8)= e (&>p); (6)
= (aB/\xl ) K K}’=f g%:po(n)dn; (7

2¢ P —§n+\/(p ~&)(p* - )p (i (<e<p). @

gt (0 -8)(pt )

The formulas (5)—(8) are the basic equations and relationships of the posed problem.

\Po(‘:):

3. Method of analytical solution. We proceed to the solution of the governing IE (5) and
first transform it to a simpler trigonometric form, assuming that

E=pcos9, n=pcosp;, o=arccos(l/p)=arccos(a/l);
o, (9)=p,(pcos9)sin9; g,(8)= f,(pcos9); 9)
a<d, o<P;B=n—-oa(0<a<m/2).

As a result, after simple manipulations the equation (5) gets the following form:

%jln{sm(gg‘p)/ n(9=0)]

sin"— dmo((p)d(p:go(\()) (<9 <B). (10)

Represent the solution of the integral equation (10) equivalent to the original
equation (5) in the form of an infinite series with unknown coefficients x, (n =0,1,2,...) as

follows (see Appendix B):

1
o, (9 ; oc <3<n—-a (11)
0( )= Jeos2a - cosZSZ )
where X is given in (B9), T, (X)are the Chebyshev polynomials of the first kind. Further,

we substitute (11) into (10), change the order of integration and summation, and use spectral
relationships (B9). As a result, we get
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20> wx T (X)=g,(9) (a<8<n-a).
n=0

Whence using the orthogonality conditions (B11), we find

J2cos? % h, — 2(n=0):
—2. h — gO (8)7—;1(X)d8 . k — (n )’ (n:()’l’z"”) (12)
1 (n # 0);

" pK'kp, " 2 Jeos2o—cos29’

where L1, is given by the formula (B9). Thus, the coefficients x, are determined by formulas

(12).
To solve the integral equation (5) forp =1 (a =/ ) , according to (B19), we represent

its solution as an infinite series with unknown coefficients y, (n=1,2,...)

2 (&)= 00, (5) (-1<E<), (13)

n=1
where U | (EJ) are Chebyshev polynomials of the second kind.
Further, as above, we substitute (13) into equation (5) for p =1, change the order of

integration and summation, and then use the relations (B19). As a result, we obtain the
equality

TN -1 -1
=&y u, (8)=2"4(5) (-1<&<)).
n=1
Now multiply both sides of this equality by U, (&) (m = 1,2,...) and integrate
with respect of & from -1 to 1. Using the orthogonality condition of the Chebyshev
polynomials of the second kind, we find

v, =2"ng,; g, =20 [ £, (&)U, (8)de (n=12,.). (14)

If we assume that the function f (&) is a twice continuously differentiable function

on the interval (—1,1) and we take into account that f; (£1) = 0, then after integration by

parts it becomes possible to get the estimation of the Fourier coefficients:
g, = 0(1/}’12+8) (8 > 0) for n - oo

and, consequently, the series (13) or corresponding Fourier sine series converges uniformly
on any interval [-r,r] (r<1).

4. Solution of IE (5) by numerical-analytical method. We will also construct
approximate solutions of the discussed integral equations using the numerical-analytical
method based on the Gaussian quadrature formula for calculating definite integrals in
conjunction with the collocation method. The same approach is in the basis of the well-known
numerical-analytical method for solving singular integral equations (SIE) proposed in [21]
and [22]. Based on these considerations the solution of equation (5) can be represented in the
form
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Q(g,p)/1-8 (-1<g<1),

where Q (@, p) is the Holder function in the interval —1 <& <1. Further, following the

well-known procedure, solving the equation (5) is reduced to solving the following finite set
of linear algebraic equations

K, X, =a, (r=1N)
Krm=iln p2—§mm+\/(pz—<i;)(92—n;n)’ X,,,:Q(Tlmap)’ ar:f()(gr)’
N progm, - (0 -8) (0 )

n, :cos[(Zm—l)n/2N], E. :cos[nr/(N+l)] (m,r :L_N) (15)

Here 1, and & are Chebyshev knots, roots of Chebyshev polynomials of the first
kind T, (1’]) and the second kind U (?;) , respectively, where N is any natural number.

After solving the system of equations (15), the solution of (5) at Chebyshev knots, 1, , will

be determined by the formula

po(n,)=X,/J1-n2  (m=TN). (16)

In a similar manner, the solution of the same equation (5) for p =1 reduces to that of
the system of equations (15), in which, however, one should put

p=1 X, =y1-1,Q(n,.p) (m=LN).

5. Analytical results. Let us calculate the basic mechanical characteristics of the
problem under consideration in the explicit analytical form. Turn first to the formula (11),
from which the dimensionless pressure of the rigid inclusion on the crack edges is
determined. In this formula, we return to the former variables and quantities. From (4) and
(9) we get
x=a&, E=pcosd, (p=I/a), ic. x=IcosY (a<I<m—oa).

In the light of the above, we transform

Jcos 200 —c0s 29 = /1 + cos 20— (1+c0s 29) =+/2+/cos? o — cos> 9 =
J ( ) =2+

N S p+l p-E|[p-& p-1 22\/a2_x2
PV Cosa(p+é)\/(p—1 p+&j(p+§ p+1j W2

(-a<x<a).
On the other hand, in formula (B9) assuming that

X s
8:arccos7, t:arcc0s7 (-a<x,s<a),
after simple transformations we get
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“ ds
[
2K’(aJr )!.\/(az _Sz)(lz _Sz)
Then from (9)

@, (8)=p,(pcos9)sin 9 = p, (£)y1-8"/p* = p(x)NI* - x’ /El.

