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Ycpennénnast ynpasiasieMocTh 0a10Kk Jiiiepa-BepHy/uH co cIy4aiiHbIMH XapaKTepHCTHKAMH MaTepHaJia:
mero] pyHkuuu I'puna

KiioueBbie ciioBa: prCHHéHHaﬂ JUHAMHKA, MATEMAaTUYCCKOC OKUTAHUEC, CUCTEMBI, 3aBUCAIIIAC OT mapaMeTpa

Uccnenytoress TouHas M NpUOMIDKEHHAs ycpelHEHHas yIpaBiseMocTh Oanku Oilnepa-BepHymmm co
CIy4ailHbIMH XapaKkTepHCTHKAaMH (KECTKOCTh Ha M3rMO M IUIOTHOCTh). PaccMarpuBaloTcs ciiydam, KOrjia
MaTepHalIbHBIE XapaKTePHCTUKAMH SIBISIOTCSI PABHOMEPHO ¥ HOPMAJILHO paclpe/IeNéHHbIe CIIyJaiiHbIe BEIMYHHEL.
3ajjaua 3aKII0YAETCsl B ONPEACNICHUH JOIyCTHUMbIX YHPABICHUH, TOYHO WM HPUOIIHKEHHO 00ECIeUHBAIONINX
Tpebyemoe ycpeIHE, HHOe COCTOsIHIE Oasky 3a 3a1aHHOE KOHeYHOe Bpemst. [IpecTaBuB obliee pelieHne ypaBHeHHUs
n3ruba 6anku ¢ moMorsio GyHknuu ['pruHa, MOTydYaloTces sIBHBIE NIPECTaBICHUS JUIS IPOTHOa U CKOPOCTH TOYEK
0ajKkM, TeM caMbIM, YIpoLas aHAIW3 YCPEAHEHHOW ympaBisieMocTH Oanku. BeIBojsATCS HeoOXoauMBIE M
JOCTATOYHbIC YCJIOBMSI TOYHOH YCPEAHEHHOW yNpaBIsAEMOCTH OallkM, a TaKXKe JOCTATOYHBIC YCIOBHUS
NpUOIIIDKEHHON yCpeTHEHHON ympaBiaseMocTd Oaynku. OCHOBHBIE Pe3yJbTaThl ITOATBEPIKNAIOTCS YHCICHHBIMU
pacuéramu. Dynkuum [puHa mns ypaBHeHHMs wn3ruba Oalku TNPU PA3IMYHBIX TPAHUYHBIX YCIOBHAX H
COOTBETCTBYIOIINE YCPEAHEHHBIC PEIICHUS IPUBO/STCS B IPHUIIOKCHHSX.

Ugbnhywh U.U., vppomnyuih U. d.
Umph wunwhwljub pimpuwugphsutpny Bykp-Lpnhh hEswhubph dthohttwg]wus
nhljudupkhmpbp. Iphth $mbhghuh bqubwlp
Zfuwpwnbp. uUhghtugdus phtwdhlju, dwpbdwnhiuljut vywund, wwpwibnphg juphws
hwdwlupgkp

Zhnwgnunud £ iymph wwunwhwlwb punipugphsubipnyg (ndwt Ynonnipmnit b junnipinil)
Ejtp-Rtipunihh hidwuh dhohtmgyws £2gphwn b qplipk nEwduptjhnipniup: Thunwpldnud o hkswth
Wniph punipwgphsbph hwjwuwpuwswth b unpdw) puohujus wuwnmwhwlwt dkdnipnit (hukno
nhypbpp: Apnuynud Eu mpqus JEpownp dudwbwlnid hkdwuh wwhwigyny Jhdwljn (dpgphn
Unnuwnp)  wwwhnynng  poyjunpkh - phjudupnudubkpp: Uhohtugdws nhljuwjwupbhnmpjut
htwwgnunudp  wupgbghtym  tyuwnwyn] hbdwih spdwh hwjwuwpdwi phghwbmp msndp
ubpuyugynid £ Qphuh $niuyghuyh dhongny: Zkdwuh vhohtmugdws &pgphuin nhljwyupbihnipjuu
hwdwp unug]mu kb withpudbow b pudupup, huly Uhghtug]ws qpbph nhjw]upbjhnipub hudwp’
pudupup yuydwbbbkp: Zknwgnuinnipjut wppyniipp hwunwnynud tophtwlubpny: Zugbpdusubpnud
phpdnud kb hkdwhh spdwh hwjwuwpdwh Gphih $niblghut’ nwpunbuwl kqpughlt wupdwibkph
hwuwp, hgytu twh hwdwywinwupwy vhohttwgyws nisnidubpp:

