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Kasapsau K.B., Ilansan A.A.
Jloka/IM30BaHHbIE CABHIOBBIE BOJHBI B Ib€303JeKTPHYECKOM CJI0€ ¢ TOHKHM YIPYTHM HOKPbITHEM
Ki1ro4yeBblie €J10Ba: JIOKaIN30BaHHAS BOJIHA, IbE303JIEKTPUKU, TOHKOE MOKPBITUE, KOMIIO3HT.

B cratbe paccmarpuBaeTCs pacnpOCTpaHEHHE JIOKAJIM30BAHHOW BOJHBI CABHMra B ABYX(asHOil cpexe:
YIpyroe IOKPHITHE H IIbe30ICKTPUUECKUH ciIod. B pamkax mHpuKnagHOW MOIENN TOHKOIO CJIOS IOTydYeHO
JIMCIIEPCHOHHOE YPaBHEHME I YacTOT CBSI3aHHBIX JJIEKTPOYNpyrux BosH. OOCyxaaercss BIMSHHE YIPYroro
MOKPBITHS U Tbe303(PeKTa Ha JTOKaTU30BaHHbIE (ha30BbIE CKOPOCTH BOJIH.

Nwqupui 4.8., Muuyymiu U.U.
Stnuyuwugqdué uwhph wihpubpp pupwl wpwdquljut Swslnypny whtqnhEywphly sbpunmd
Zhfuwpunkp. nknuyugyus wihpubp, whkgnbikuphly, pupul] Swslyniyp, Yndynghun.

Znpjudnid nuunidtwuppynud £ uwhph  wibnujiwugdué wihpubph wwpwsnudp Gpyokpn
dhpwJuypmud: Punjugus wpwdquijub Swdynyphg b whhgnbikunphly otpnhg,: Fwupwuly okipnp
Yhpwpwlwt  dnpkh  hhdwt  Jpuw  uwnwgdl] B phuybpupnt hwjuwupnd  juywlgdwus
hEynpuwpwdquljut whpubph hudwp: Lutwpldl B wnwdquijubt swélnyph b whkqnkdkljnh
wqnlignipniip nknujtugywsd wihph thnyuwyhtt wpugnipjub Jpus:

The paper focuses on shear localized wave propagation in two phase medium: elastic thin coating and
piezoelectric layer. In the framework of an applied model of thin layer a dispersion equation is derived for coupled

electro elastic wave phase speeds. The influence of elastic coating and piezo effect on localized wave phase speeds
are discussed.

Introduction.

Piezoelectric composites that are made of by two or more of piezoceramic materials are
widely studied and discussed in [1-11]. In the problems of wave propagation in the
composites the perfect bonding at the interface between two materials is routinely assumed.
The composite structures consisting of piezoelectric ceramics with several types of partial
contacts at the interface between two materials i.e., the electrically shorted or electrically
closed, mechanically compliant (sliding) interfaces are considered in [4-8]. Electro elastic
shear surface (localized) waves in composite structures: inhomogeneous piezoelectric layer
— piezoelectric substrate, dielectric layer- piezoelectric substrate, piezoelectric layer -
inhomogeneous substrate are considered in [8-11 ]. The localized waves in piezoelectric layer
with different electrical and mechanical boundary conditions at walls of layers are studied in
[12]. A model of boundary contact for electro-magneto-elastic composites with interface
roughness is proposed in [13].

In the paper an analytical solution is given for a problem of shear localized wave
propagation in bi-material media constituted by thin elastic thin coating and piezoelectric
layer. The interface between elastic coating and piezoelectric layer is considered to be
elastically perfect and electrically shorted one. Analogous problem for pure elastic bi-
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material media is considered in [11]. For thin coating the applied model is used which brings
to averaged boundary conditions at contact interface between piezoelectric and thin coating.

Statement of the problem

Let’s consider shear wave propagation along a bi-material layer consisting from thin
elastic coating and piezoelectric layer. The geometry of the bi-material layer in the Cartesian

system (X, Y,Z), —@, < X<, —0 <Y<, —0 < z< o is depicted in Fig.1.