Taking into consideration these transformations, the formula (11) for the pressure of the
inclusion on the crack edges is represented as

_EP

px nn
f’ 12_x aO

where X is defined by (17).
Now in the expression for the pressure p (x )we replace x by s and XbyV, and

X=cos®, O=

(—a<x<a). a7

(~a<x<a), (18)

substitute it into the right-hand side of (A8). Using the relations (B17), we get
| I’E > ch(mnuk’)

Ol = \/2()62 _az)(xz _lz) nz::;(_l)n % ch(TmK/K')

where coefficients X, are defined by formulas (12) and the variable u (0 <u < K') is given

by the formula (B17).
Let us find the crack opening on the intervala < x < /. In the variables of (9), the
formula (8) for dimensionless opening takes the form

b4 (pcosS pj‘ln{sm 8 (‘D /‘ S (pj:|w0( )d(p (O<8<oc a—arccos%j

Substituting in this expression o, (9 ) from (11) and taking into account the relations (B10)

(x>1), (19)

for 0 < 9 < a as well as (B7) where sin = sn(u,k), we get

‘Po(pcos{})=4pix—”vnsh(%J (0<9<a or 0<u<K),
n

n=0

sin (20)
i 2
w= I & =F((P,k); k=tgzg;(p=arcsin(MJ’
o 1-2) (k) 2 tg(/2)
where F(¢,k) is an incomplete elliptic integral of the first kind (B3a).

The SIF is determined by the formula (A9) (the dimensionless SIF is determined by the
formula (7)) where the pressure p(x)is given by (18).

Let us express characteristics of the problem through the solution of the finite system
of equations (15). Then the solution of the equation (5), i.e. the dimensionless pressure of
rigid inclusion on the crack edges, will be determined by the formula (16) in terms of the

solution X (m = L_N) of the system (15). However, using the Gauss quadrature formula

for integrals with the Cauchy kernel and for definite integrals, from (6)—(8) we have the
following formulas for the dimensionless normal stresses, the dimensionless SIF, and
dimensionless opening:
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1 Z\/P -n,’X (&>p). K= Z P+T”Im X,

N\/ﬁ —p*m M, =& pP=M,

€2y
v p* =&, +4/(p" =€) (P -1,
ZX In - \/< - 2)( — ) (lSiSp).
N " e, - (0 -8 (2 - )
Calculate also the resultant pressure on the crack edges
P= j X)dx = P = jpo )d¢ (P, =PJaE); P, :%ixm. (22)
m=1

6. Particular cases. Let us consider two important particular cases of the discussed
problem where the thin rigid inclusion has the form of a line segment, more precisely, the

form of a thin rectangle of length 24 and height 26 (8 << a) , and where it has the form of

a strongly oblate along its major axis half-ellipse part (1).
In the case of a rectangular inclusion (Fig.2), f (x) = and the right-hand side of the

governing integral equation (5) is f (&) =9, (80 =5/ a) . Then for the right-hand side of

equation (10), equivalent to (5), we also have g (8) =0, . Hence by the orthogonality of
the Chebyshev polynomials of the first kind (B11), it follows from (12) and (B9) that

x,=h,=0 (n=1,2,..).
1/cos20L —co0s29
Calculate the integral

s d9 1 " . 9+a . 9-a S+a 9-a)”
= = sin sin cos dd
" \/l+c052a—(1+cos28) N2 2 2 2 2

_;ﬂ'—[a (Ct ZE_t Zgj(ct Zg_t Zgj 71/2&
J2sina 3 SR8 T cos’ (9/2)

Passing to the variable y and parameters ¢ and d by formulas (B4), we get from the above

xO:(8000s4(0L/2)/pKK')hO, hO:nI

expression
_ N2 [ dy
e )]
Using the value of this integral [23] (p.260, f.-la 3.152.10), we finally have

hy = K'[\2 cos* (a/2).

As aresult,
(l+p)8 (a+1)8 ( p-1 l—a)
= k=——=——|, =0 =1,2,...). 23
2\/—sz 2\/—K( ) p+1 l+a xn (l’l ) ( )

Now taking into account (23), we obtain from (18)

46



E(a+l)8
x)=
4K(k)\/(a2 —xz)(l2 —xz)
or in the dimensionless form

_ (1+p)80 _1<E<]).
Po(a) 4K(k)\/(l—§2)(p2—§2) (1 € 1)

Then with the help of (24) we calculate SIF K, by the formula (A9):

(—a<x<a) 24)

—a

© _1\/EE(a+z)6T ds
N
n\N 1 4K (k) (Z—S)(\/az—sz)
Again, using the value of the well-known integral [24] (p. 175, f.-la (21)), we get

n ES [l+a aE ,
K, = /_ =—K 25
"Nrak(k)Ni-a u ! *)

where K is the dimensionless SIF:

o +1
0= T% PT (26)
4K (k) p—1
By the formula (19) using (23), we find immediately the normal breaking stresses
outside the crack

(a+1)8E

o, = X > l (27)
)‘y:O 4K(k)\/(x2_a2)(x2_lz) ( )
or in the dimensionless form
1+p)d
(g (s

B 2 2 2
4K () (& -1)(& -0")
Now SIF K, can be also calculated by the formula (27) that once again will lead to (25).

