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Asetucsin Apa C.
JIByMepHBbI€e 321a4H 3JIeKTPOAKYCTHKH B 0JJTHOPOJIHBIX Mbe303JIEKTPHYECKUX KPUCTAJLIaX
KawueBble ciioBa: DJIEKTPOYIIPYTOCTh, JJIEKTPOAKTUBHOC HaHpH)KéHHO—I[C(bOpMI/IpOBaHHOC COCTOSIHUE, aHU30TPO-
1A IbE30KpUCTalIA, yTO'—IHéHHLIe MaTepraJIbHBIC COOTHOIIICHUA, KBA3UCTATUYCCKUEC YPABHCHUA.

Hccnenyrorcss BOIpoChl BO3MOXKHOCTH Pa3IeNbHOIO BO30YXKICHHS M PACIpPOCTPAHEHHS IEKTPOYIPYToro
IJIOCKOTO MIIM 3JIEKTPOYIPYrOTr0 aHTHILIOCKOTO —HANpPsHKEHHO-Ie(OPMUPOBAHHBIX COCTOSHHH B OJHOPOIHBIX
MIHE30IEKTPHUECKUX KPUCTAIIAX.

ITosrydeHs! HEOOXOIMMBIE U JIOCTATOUYHBIE YCIOBHUS PA3IeNIbHOIO BO30OYKACHUS U PACIPOCTPAHCHUS IIEKTPO-
YIPYTOTro IJIOCKOTO U 3JIE€KTPOYIPYToro aHTUIIIOCKOTO HAIPSHKEHHO-Ae()OPMHUPOBAHHBIX COCTOSHUI B IThE30IIEK-
TPUUYECKHX KpUCTAJLIaX.

OmpenenieHbl  TEKCTYPHl  NbE30JHINICKTPHYECKHX  KPUCTALIOB, CTPYKTYpHl 0OOOMIEHHOTO  TeH30pa
JJIEKTPOYINPYTrOCTH  KOTOPBIX ~ IO3BOJIIOT  pa3felieHHe  IUIOCKOTO  HANmpsDKEHHO-Ae(pOPMUPOBAHHOIO
3JIEKTPOAKTUBHOTO COCTOSIHUS OT HEAJIEKTPOAKTUBHOIO AHTHIUIOCKOTO YIIPYTOTrO COCTOSIHHS.

B paccmarpuBaeMbIX 3ajayax I10Jy4€Hbl MaTepUallbHbIE COOTHOIIEHUS M KBA3HUCTATUYECKHE YPaBHEHHS
9NIEKTPOYIPYTOCTH AN BCEX MbE30XTICKTPHUIECKUX TEKCTYP B KaKIOH M3 BCeX TPEX CArHTTANBHBIX INIOCKOCTEH
COOTBETCTBYIOIIEH KPHCTAILINUECKOH peméTky. [IpoBenéH cpaBHUTENBHBIH aHAIN3 BHOBD IIOXYyYEHHBIX COOTHO-
LICHHH HaNpsHKEHHO J1e(OPMHPOBAHHBIX COCTOSHHMII C COOTBETCTBYIOIIMMY COOTHOLICHUSIMHU DJIEKTPOAKTHBHBIX
COCTOSIHUH TIIOCKOW M aHTHILIOCKOW Jie(opManiuii.

Upw U. Udtnhujui
EiEyupuwlniunhluyh Gplswih jpughpubpp hudwube yhtgnhjiupulwi ppoopnubpoad

Zhfuwpwnkp. EEjupuwrwdquijuinientt, LEjupujuituybuy winh] jupjusw-ndnpldughnt
yhdwl, whtqnpniptinh wthgnuuipnuyhw, Logpudus wnipwlwb webynipniuubtp, pjughunwnhy
hwjuwuwpnidukp:

ElEyunpulubwybu winhy, hwdwubn yhiqnbEjupuwb pnipbnubpnud hEnwgqnungnud ko hwppe
Juwd hwlwhwpp LEjunpuwrwdqujut jupjusw-nEdnpdughntt Jhdwlubph wpwbdht-wnwudhu
gqpgnuwit b nwpwsdwy htwpuwynpnipjut hwpgtpp:

Unugjws ki wpwdquijut nebnpdugynn dhowjuyph wihgqnuupnuhwny wuydwbwdnpjusd
EEynpuwrwdquljut hupp  jupjuwsunbdnpdughntt Jhdwljh wigwwn qpgedwt b nwpwusdwb
htuwpuwynpnipjut withpwdbown b puupup wuydwbtkpp:

Puguhwpnjws ku uhiqnpnipbknubph wyt nuukpp, npnbg HEjnpuunwdquljutinipyub phuqnph
Jupnmgyuspp pnyp b nuhu bEjunpujuwbugbue wlnh] hwpe jupjusuntdnpimghnt h&ulh
whgwnnudp bEnpulwbwybu ny wlnh] hwljuwhwupp nednpuiwmghugh Jhduljhg:

Unugjws ki wpwdquijut nEbnpdugynn dhowjuyph wthgnuupnuhwny wuydwiwdnpjusd
hEyunpuwpwdquljut hwjwhwpp jupjuswundnpiughnt Jhdulh wigwn gpgrdwt b mwpusdw
huwpuwynpnipjut withpwdbown b pujupup wuydwbtkpp:

Pugwhwpnjws tu twlb whbqnpmiptnubph wju nuubkpp, npnig hEjupuwpwdquljuinipyui
ptugnph  Jupnmigwdpp pny; £ wwhu REjupuljutugbue  winh] hwlwhwppe jupdusw-
nhdnpdwughnt 4hwlhh whgwwnnidp LiEjunpujubwybu ny wijnhy hwppe npidnpdwughuygh Jhdwlyhg:
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Ptpywsd punhpubipnud uinwgdus bu Ejunpuwnwdquljuinipyut nipuljut wntynipmniuibpp b
plugh-ununhly huuwuwpnidbpp  whiqnkEjnpulwt dhoujuyptph hwdwp whkqnpmpbnuht
Qurpnigusph pnnp Gpkp punpjws  hwppnipnibbpnud: Ywnwpduws b updws  fuinhpubpnod
unnwugyws wnbgnipmniuubph nt LEjupujuwiuybue winhy hwpp b hwlwhwpp nidnpdughnt
Jhdwlutiph hwdwywnwupwt wetsnipyniuttiph hwdbdwnwlwb JEpnisnipinii:

The problems of the possibility of separate excitation and propagation of electroelastic planar, or electroelastic
anti-plane stress-strain states in homogeneous piezoelectric crystals are investigated.

The necessary and sufficient conditions for the separate excitation and propagation of electroelastic plane and
electroelastic antiplane stress-strain states in piezoelectric crystals are obtained.

The textures of piezodielectric crystals are determined, the structures of the generalized electroelasticity tensor of
which allow the separation of the plane stress-strain electroactive state from the non-electroactive anti-plane elastic
state.

The textures of piezodielectric crystals, the structures of the generalized electroelasticity tensors of which allow
the separation of the anti-flat stress-deformed electroactive state from the non-electroactive flat elastic state, are also
determined.

In the considered problems, the material relations and quasistatic equations of electro elasticity for all the
piezoelectric textures in each of all three sagittal planes of corresponding crystal lattice are obtained. A comparative
analysis of the newly obtained ratios of stress-strain states with the corresponding ratios of electroactive states of
plane and anti-plane deformations is carried out.

Introduction. In many structural schemes of modern electronic technology, various new
crystalline elements, layered composite waveguides, formed from various natural or
artificially grown piezoelectric materials with different physical and mechanical properties,
are widely used. The operation of these elements is often based on the emission (or delay) of
only electro-acoustic waves of a plane stress-strain state or only on the emission (or delay)
of an electro-acoustic wave of anti-plane deformation (pure shear waves). As a rule,
structural elements used in modern technology are thin-walled and in the formulation of two-
dimensional problems, we must take into account possible approaches that allow separate
formulations of the problems of electroactive plane deformation and electroactive anti-plane
deformation.

In applied problems of studying stress-strain states in thin-walled elastic structural
elements, two-dimensional problems of elasticity theory were modeled. In order to avoid
taking into account the violation of the plane stress-strain state in the middle surface of a
thin-walled element, scientists adopted various hypotheses Kirchhoff G. [1], Timoshenko S.,
Woinowsky-Krieger S. [2], Reissner E. [3], Ambartsumian S.A. [4]: the hypothesis of direct
normals, the hypothesis of the absence of pressure of the plate layers on each other, the
hypothesis of the inextensibility of the middle surface of the plate.

Hypotheses were accepted as additional restrictions, based on the nature of the
distribution of the mechanical load on the element and the conditions of fastening of the end
face of the elastic element.

The hypothetical approach has also been successfully implemented in the problems of
electro-magneto-elasticity of thin plates and shells [5], where, along with hypothetical
distributions of mechanical characteristics over the thickness of a thin-walled element,
characteristic distributions of the electromagnetic field are also accepted.

In piezoelectric media, the electroelastic wave field is four-component. In addition to
elastic displacements, the electric field potential is also a characteristic component. Separate
excitation and propagation of electro-elastic waves of plane or anti-plane deformations in the
composite continuum suggests the formation of different groups of interconnected wave
components. It is obvious that in the case of a possible separation of elastic wave fields into
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plane or anti-plane stress-strain states, the electric field potential can be present only in one
of the formed groups of elastic wave components. Then the divided second group of
components will be non-electroactive.

The question of the possible separation of the electroactive wave of plane elastic
deformation from the purely shear elastic (non-electroactive) wave in infinite homogeneous
piezoelectric media, depending on the anisotropy of the physical properties of the material,
was investigated in [6]. The question of the possible separation of the wave of electroactive
antiplane elastic deformation from the wave of purely elastic plane deformation was also
studied there. However, the material relationships and the equations of electroelasticity in all
three sagittal planes of crystals are not given in the work.

The results of these studies are also given in the monograph [7].