We examine the Euler-Bernoulli beam with random material characteristics (bending stiffness and mass per
unit length) on exact and approximate averaged controllability. Cases when the material characteristics are standard
normally and uniformly distributed random variables are considered. The problem is in an appropriate choice of
admissible controls providing a required averaged state of the beam (exactly or approximately) within a desired
amount of time. Representing the general solution of the beam equation in terms of the Green's function, it becomes
possible to derive explicit closed-form representations for the averaged deflection and velocity of the beam. This
makes controllability analysis a matter of straightforward computations. Specifically, necessary and sufficient
conditions for the exact averaged controllability, as well as sufficient conditions for the approximate averaged
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controllability are derived with respect to admissible controls. Numerical analysis allows to make a sensible
understanding of theoretical derivations. Green's functions for the main types of boundary conditions and closed-
form representation of the averaged dynamics are defined in appendices.

Introduction
The dynamics described by random state constraints (e.g., differential equations
accompanied by initial/boundary conditions), generally, is a random function. Therefore, if
such a dynamics is controlled, then the control function also must be random. However,
dealing with controllability analysis, control function must not contain any randomness. A
way of overcoming such situations for systems containing random parameters has been
suggested by the prominent mathematician Enrique Zuazua in [1] where a general theory of
controllability of finite-dimensional system has been developed. The compromise is found in
a smart way by controlling the averaged dynamics or the mathematical expectation of the
dynamics over all possible values of the random parameters. This new type of controllability
is called averaged controllability. A general theory for infinite-dimensional or distributed
parameter system is currently under development by Zuazua and colleagues. See [2-5] for
some of existing contributions. See also [4] for a handful of open problems related to
controllability of random evolution equations.
Suppose that the controlled state of a dynamic system is described by a function (for the
sake of simplicity, we restrict ourselves by the scalar case) W: U x R"'XR"xQ—>R

where Q2 € R™ is the domain of random parameters contained in the state constraints on W

(imagine, e.g., a differential equation with initial and boundary conditions), and I/ is the set
of admissible controls. Then, instead of the usual controllability residue [6]

Ry (u)= Hw(u, x,T;m)—"“erT ’

where T is the control time, @ € Q is the vector of random variables, W is the desired

terminal state and W, is the space of terminal states, Zuazua suggests to consider the

averaged residue [3]
R (u) = jﬂw(u,x,T;m)dIP’(m)—mH )
Wy

where the integral of W over () would be the averaged state or the mathematical

expectation. After computing the expectation and substituting it into 7?,?\/, it will be
guaranteed that the control U does no longer need to be dependent on @ .

At this, following to [3], we distinguish two concrete types of averaged controllability. If
for any initial and desired states, control time T, 7—\’,|-av (U) =0 fora Ue U, then the

system is exactly averaged controllable. If for any initial and desired states, control time T
and a desired accuracy € > 0, R.rav (U) < ¢ fora Ue€ U , then the system is approximately

averaged controllable. Null-averaged (exact and approximate) controllable systems are
defined analogously. Admissible controls providing exact (approximate) averaged
controllability, are called exactly (approximately) resolving average controls.

In this paper, we study the averaged controllability of Euler-Bernoulli beam with random
parameters. The cases of uniformly and normally distributed random variables are
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considered. Representing the general solution of the Euler-Bernoulli beam equation in terms
of corresponding Green's function and making use of the Green's function approach [6, 7],
we derive exact and approximate averaged controllability constraints. Numerical analysis
reveals non-triviality of theoretical derivations. At this, it is worth mentioning that the averaging
process considered in this paper has nothing in common with the averaging of material
characteristics widely applied in mechanics of inhomogeneous materials (see, e.g., [8]).

Note that the averaged controllability of Euler-Bernoulli beams has been considered in a
recent paper [9]. However, we would like to point out two principal differences between that

and the current papers. First of all, in [9] only the flexural stiffness E is considered as a
random variable, where E is the Young's modulus, | is the moment of inertia of the cross

section of the beam, while in this paper, besides El , another important characteristic of the
beam -, the mass per unit length, is considered as a random variable. This becomes

important especially when dealing with problems for beams made of specific material with
distinct Young's modulus and density. The second distinctive feature is that the average
controllability analysis based on the Green's function approach is quite straightforward and
it is easier to apply in particular cases, since the Green's function of the beam equations with
various boundary conditions has been found explicitly.