Finally, the dimensionless opening of crack edges outside the rigid inclusion according
to (20) and (23) is determined by the formula

~ (1+p)3,
‘I’O(pcosS)—pK(k)Cosz(a/z) (0<9<a), (
u= 0 dr :Sinq’ dr = ; (p=arcsin _tg(8/2)] )
!x/l—kz sin’t ! (1-2*)(1-k7¢) Flok): o (tg(a/z) ,

where I ((p, k) like that in (B3a) is the incomplete elliptic integral of the first kind of the

modulus £ .
Calculate also the resultant pressure from (24):

47



L Ry p :aE(1+p)501 de .
e (R N (wr ey

The last integral is the complete elliptic integral of the first kind of module y = a / [ . Hence,

E(a+1)6 -1 1-

p_Llaxs K(x) |k=P=="X|
2K (k) p+1 14y

Relationship (29) establishes the dependence between the resultant pressure P and the half-
width of inclusion 8, i.e. the measure of the vertical settlement of longitudinal sides of a
rectangular inclusion into an elastic matrix. In the dimensionless form, we get
By =(1+%)8,K (x)/2K (k) (B, = P/aE). (30)

Consider the second particular case. Equation of the upper oblate semi-ellipse (1) is
represented in the form

(&)= (at)/a=e\a; -8 (e=b/a;a,=a/a; e<<1). G1)
Then all mechanical characteristics of the problem may be calculated by formulas (16)

and (21) - (22).
Let us discuss the limiting case « — 7, assuming that a thin absolutely rigid elliptical
inclusion, indenting into a crack across its entire surface, is closely adjacent to the edges of

the crack along its entire length. In this case, in (31) € = b, / [, a, =1 should be taken and

29

based on the integral relationship (B19), the solution to the governing integral equation (5),
where p =1, should be represented in the form of an infinite series (13) of the Chebyshev

polynomials of the second kind with unknown coefficients y,. These coefficients are
expressed by (14), from which for the function (31) we have

yi=¢/2, y,=0 (n=12,..).
Hence by (13) p, (&)28/2 (—lﬁﬁ,ﬁl) or
p(x)=cE/2 (-I<x<I). (32)

Substituting (32) into (A8) and taking into account the value of the well-known integral [24]
(p.175, f.-1a (19)), we easily obtain

| :i(x—\/xz—lz) (x>1). (33)
Yly=0 2 2

2Nx" =1
Calculate the SIF K, from (33):

K, = lim [ \2r(x=0)o| _ |=eE /2 (34)

or in the dimensionless form
K'=¢/2; K°=K,/Enl.
The same result (34) can be obtained directly by means of (32) and (A9) for ¢ =/ .

For a comparative analysis of the analytical expression of SIF (25) and the other known
similar expressions, we consider the following cases.
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1) As a comparison, we consider the case of a normal opening of a crack by a dipole
of concentrated at the origin forces with a magnitude P determined by (29). In this case, for
SIF we have [20]

K, =P/nl.

Then writing the SIF (25) with the help of (29) as

K, = TcP/Z\/EK(x)\/l— ’

we get for their ratio

b=k (x)=K, /K, =n/21-%*K (%) 35)

2) With the same case of dipole forces we compare SIF (7) when the inclusion shaped
as a strongly oblate half-ellipse (31). In this case, taking into account (22), we have

-1
b =k ()= —Z Loy [ﬁ:xj 6)

1 Xnm m=l
where X, is the solutlon of the system (15).

3) We also compare SIF (25) with SIF calculated by the model proposed in [7]. We
assume that normal forces p (x)are symmetrically applied to the crack edges along the

segment (—a,a). In accordance with Sadovsky's solution to the problem on the indentation
of a punch with a flat base into the elastic half-plane [25] we have:
p(x)=P/nNa’-x* (-a<x<a).

Then by (7)

[+5 2P
I = K (x)
l n e NIl—s \qg* TE\/ nl
and hence
K
kz=k3(X):KTI=“2/4K2(X)\/1—X2- G7
1
7. On estimation of crack resistance of a plate with a crack. Now proceeding from
(25), we note that linlK ;, =, i.e. when the inclusion ends are approaching the crack tips,

the SIF K, increases infinitely, taking on also its critical value K. at which the crack starts

to propagate. It follows that the crack will propagate before inclusion ends reach the tips of
the crack. This phenomenon is quite similar to the phenomenon of cracking the brittle elastic
bodies during their wedging by an absolutely rigid thin wedge [12]. The quantity X,. is
called the crack resistance or the limit of the ductile fracture of materials during normal
separation at the maximum constraint of plastic deformation and is an important charac-
teristic of materials. The values of K, for a large number of materials are given in [26].
With the help of (25), we evaluate the critical value of the parameter , = p_l = a/ [,at
which the crack begins to propagate. For this, we require the fulfillment of the condition

> K \/ﬁ l+a
e = l 4K (k) l—a
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From this

[1+a Ji 4K (k)
—2K, = 38
[-a “Jn ES (38)

Evaluate the complete elliptic integral of the first kind K (k). It is evident that

1 1
K =v1-k* <V1-k# <1 (0<¢<]) =  1€——<—
( ) R

Hence

§SK(k):£\/

dt <
(1-2) (k) 2¥
If we now require the fulfillment of the condition
l+a 4K 7
I—a rES 2k

then the condition (38) is a fortiori fulfilled. Further elementary transformation of this
inequality leads to a quadratic inequality fora :

Kla*+a-1’K} >0, K,=+rK, [ES.