Elastic material

-a,

S

)

S S

Piezoelectric material

Figl. Bi-material layer in Cartesian system (X, Y, Z)

For piezoelectric layer of piezo crystal of 6mm hexagonal class of symmetry with polling
axis parallel to Z coordinate direction, the anti-plane problem is described by the following
equations and the constitutive material relations, based on the decoupled linear dynamic
equations of theory of elasticity and quasi- static set of Maxwell equations [1,16]

2,
V-Gzpaat—lj, v.B=0, E=-V.g
=V(GU +e,9) , D=V(-ep+gU) (1)

c
Gz(csxz(x, y,t),o, (% y,t));E:(EX(x, y.t),E, (X, y,t),O);
D :(Dx(x, y.t),D, (X, y,t),O),

Here, G, and G, are shear stresses, E is the electric field intensity vector, D is the

electrical displacement vector, P = (P( A t) is the electric field potential, p is bulk density,

V is the nabla vector, G is the shear modulus, € is electrical permittivity coefficient, €;
is the piezoelectric modulus.
Using (1) we get the following set of equations

2, 2 2
CZAU—aatLZJ ~0; A(U —%cpj:o, a=l O @
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For elastic layer the following equation and material relations are valid
6c,, 06y, OV Y oV
P = =0, 0 =G, G, =G —— 3)
OX oy ot OX oy
In (2, 3)pP,is the bulk density, Go are the shear modulus of piezoelectric material,

(G + s"lef5 ) p”!

At the bi-material interface Y =0 we consider the partial contact conditions of

Xz

electrically shorted contact for electric potential and continuous mechanical displacements
and tractions

(0, y,t)=0; 6,(0,Vt)=0,,(0,yst); U0, y,t)=V(0,y,t) @
At the bi-material layer external surfaces we take the following conditions
Ope(—8, Y1) =0, o (ayt)=0, o(a y.t)=0. (5)
Assuming that @, << @ we average [10, 14, 15] the equation (3) by elastic layer thickness
along coordinate X

0 a 2
o OX oy ’ ot

Taking in a view of the smallness of the thickness &, , assuming that the displacement

V(X, y,t) do not vary along the thickness of the elastic layer and taking into account the

boundary and contact conditions (4, 5) the averaged boundary condition at X =0 interface
can be cast as

0, (0., )+aOG oV —a,p OaU =0; x=0. (7)

Presenting the solutlons in the form of plane wave propagating along Y direction
U (% y,t)=U,(x)exp(iky—i cot),(p(x, Y,t) =, (x)exp(iky—iot) (®)

we get solutions for U, (X) NON (X) as

U, (x)=C, cos(x\/ﬁ)+Czsin(X\/ﬁ) (9)
0 (X) = Aexp(kx)+ A eXp(—kX)+%(C1 cos(x\/m)+c2 sin(x\/ﬁ))

-1
Here C,,C,, A, A are the arbitrary unknown constants, 1 = CO(Ck) is the dimensional

phase speed of electro elastic vibrations.
Substituting these solutions into the boundary conditions we obtain a homogeneous set

of algebraic equations, with respect to the arbitrary constants C,,C,, A, A . For nontrivial
solutions, the determinant of this set has to vanish. Equating the determinant to zero we
obtain the following dispersion equation determining phase speed 1] .
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) 2(%* +7)
cosh(K l—nz)cosh(K)
tanh(K l—nz)tanh(K)

+2(X2+X) +

+ (10)

+((n2 —1)()(4+1)2 —xz)

J1-1°

o2 tanh(K 1—n2)
+&KO(—0 nzj X —(x+1)tanh(K) |=0
p

Cz_ -1

Here the following notations are used

2
1=, K=ka, K, =ka: ¢ =G,/p,.

The dispersion equation (10) defines a localised wave phase speed n( K) as a function of

the dimensionless width K and the elastic and electromechanical coefficients of the layered
structure.
Now we shall restrict ourselves to consideration the case of localized vibrations of the piezo

elastic layer when 1 <1 only.