1. Governing equation and its Green's function solution

We consider a Euler-Bernoulli beam subject to a distributed control influence. Then,
the vertical displacement of the beam is determined from the fourth-order PDE (all variables
and quantities are dimensionless)

4 2
o 0w ow 1
——+—=—u(t)v(x), 0< x<I, t>0, (1.1
o, X' o o,

where ®, = EJ >0 and ®, = >0 are the beam flexural stiffness and mass per unit
length, respectively. Control influence is described by U with distribution V. By a proper
choice of V, boundary controls can also be considered.

Hereinafter, we limit the consideration by the case when both ®, and ®, are either

standard normally or uniformly distributed independent random variables. Then, their
probability density functions are given by

1 ® + o’
p(wl,wz)=ﬂexp{—f} (1.2)
or
1
R 1.3
p((’ol’(DZ) H(Q)XQ(O‘)I’O‘)Z)’ (1.3)

where 7y, is the indicator function, and M(Q) is the measure of ().

Let at t =0 the beam is in equilibrium. Then, the general solution of (1.1) can be
represented in terms of Green's function [10]



I ot

W(X,t;(ol,o)z)=L.[ I G(x&t—10,0,)u(t)v(E)dtdE, (1.4)
0)2 0J0

G(x&to,0,) i—(p (pn(ci)sin[kﬁ\/gt}
®,

= Aaflol

For determination of A, and @, for multiple boundary conditions, see Appendix 1.
Therefore, (1.4) can be rewritten as follows:

0 t ®
w( X, t; u(t)sin| A2 /—1 t—1) |dr, 1.5
( ®;, O, Z] ”(Pn”Z n IO (T)Sll’l|: n , ( T):| T ( )

o, = jo'cpn(a)v(a)da.

The particle velocity of the beam is determined by differentiating (1.5}) w.r.t. t:

B O[ums s 29 e o

E(X’t’ 1 2 3/2
2. Averaged controllability via the Green's function approach

The averaged controllability problem for the beam can now be formulated as follows.
Given any W,W, € L [O, |] and control time T, find control functions

uel = {u el? [O,T], Supp(u) C [O,T]} such that the averaged residue

2
v e 2 ol OW
Re (u) = [na? [w] - we L, +HM [ p } " @1
satisfies R.?V (U) =0 or 'RTaV (U) < € with a desired accuracy € . Here,
M7 [w]= jQW(X,T;ml,mz)d]P(ml,mz) = _[QW(X,T;ml,mz)p(ool,ooz)dQ
is the mathematical expectation of W over 2 at t =T .
Straightforward calculations provide
M2 W)=Y e (x) [, (T du=3 B, (T.u) 9, (%)
n=l /in ”(P L2[0.1] n=1
|: :l Z _[J\Pnl (T ZZBM T u (Pn 9
”(pn 2[o,l] n=l
where
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B, (T.u) =#j\y (T-7)u(t)ds,

L[o.1]

¥ (t)= Q(Dism kz\/gt p(w,,0,)dQ,

||<Pn

L*[o,1]

Yo (t ) o cos{ p(o,»,)d.

Furthermore, note that

W oy = 20 (B (T0) =W, ) o

n=1

[ [w] - we

L*[0.]°

reducing (2.1) to

o0

Re () = [ (B (To)=we ) + (B (T.) =) o

) o]’ 22)

where W, and W, are the expansion coefficients of W, and er into series of

{0nf o

2.1. Exact controllability
Then, from (2.2) we straightforwardly obtain the following result.

Theorem 1. For the beam exact averaged controllability it is necessary and sufficient that for

given T,
Bn (T, ) Wi, =0, n=1,2,... 2.3)
Bnl (T’u)_\Nl'ln :O’

forueld .

Remark 1. Note that system (2.3) is linear in U. Therefore, the set of exactly resolving
averaged controls can be described by solving (2.3) as a infinite dimensional linear problem

of moments, L”— optimal solution of which for 1< P <0 has been explicitly derived in
[11]. The heuristic method [12] can be applied, too.
2.2. Approximate controllability

Making use of the triangle inequality, for 'RTaV we obtain the following estimate:
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R < i[ﬁﬁ (T,u)+B7 (T, u)+w, +V\é1n}”(Pn”i2[0,l] :

Then, the following assertion holds.
Theorem 2. If for given T,

ni)[ﬁi (Tou)+ B2 (Tou) + g, + ey, gy < 2.4)
fo_r U € U , then the beam is approximately averaged controllable.