The solution to this inequality has the forms

>—1+\/1+412K5‘ a>—1+,/1+4lzK§
22— 5 -2

2K, l 2K;1
Finally, we have

2
=all=%,, % :{_1"' 1+(K;)c) j|/KIOC =

- KIOC/[1+ 1+(Kp. )2 };K?C =2miK}. [ E*8’.

We will call the dimensionless quantity K. the reduced crack resistance.

(39)

At 7 2y, the crack propagation begins and brittle fracture of the plate occurs. Hence,

it follows that according to condition (39), a plate with a crack of a given length can withstand
a thin rectilinear inclusion indented into crack edges only if the inclusion has proper length.
Consequently, a complete contact of the rectilinear thin inclusions with the crack edges along
its entire length from the point of view of fracture mechanics is impossible. Therefore, it is
necessary to introduce corresponding corrections in the formulation of the Sherman-
Muskhelishvili classical mixed boundary-value problem [19] (pp. 444-446), where full
contact is considered. This issue was studied in detail in [6].

8. Numerical analysis of the mechanical characteristics. To determine changes in the
basic mechanical quantities of the discussed problem and to reveal regularities of their
changes depending on specific geometrical and physical parameters, the numerical
implementation of the obtained analytical results were carried out.
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In the case of a thin rectilinear inclusion (Fig. 2), values of the dimensionless SIF K,
are calculated by the exact formula (26) at §,=0,05, and for different values of the
parameter y (29), the relative distance from the inclusion right end to the crack right tip

(x =a/l) . At the same time for the same values of parameters, K} has been also calculated

by the high-accuracy approximate formula (21), where X, is the solution to the linear system

of equations (15). The calculation results obtained by both formulas, which practically
coincide for large N, are represented in Table 1.

Table 1. Values of K, (exact and approximate)

X 0,03 0,05 0,09 0,1 0,2 0,5 0,8 0,9
K° 0,0161 | 0,0179 | 0,0207 | 0,0214 | 0,0266 | 0,0421 | 0,0748 | 0,1089
I 10,0161 | 0,0179 | 0,0207 | 0,0214 | 0,0266 | 0,0421 | 0,0751 | 0,1096

The Table of exact and approximate values of the dimensionless SIF K [0 for different values of the parameter
xX= a/l and for a fixed value of 60 = 6/61 = 0,05 in case of the thin linear smooth rigid inclusion, wherein

the upper row shows the exact values of K [0 , and the bottom row — approximate values of K 10 .

Here, in the first row values calculated by the formula (26), in the second row those
calculated by (21) are given. According to these values, for the sake of visual illustration of

the change of dimensionless SIF, the graph of K is plotted (Fig.3). It shows that the value

of K| increases significantly asy —1.

15 -
0.06 -/

0 >y
0 02 04 06 08 1

Fig.3. The graph of dimensionless SIF, K? depending on the parameter 7 (x= a/ /) and for a fixed
value of 8, (8, =8/a =0,05).
Turn to the quantity . defined by the formula (39) and consider a specific calculation

example to determine the order of magnitude of K7 . Let the elastic plate be made of extruded

aluminum strip alloys for which according to [26] (p.113, Table 2.2) K, =410MPa-~cm
and according to [27] (p.63, Table 1) E =0,7-10°kg/cm® = = 6,9-10* MPa . Assume that
21 =40cm and 6=0,1lcm; 0,3cm; 0,5cm; 0,7cm; 1em; 2cm; Scm; 10cm . For these values

of physical constants and geometrical parameters, the critical value of y at which the crack
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propagates, . , as well as the reduced crack resistance K are calculated from the formulas
(39). According to the results of calculations, Table 2 was compiled. As it follows from Table
2, the values of K ;’c are small numbers (e.g. for = lem Kfc =4,435-107 ), and therefore,
we can simplify (39) by taking 1+( K, )2 ~1. As a result, we can practically assume that
%. ~ K. /2 which is confirmed by the first row of Table 2.

Table 2. Values of y, and K.

5/1 0,005 0,015 0,035 0,05 0,1 0,25 0,5

X. | 0.211885 | 0.02463 | 0.00453 | 0.00222 | 0.00055 | 0.00008 | 0.00002

KIOc 0.44369 | 0.04929 | 0.00905 | 0.00443 | 0.00111 | 0.00018 | 0.00004

Table of values of the parameter (., the critical value of the relative distance from the right end of linear

inclusion to the right crack tip (¥, = a/ / ) and the reduced crack resistance K 10c for different values of 6/ l.
Note that the results of calculations of the dimensionless resultant B] according to the

formulas (22) and (30) also coincide with high accuracy, and the value of Poincreases
appreciably with increasing of y .