Elastic layer dispersion equation

When the thin elastic coating is absent (a, — 0 ), the equation (10) results in

/ 2
fl(n):_(x+1) l_nz ta]flh “T_n +Xtanh(§j! (11)
/ 2
fz(n)thanh KlT_n _(X"‘l) —n? tanh(gj

The equations (11) have been obtained first in [8].

Here we will only mention that the first equation of (11) corresponds to a dispersion
equation of symmetric vibration of layer with boundary condition

0,(0,,t)=0, ¢(0,y,t)=0; 5, @, y,tj =0, D, @ y,tj =0 (12)

and the second equation of (11) corresponds to a dispersion equation of anti-symmetric
vibration of layer with boundary condition
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6. (0,y,t)=0, ¢(0,y,t)=0; U@,y,tjﬂ, cp(g,y,tjﬂ); (13)

The phase speed —wave number (dimension less thickness) dispersion curves T ( K ) are

depicted on the Fig.2 for piezoceramic PZT-5H, where 80 is the well-known Bluestein-

Gulyaev solution for semi- space with electrically shorted and mechanically free interface
[12]., O,, is the limiting value of localized wave speed at K—>0

1
8 =1+2/(1+2%) =y1-%5 . 8o =(1+7) 7 <3, (14)

-1
The notation ¥, = e|25 (GS + qz 5 ) was used by Bluestein in [12].

i
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Fig.2. Dispersion curves “r]( K) for elastic layer, 50 =0.935, 501 =0.803

Modal structure of the localised wave in the bi-material layer

First it will be noted that the bi-material layer dispersion equation does not decoupled into
symmetric and anti-symmetric types of vibration which means that two phase structure may
not in some cases support two types of localized waves.

In the case of K >>1 the dispersion (10) can be rewritten as

m(l—ylnz)+((1+x)\/1—n2 —x)zO (15)

G

For thin layer K <<1 instead of dispersion equation (9) we get
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(16)

Here v = Cg / C? is the ratio coefficient of phase speeds of bulk shear waves in the elastic

layer and piezoelectric layer. The analysis of the dispersion equations (11, 15, 16) reveals
that its solutions are very sensitive to coefficienty . For the «soft» elastic coatingy <1 we

have thatn <1 for any values of K , but in the case of the «hard» elastic coating y >1 the

equation (9) may have no localised solutions for small values of K . Moreover, in this case,
for some classes of materials, only one localized wave can exist in a layered structure, in
contrast to the case of a «soft» elastic layer.

These circumstances and more are illustrated in Table 1, for certain class of materials
(M, M, are the speeds of localized waves).

Table 1
x=0 x=03 x=0.5 x=0 =03 x=0.5
Kilm|mn uh M, uh n, uh M, uh M, uh M,
0.5 - - - - - - 0.885 - | 0.805 - 0.762 -
1.0 - - - - - - 0.933 - 0.841 - 0.793 -
30| - - 0980 | - | 0936 | - 0.973 - | 0.897 - 0.856 -
50| - - 0.973 - | 0.938 - 0.981 - | 0.924 - 0.890 -
70 | - - 0.973 - | 0941 - 0.985 - | 0.936 - 0.905 | 0.962
10 - - 10973 - 10942 | - | 0987 | - |0.943 | 0.980 | 0.911 | 0.945
p/P=2, g/c=4 K,=0.1 p,/P=2, ¢ /c=02 K,=0.1
Conclusion

The localized vibration of layered structure is considered consisting from elastic coating and
piezoelectric layer of piezo crystals of 6mm hexagonal symmetry class. Based on an applied
model of thin elastic coating the dispersion equation is obtained for phase speed as a function
of the layer dimensionless width and the elastic and electromechanical coefficients of the
layered structure. It is defined that the solutions of the dispersion equation are very sensitive
to the coefficient of ratio of phase speeds of bulk shear waves in the elastic layer and
piezoelectric layer. For some classes of materials it is shown that the layered structure with
the “hard” elastic coating can support only one localized wave, contrary to the case of the
“soft” elastic coating where two localized waves may exist.
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