Remark 2. Note that (2.4) makes sense only when

é:zs—i[\/\én +W$m]||(pn iZ[o,q > 2.5)

Moreover, making use of the Cauchy-Schwartz inequality implying

;
D‘O LPH(T ) ( dr} OT]“\P L[o.T]?
we obtain
o T 2
B3 (Tu) B3 (Tau) = 22— | [T, (T=o)u(e)de | +
A ” nli?[o,l]
o’ T : “2”“ iZOT 4
b [T (T=n)u(e)de | <mB Ly a9
|, 2[0.] Aalen nll2 o]

Therefore, the following assertion holds.

Corollary 1. Assume that the desired state W, Wy, is constrained by inequality (2.5). If

for given T,
© ai

G(T)_Z4—|:”\Pn”i2[o'r +7\‘4 ||\Pnl||L2 0,T j| 0 (2'6)
n=1 7\. ” LZ OI]

is finite and

”U L*[0,T] (T) < é’ 2.7

then the Euler-Bernoulli beam is approximate controllable.

Remark 3. Moreover, if the conditions of Corollary 1 hold, then (2.7) defines a subset of
approximately resolving controls. Namely, any admissible control U € {{ with

<

”U 2[o.T] W
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is an approximately resolving control.

Remark 4. When Q) = {0)1,0)2 eR"o,<0 <o,,i= 1,2} is a rectangle, using the

boundedness of ¥ and ¥, on [O,T] for all N=1,2,..., we see that ”\Pn

[,

Llo,1]’

are finite, so that o is finite for T >t > 0. Therefore, as soon as ‘¥, # 0

L[0,T]
or W, #0 for at least one N, then (2.6) holds.
3. Numerical analysis

In this section, we carry out a numerical analysis of a particular case when €2 is a
rectangle. For the sake of simplicity, as well as in order to be eligible to involve the Euler-
Bernoulli assumptions, we limit the consideration only by metals (see Table 1). Assume that
the beam is of unit length, has a square cross section of side h=1/100, and is simply
supported (for explicit representation of the corresponding Green's function, see Appendix 1,
case 2). The beam is subjected to a control concentrated at the mid-point of the beam, i.e.,

V( X) = S(X— 1/ 2) , where 0 is the Dirac function.

Table 1. Young's modulus and densities of some metals

Metal E [GPa] pkg/m’]
Aluminum 10 2800
Cast iron 13.4 7300
Titanium 15.5 4500
Al-Bronze 17 8200
Monel 400 26 8600
Steel 29.2 7850
Cr-Mo Steel 31.7 8000

Based on the values presented in Table 1, we compute ®,, =25/3 (Aluminum),
®,, =26.4167 (Cr-Mo Steel), ®,, =7/25 (Aluminum), ®,, =17/20 (Monel).

3.1. Uniformly distributed random variables

First, let us consider the case of uniformly distributed independent random variables
with (1.2). Numerical analysis shows that, in this case, both ¥ and W, are bounded
functions of T and tend to 0 very fast as { increases (see Fig.1). For explicit representation

of W and W, see Appendix 2.

nl>»
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Fig.1. Plots of \Pn and ‘Pm against { for N = 1, 2, 3. the case of uniformly distributed random

variables
Evaluation of G as in (2.6) shows that as T increases, G(T) increases from 0 and
approaches the value of =3.13125 (see Fig. 2). Therefore, the first condition of Corollary

i2[0|] :19 then (25) hOldS Wlth 8:10‘4’ e.g., for

1 holds. Since in this case, 2||(pn

W, = asin(Tl:X), W, =0 in [0,1] with @<107. Implying Corollary 1, we see that
2

2[0] <1.66-10” provide approximate averaged

admissible controls with ||u

controllability of the beam.
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Fig. 2. Plot of G against T : the case of uniformly distributed random variables

3.2. Normally distributed random variables
Consider now the case when ®, and ®, are normally distributed independent random

variables with (1.2). It seems that it is impossible to express W, and W, in an explicit
form. Nonetheless, numerical analysis shows that |‘I’n| <3.10" and |le| <8-107"° on

[O,T] forall N=1,2,..., providing in (2.6), 0 < 107, Evidently, in this case Corollary

1 does not hold, and for the establishment of approximate averaged controllability of the heat
equation, inequality (2.4) must be evaluated.