Next, the numerical realization of (35)-(37) is carried out and results of calculating
the deviations of the compared SIFs k g and their errors |1 -k j.| ( j=12, 3) depending on the

values of the characteristic parameter are given in Tables 3 and 4 (a, =1.2 and a, =2 are

taken when calculating £, )

Table 3. Values of kj and errors |1—kj| (j=123;a,=12)
X |k -k |k -k, k, - k|

0.01 | 0.997542 | 0.00245798 | 0.999983 | 0.0000165878 | 0.99504 | 0.00495967
0.1 | 0.97908 | 0.0209196 | 0.999947 | 0.0000532126 | 0.953793 | 0.0462066
0.2 | 0.965995 | 0.0340055 | 1.00176 | 0.00176355 0.914292 | 0.085708
0.3 | 0.960763 | 0.0392368 | 1.00682 | 0.00681802 0.880549 | 0.119451
0.4 | 0.964197 | 0.0358027 | 1.01642 | 0.0164202 0.852062 | 0.147938
0.5 | 0.978277 | 0.0217226 | 1.03251 | 0.0325148 0.828809 | 0.171191
0.6 | 1.00714 | 0.00714397 | 1.05857 | 0.0585711 0.811471 | 0.188529

0.7 | 1.05984 | 0.0598409 | 1.10182 | 0.101817 0.80217 | 0.19783
0.8 | 1.15984 | 0.159839 1.18098 | 0.180976 0.807135 | 0.192865
0.9 | 1.3978 0.397799 1.3702 0.370199 0.85166 | 0.14834

Table of the values of compared SIFs kj and their absolute errors |1 _ki| (j = 1,2,3) for different

values of the parameter y , where a, = 1.2.
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As follows from (35) - (37), k, (0) =1 and, therefore, the quantities |1 -k /.| (j=1,2,3)
are the absolute deviation kj from the unit. These values simultaneously give the relative
errors of the compared

SIFs, since according to the cases discussed above |1 —kj| = |K1 —K,|/I€I .

Analysis of the data in Table 3 show that for small values of y , the errors |1 -k j| ( j=L2, 3)

are very small numbers. For instance, for 3 =0,5 these errors are about 3%, for 1 <0,5 —
even less. The highest accuracy is provided in cases 1) and 2) (section 6). The values of
|1—k/.| (j=1,2,3) increase significantly with the increase of y and .

We also present the results of the numerical analysis that illustrate the course of the
change in the crack opening, which can be used in deformation theories of cracks
propagation. Values of the dimensionless crack opening on the interval ¢ < x </ or on the

corresponding intervals p<E<1 and 0<3<a (a =arccos o. = arccos /! ) are calculated
by the exact formulas (28) and by the approximate formula (21) (Z‘, =pcos 3) at nodal points
9, = ja/n ( j= O,_n) of the interval 0 < 9 < a . The graph of the change of ¥, (&) depending
on& for §,=0.05 and % =0.5is shown in Fig. 4, in which points corresponding to exact
and approximate solutions practically merged. ¥, (é) reaches its highest value at the point

£=1(x=a), ie. at the right end of the inclusion.

k]}u{‘:}

w
-

! 1,25 1.5 1,75 2

£

Fig.4. Graph of the dimensionless crack opening ‘¥, (é) onthe interval 1< E<p=1/a (a <x<l! )

in case of a linear inclusion for fixed values 8, = 8/a = 0,05 and ¥ = a/l =0,5.

We turn now to the second particular case when a thin inclusion has the shape of a
strongly oblate along its length ellipse (31). In this case, by solving a linear system of
algebraic equations (15) the main mechanical characteristics are expressed by formulas (21)—
(22). For different values of the parameter y and fore =0.05, a, =1.4, the values of
dimensionless SIF K, are calculated by the formula (21) and using these values, the graph
of SIF change is plotted in Fig. 5.
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Note that values of K| increase appreciably with the increase of the parametery . It is
also confirmed analytically. Indeed, it follows from formulas (C1) - (C2) of Appendix C that
limK; = lim| BK (%)] =, i.e. the values of Kj as y% —>1not only increase but increase

1>

p—l
infinitely. Now, it should be emphasized that at the end of section 6 the passage to the limit
was formally carried out,y — l(a -1 ), i.e. it was formally assumed that the rigid thin

elliptical inclusion of length 2/ entirely fits into the crack along its entire length, which is

also equal to 2/ . This problem as a mixed boundary value problem of the mathematical theory
of elasticity is correct and has a simple solution with characteristics (32)-(34). However, from
the point of view of fracture mechanics, this solution is unfounded and devoid of real physical

content since K, —> o as p—>1 and therefore when p —> 1 the crack propagates earlier than
the end points of the thin inclusion reach the tips of the crack.

N

K;

] ) )v/

o 025 0s 075 1

Fig.5. The graph of the change of dimensionless SIF, K [0 , depending on the parameter yy for
e=0.05, a, = 1.4 in case of a rigid strongly oblate elliptical inclusion

8. Conclusions. In the paper, by the method of integral equations an exact solution to
the plane problem of the theory of elasticity on the stress state of an infinite elastic plate with
a finite rectilinear crack, in which a thin smooth absolutely rigid inclusion shaped as an oblate
along its length ellipse is indented, is obtained.

At the same time, an approximate solution of the problem is obtained by reduction of
the governing integral equation to a system of linear algebraic equations. The main
mechanical quantities and characteristics of fracture mechanics are represented by explicit
analytical formulas of simple structures.

The important special cases of rigid inclusions shaped as a thin rectangle and as a
strongly oblate ellipse are considered; to reveal and promote understanding the regularities
of the change in the characteristics of fracture mechanics, their numerical analysis is carried
out.

It is established that the crack extension occurs when the inclusion end points are
approaching the crack tips, while the crack propagates earlier than the end points of inclusion
will reach the crack tips. Proceeding from this phenomenon, an estimate for the crack
resistance of a plate with a crack is given; namely, the critical value of the relative length of
the inclusion at which the crack starts to spread is determined.
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It is shown that the model of the complete contact of the inclusion along the entire crack
length, adopted in the classical boundary-value problems of the theory of elasticity, is
unacceptable from the point of view of fracture mechanics.

Appendix A. Let us consider an auxiliary boundary-value problem of the stress state of
an infinite elastic plate with a crack along the line segment —/ < x </, to the upper and lower

edges of which normal distributed forces of intensity p (x) , equal in magnitude but opposite
in direction, are applied and p(—x)= p(x), p(x)=0 for a<|x|<!.

Due to the symmetry about the abscissa axis, this auxiliary problem is equivalent to the
following mixed boundary-value problem for the upper elastic half-plane:

=—p(x) (—l<x<l); T, =0 (—oo<x<oo ; V| ,=0 (|x|21);

2 2
6,,0,,T,>0asx +y >

Yly=+0 y=+0

(AT)

A solution of the problem (A1) in displacement can be immediately obtained using the
solution of the well-known Flamant’s problem for an elastic half-plane in combination with
the linear superposition principle. Namely, introducing the notation

-plx) (—I<x<l),
J =S e 2
y=t0 —o(x) (|x| > l)

and using the known formula [25, pp.95-96] for vertical displacements of boundary points of
the upper elastic half-plane (upper semi-infinite plate) we have

(@

v(x,+0) = Iln|x S|z s)ds +const (—o<x <m).

By differentiation of both sides of the equation with respect to x we get
1 T Z(S)ds ( ) dV(x,+0)

—_— , \lj‘ x ==

S S—X dx

From (A3) by Hilbert’s inversion formula, we will come to the key equation of the
problem taking into account the boundary condition (2b):

)d. )d.
> (x)= st " = 2njws > (—o<x<om). (A4)

X X

(—o0<x <o), (A3)

Now considering the key equation (A4) on the interval (—l , ) , in accordance with (A2)
we can write
ds
p(x IW ) (—l<x<l). (AS)
27‘C §—Xx

Then the equat10n (AS) is treated as singular integral equation (SIE) and the following
well-known formula from [28] (pp 445-446) is used:

dv(x,+0) j’- 2o’ p )d . C
dx ? lz_xz

w(x)= (A6)
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Integrating both sides of this equation and using the well-known integral expression
given in [29] (p.111), we obtain

p(s)ds+

+Carcsin£+C1 (-1<x<lI),
a

where ¢ and G are constants. Since v(+/,+0) =0, then C=C, =0.

Consequently,

1 - Zz—xs—i-\/(lz—xz)(lz—sz)
— | In
nk °, lz—xs—\/(lz—xz)(lz—sz)

Formula (A7) coincides with the result of the monograph [30, p.33] obtained earlier by
the same author with the help of complex potentials of the plane theory of elasticity.

V(x,+0)= p(s)ds (—leSl). (A7)

Considering the key equation (A4) outside the interval (—l N) ) , we get an expression of

normal stresses outside the crack along its location line:
\u ds
(5,‘ =—o(x) I ) (|x|>l).
I y=+0 27‘C

Substituting the expression (x) from (A6) where C =0, after simple
transformations we obtain
signy ¢ V12 —s’p(s)ds
Gy‘y:w =—o(x)=- e J‘ - (|x| > l). (A8)
Here, the expression for the known integral [24] (p.175) was used.
Proceeding from (A8), we calculate the SIF K, and due to the symmetry we restrict

our consideration only by its value at the right tip of the crack, x =1 :

) /l
KI:x1—1>rl£lo|: 2n(x—l) (x +O J- +S ds (A9)

Formula (A9) coincides with the known result obtamed in [10
Finally, again taking into account the symmetry, we get from (A7) the following
expression for the crack opening out of inclusion, calculated only for the right segment

a<x<l:
o) j_l lz—xs+\/(lz—x2)(12—sz)
— | In

nE °, lz—xs—\/(lz—x2 )(lz—sz)

Appendix B. To construct the exact solution of Eq. (10), let us find eigenfunctions and
eigenvalues of the integral operator

‘P(x)zZV(x,+0): p(s)ds (anSl). (A10)
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Kh(S):%iln(sin(‘g;@j/sin(g;pjjh((p)d(p.

For this purpose, we use the results obtained in [31] and in [32], where by the methods
of logarithmic potential and with the help of conformal mapping of the complex plane with
two identical and symmetrically located cuts onto an annular ring, the spectral relationships
are established by means of Jacobi elliptic sine functions:

=kT(Y) (c<y<d; O<c<d, n=0,1,2,...)

v (B1)
V=cos®, (1)—1’.[ dt : k=—;K=K(k):j dt
Ko e -n)(-wr) d 0 J(1-2)(1-#7%)
l ! ! — .
¥ =cos®, @<= j s, - — K" th(nnK/K') (n=1.2,..);
K'3 2 =1)(1-k) K/d (n=0).