Conclusions

Using the Green's function approach, necessary and sufficient conditions for exact
averaged controllability, as well as sufficient conditions for approximate averaged
controllability of a Euler-Bernoulli beam with random material characteristics subjected to
multiple boundary conditions are obtained in this paper. At this, both cases of standard
normally and uniformly distributed independent random variables are covered. The averaged
dynamics of the beam is represented in terms of the random characteristics explicitly, which
simplifies the controllability analysis significantly. The determination of exactly resolving
average controls is reduced to an infinite-dimensional linear problem of moments, the general

solution of which in L?, 1< p< 00, is known. A simple inequality on the L* -norm of the

approximately resolving average controls is derived. Numerical analysis reveals the efficacy
in the sense of computational complexity of the derived constraints.

Acknowledgments. We express our sincere gratitude to Enrique Zuazua for a useful
discussion that encouraged us to consider this problem.
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Appendix 1

In this appendix we define the eigenfunctions ¢, and eigenvalues A, for five

commonly considered boundary conditions. Below,
Kinsn (X) =sinh (A ) Fsin(1,X), K, ,, (X)=cosh (A, x)Fcos(A,X),

are the Krylov functions.

w

1. Both ends are clamped:

=Z—W=O at X=0 and x=I.

X

Then,

1 A

4 n
Ml 1 Lon ()]

7> @0 (X) = Ky (1) Ky (%) = Ky (DK, (),

A, are the positive roots of the transcendental equation cosh (M )COS (M ) =1.
2. Both ends are simply supported:
o'w
W=——=0at Xx=0 and x=I.
OX
Then,
1 2l 7n

o (Pn(X)=Sin(knx), Ay :|_.

Ml 7

3. One end is clamped, one end is simply supported:
2

Wza—W:O at X=0 and W=g—w—0 at X=1.

OX X

Then,
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12 N
}“i ”(Pn”2 oy (I )(Pn” (I)

A, are the positive roots of the transcendental equation tan (M ) —tanh (7\.| ) =0;

@0 (%) = Kip (1) Ko (%) = Ko (1) Ky, (%),

4. One end is clamped, one end is free:

ow W
W=-—=0at X=0and W=——=0 at x=1.
OX OX

Then,

2.2 ”; ”2 :;iki(pliﬂ)’ (Pn(x): K3n(I)K2n(X)_K4n(|)K1n(X),

A, are the positive roots of the transcendental equation cosh (M )COS (M ) =-1;

5. One end is simply supported, one end is free:

2 3

W=a—\;v=0 at X=0 and W=a—\g\l:0 at X=1.
OoX OX

Then,

L. S , @, (x)=sin (Al )sinh (1, X)+sinh (A ] )sin(%,X),

Ao 1 2w (1)

A, are the positive roots of the transcendental equation tan (M ) —tanh (M ) =0;

Appendix 2
In this appendix, we compute functions W' and ¥ explicitly when ®, and ®, are

uniformly distributed random variables.
Let Q= {0)1,(1)2 eR"o,<0 <m,,i= 1,2} be a rectangle. Then, the joint

probability density function of ®, and ®, reads as

1
p(@p@z)=(—xo ((01’0)2)’

n(Q)
where ¥ is the indicator function, and u(Q) = (0)11 - 0)10)((011 - 0310) is the area of
Q) . Then,
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_M(Qz)kzt[mlogn(t)_(’)nsm(t)]’
4
o) = LS (0o O} gyl Cn ) -Cu (1)
where
Sn(t):sin{kﬁ Dot |—sin| 22 Dt ],
5 L @y

@, L Wy |
t)=si| a2 [Dog [_si a2 Doy |,
S, (1) ;
L ) ©y |
S, (1) =Si| A2 [Pt |—si| 22 |2t ],
L Wy | L Wy |

and Si is the integral sine.

Information about authors:

Ara S. Avetisyan, Prof. Dr., Corresponding Member of NAS of Armenia, Head of the
Department on Dynamics of Deformable Systems and Coupled Fields, Institute of
Mechanics, NAS of Armenia. e-mail: ara.serg.avetisyan@gmail.com

Asatur Zh. Khurshudyan, Institute of Mechanics, NAS of Armenia.
e-mail: khurshudyan@mechins.sci.am
Received 04.11.2019

18