Here K (k) is the complete elliptic integral of the first kind of the modulus k, K'=K(k'),

where k' =+/1-k’ is the complementary modulus; n( ) are Chebyshev polynomials of

the first kind of the argument X ; ® and @ are incomplete elliptic integrals of the first kind.
In addition, the following integral relations cognate with (B1) were also obtained in [31,32]:

YtV ( )dv _
_[1 |y V|\/ cz)
_Ttdnch(ljcnK/K')[H(c )+ (_l)nH(y—d)]Sh(nnu/K') (B2)

(ye(0,c)u(d,»); n=0,1,2,.. 0<u<K)
where H (x) is the well-known Heaviside function. If in (B2) y €(0,¢), then y = csn(u,k)
and if y €(d,), then y = d/sn(u,k) where sn(u,k)is the Jacobi elliptic sine function of

the modulus & .
Note that in the theory of elliptic functions [23] the quantity u, called the argument

(u =arg (p) , is given by the formula

(0<k<1)

?
uzj
o V1 SlIl T

where the limit ¢ , called the amplitude ((p =am u) , 1s considered as a function of u .

Supposing  =SINT, we get
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sin@
U= I i = F(o,k), (B3a)

] \/(l—tz)(l—kztz)

where F' ((p, k ) is the incomplete elliptic integral of the first kind. However, by definition

sin p=sn (u, k ) = Snu . As a result, from (B3a) the well-known formula is obtained [23]

(p.924, f--la 8.141):

e di (B3b)

I[J(l—tz)(l—kztz)'

Now, in the relations (B1) we pass to new variables 3, @ and parameters o, 3

9 ¢ a B
=tg—, v=tg—; c=tg—, d=tg— (<3, @o<P). B4
y=tg> g g5 gz( <P) (B4)

By corresponding replacements in (B1) and slightly changing notations, after simple
transformations we come to the following spectral relationships:

lﬁ . sin(9+¢) sin(S—(p)| T.(Y)do
n;!:l { 2 / 2 d\/(coscp—cos[})(cosa—coscp)
p

=\, secgsec—Tn(X)
22

9
X =cos®, O =l,cosgsinﬁj dr , (B5)
K 2 2a\/(cosa—cost)(cost—cosﬁ)
¢
Y =cos®, d)zi,cosgsinﬁj- di
K 22 a\/(cosoc—cost)(cost—cos[})
(n=0,1,2,...) (a<8,(p<[3, k:tg%ctg%).
Passing to the variables (B4) in the integral relations (B2), we get
g - T(Y)d
lJ.ln[sin(g-i_(pj/sin(8 (Pj] "( ) hd = (B6)
T 2 2 \/(cosoc—cos ®)(cosp—cosp)

_ Sec(;;/ 2‘(3216;55‘(/ j)K TH(@=9)+(-1) H(9-p)Jsh (rm/K')

(SE(0,0L)U(B,TC); n=0,1,2... 0<u<K)

Here according to the above
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2arctg(tg%sn(u,k)j (0<9<a);
9= (B7)

2arctg[tgg sn(u,k)j (B<9<m).

Then we write the orthogonality conditions of Chebyshev polynomials of the first kind
entered in the relations (B5)

T (m=n=0),
d dy K'?% K'|n
IT,,(Y)Tm(Y)\/(dZ 2)( - 2) :=gj.cosn<l>cosm®d®:g 5 (m=n=0);
e -y )y -c 0
0 (m:tn).

(m,n=0,1,2,...).
Here we used the integral value from [23], (p.260, f-la 3.152.10).
Hence, the orthogonality conditions are given in the form

. K'[d (m=n=0),
[1,(1)T, () d = K'/2d  (m=n=0),
4 \/(dz_yz)(yz_cz) 0
(m#n).
Transforming these conditions into variables (B4), we obtain
5 K'/d (m=n=0);
ds a B
J.T (X)T, (X) =secsec K'/2d (m=n#0);
% \/(cosa—cos\‘})(cosS—cosB) 0 (min).
(B8)
Note that the relations (B5)-(B7) take place on a more general interval
(OL,B) (0 <a<P< Tc) (OL,B) (0 <a<P< Tc) than the interval in the integral

governing IE (10) where [3 =7 — .. Therefore, these relations should be modified in the

equation (10) assuming [3 = 70— .. Then after simple transformations, the spectral relations
(B5) turn to the followings:

n—o _ T Y d
1 I In sin(8+(p)/sin(9 (pj‘ "( ) Al =u,.Tn(X);(0L<9<Tr—0c;n=0,1,2..-)
T 2 2 \/COSZOL—COSZ(p
9 %
X =cos0, ®=TE VZCOSZEJ*; Y =cos D, (I)zTE VZCOSZEJ‘* (B9)
K 2% ~Jcos 20— cos 2t K 2+ Jcos 20— cos 2t
K'sec? 2
2th["”’fj (n=12,..);
n2n K ( ,a j
u, = k=tg"—;a<9, o<n—a
Ksec® =
mnK
th n=0);
20 2 (a-0)
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and integral relations (B6) turn to:

U s 25) o 05| e

2 \/cos20c—c052(p B
:%[H(a—8)+(—l)”H(S—W“X)}h(ﬂz_fq (8e(O,OL)U(TE—OL,TC);Z0,1,2...),

vn:K’secz% nv2 ch(nmnK/K'), (B10)

where the case n = 0 is replaced by the limiting case » — 0 and the orthogonality conditions
(B8) become:

o s [ (m=n=0),
T (X X = K'{1 m=n#0 , B11
2[ m( )T”( )\/COSZOL—00828 2\/5 ( ) (B11)
0 (m # n)
and X is expressed by formula (B9). Note that in (B10) according to (B7)

2arctg[tg%sn(u,k)j (0<9<a),
9= (0<u<K) (B12)

2arctg(ctg(;/sn(u,k)) (n-—a<9<m)
where k =c/d =tg2(0L/2) (0 <0 <m/2) and hence k'zwll—tg“(OL/Z).

Spectral and related to them integral relations for the integral operator in (5) can be
obtained directly from the relations (B9) — (B10) by returning to the previous variables (9)
and taking into account formulas (B12). However, the relations (B9) - (B10) in the
trigonometric forms are somewhat simpler.

We also transform the integral relations (B2). We get

ljfln y+v T, (V)dv _(-1)"K'sh(mnu/K")
T,

|y _V| \/(a'2 —Vz)(V2 —cz) mnd Ch(TmK/K’) After differentiation of
(n =0,1,2,...,0<u<K, y> d).

both sides of this relation with respect to y and taking into account that according to (B3b)

in case y > d , we will come to equality
l]‘- Tn(V)Zvdv :(71),,” ch(;z'nu/K') 1
TN (e ) BTN e [y
Introduce new variables &,7 :
y = é’+(c2 +d2)/2, v :T+(c2 +d2)/2 (—b <C&,r<bb :(d2 —cz)/Z).

After elementary transformations we obtain

n=0,1,2,.., y>d).
y
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.[ V)dr ),,H ch(znu/K") 1
ﬂ T Ch ﬂ'nK/K’)\/é’z_bZ
where accordmg to (B1)

Y(T

V=cos®, j
1

(n=0,1,2,.., {>b), (B13)

N2t+c*+d> (Bl4)

1
(2 -1)(1-k ) y(r):m
and for variable u (0<u < K’) again by (B3b) we have
d _d\2
I\/l ) (1Kt { J-2) (k) X(C)_\/2C+cz+d2.

Since here b= (a’2 -’ /2: ctg 0(/2—tg2 u/Z)/2=ZCos afsin®a (0<a<m/2), then

0 <b <oo and hence in (B13)—~(B15), we can formally replace b by a; C by x; t by s and
express other parameters in terms of @ . Namely, it is easy to find that

\/ 1+a* —a, d—\/a+ 1+a*, k=+l+d*—a, cosq =———
1+\/1+a (B16)

2 2 1 1
ctd _ 1+a*; coszzz—(a—l+\/1+a2); cosza:—2(2+a2—2 1+a2).
2 2 2a a

Now taking into account these changes, we rewrite the relationships (B13)—(B15):

snu X(g

(B15)

a ds a1 Ch(mnu
TIJ Vc)l (1) (mK//lli)) 1a2 (n=0,1,2,..; x>a),

¥(s)

T
K’ -!. \/(tz—
x]f) dt

0 \/(l—tz)(l—kztz)
where the value of modulus £ is given in (B16).

Let us consider also the limiting case of the discussing problem as a —/ . In this case,
p =1 should be substituted into the equations (5) - (7), the relation (8) is excluded from
consideration, and the integral equation (10) takes the form

%Iln[sinﬁ;@j/sm[?n%((p)dq,:go(&}) (0<8<m)  (BIS)

The eigenfunctions and eigenvalues of the kernel of the equation (B18) can be easily
found using well-known Fourier series [23] (p.52, f-la 1.441.2):

V=cos®, &=

(B17)

u=
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. X
S —

1[1/ 2

] = icosnx(_zn <x< 27t).
Whence we get

n=l1 n
ln[sin[‘gﬂpj/ sin(g_@j
2 2

Now if we multiply both sides of this expansion by sin m@ (m =1, 2,...) and integrate

n=l1 n

jzzisinn\‘}sinnq) (0<8, (P<7T)-

the resulting equality with respect to ¢ over the interval(o, TE) , we come to the following

spectral relations (m - n)

()

This relation in the former variables (9) with p =1 takes the form [29]

_l_j1n1_§n+ (&) (' ) 1«/ U, L(8) (~1<é<l; n=1,2,...)

R (S
(B19)

Appendix C. To analytically explore the behavior of K, as y—1 or p—1, we

Jsin n(pal(p:l sinnd  (n=1,2,...,0<9< 7).
n

substitute in the formula (7) (as in section 4)

&p/\/ Po(-1<g<l),

where Q(&,p) is the even Holder function on the interval [—1,1] . Then we transform this
formula as folloWS'

f p+n Q(n,p)dn f p+n An+B , f p+1 Q(n,p)—An—Bd

Ne-n - N Ji-n®

where 4 and B are not yet known constants. Set then €, (n, p)=

(n.p)—4n-B
(—1 <n< 1) and determine the constants 4 and B from the conditions €2, (il, p) =0.Asa

result,
4=1Q,(Lp)-Q,(-Lp)]/2; B=[Q,(Lp)+Q,(-Lp)]/2
and due to the parity of the function (T], ) A=0, B#0.Then we can write

+ d +n Qy(n,
BJ- pTh n J- prn 2 (n.p) dn, Q,(n.p)=Q(n,p)-B. (C1)
P=m1-n> Z\Np-m JI-n?
Since Q, (il, p) = 0, the second integral in (65a) is limited when p —> 1, and the first integral
is easily calculated. Namely,

f PN dn

P*‘”’” :pj M k()(x=1p) (€

JJ =) (et )
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