In these studies, as in solving many specific problems of the separate excitation and
propagation of the electroactive plane strain wave, the problem of the occurrence of the non-
planar electroelastic stress state is not discussed. The occurrence of the third axial mechanical
stress and the third component of the electric displacement vector will obviously violate the
picture of planar changes in the parameters of the separated wave fields.

Naturally, the need to introduce additional restrictions (hypotheses) also arises when
modeling two-dimensional problems on the propagation of electroelastic waves of plane or
antiplane deformations in model semi-infinite waveguides. The formulation of the two-

dimensional problem in the plane X OxB also implies the invariance of deformations of any

linear element perpendicular to this surface and each sagittal plane as a thin material layer
should be in a plane stress state. These conditions make it possible to formulate the
generalized plane stress-strain state equivalent to the state of plane deformation also in semi-
infinite waveguides.

Similar to the hypothesis that the elastic surface is inextensible, when there are no acting
forces in its plane, the assumption allows us to formulate the equivalent generalized antiplane
stress-strain state.

The introduction of additional restrictions eliminates the possibility of simultaneous
excitation and propagation of separated electroactive stress-strain states in homogeneous
piezoelectric composites. The question of the possible separation of electroelastic wave fields
into plane and anti-plane stress-strain states is naturally complicated in the case of composite,
piecewise homogeneous bodies. This issue is relevant because in modern electronic
technology there is a technical need: by exciting an electroactive wave of anti-plane
deformation in a composite waveguide, obtain an electroactive wave of plane deformation
from the receiver (or vice versa).

In the following works, it will be shown that this problem can be solved in layered,
piecewise homogeneous composite waveguides, by choosing layers of different piezoelectric
materials that are in the state of non-acoustic contact.

In this paper, we study the statements of two-dimensional problems of electroelasticity:
1. In what textures of homogeneous piezoelectrics is it possible to separately excite and
propagate electroactive plane deformation, in which the electroelasticity problem will be
plane-stress in the selected sagittal plane of the piezoelectric crystal?

2. In which textures of homogeneous piezoelectrics is it possible to separately excite and
propagate electroactive antiplane deformation, in which there are no acting forces in the
selected sagittal plane?
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1. Basic concepts and relations of an electroelastic stress-strain state in homogeneous
piezoelectric media

In the linear theory of electroelasticity of homogeneous piezoelectric media, we use the
complete system of quasistatic equations

dc, [ox, =p(0°u,/or*), D, féx, =0, (1.1)

taking into account the potentiality of the electric field £, = —(5(0/ ox, ) and linear material
relations of the medium
o, :c(y.)(nk)(aun /ox, )+em(y)(8(p/8xm ). D, :em(nk)(ﬁun/axk )€, (00/0x, ), (1.2)
where the mechanical and electric fields are interconnected by the piezoelectric coefficient
tensor (éj(mn)).

Physicomechanical constants of a homogeneous piezoelectric medium: elastic stiffness
“

#)(mm) » Piezoelectric coefficients ¢, and dielectric constant &; , form a generalized

electroelastic tensor of piezoelectric materials of the type

(}A’jn )9><9 - (@U )6><6 > (émn )3><6 “ (éik )3><3 [9,10]

(G )pre (Grn),.
(ém(?f) )3><6 (éik )M

In the equations of electroelasticity (1.1), in the material relations (1.2) and in the generalized
tensor of linear electroelasticity of piezoelectric materials (1.3) the notations and known

transitions from four-digit indices to two-digit indices (ay)Z2 o if o=y and

(1.3)

(ay)229—-a—vy if ao#y are used. It is also assumed that the indices
{OL; B;y} € {1; 2;3} ,a#B,P#Y and y # o indicated by the Greek letters, are dumb,

and summation over them is not carried out.
The conditions permitting separate excitation and propagation of a plane or anti flat stress
strain states in the uniform piezoelectric medium of this anisotropy, are imposed on the

structure tensor of elastic material stiffness (é[/.)() ;38 well as the corresponding structure

X

tensor of piezoelectric coefficients (énj) and the coefficients of permittivity (éik ) 23

The generalized linear electroelastic tensor of piezoelectric materials (1.3), as well as the
material relations and basic equations are given following the rules for installing crystals
according to syngonies (table 1) and according to the rules for choosing crystallographic axes
in them (table 2) [9, 10]. These tables describe the order of the axes of symmetry (and / or
inversion) and the anisotropy planes of the piezocrystals, the commensurability of the unit
vectors and angles of the selected orthogonal system of base coordinates, as well as the order
of alignment of the coordinate system with the base axes and planes of piezocrystals.

Without loss of generality, we will formulate the problem in one of the sagittal planes

X, O)CB , where all the components of the electroelastic field depend on the coordinates X,

and X, and there are no changes in the third base coordinate 6/ axy =0.
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It should be noted that in the quasistatic problem of electroelasticity, the two-dimensional
electric field is potential and plane

E, (%, Xg,1) = =00(x,,, X;,1) [0, ,

Ey (%, Xy,1) = =00(x,,, X3,1) [0y, E, (X,,%,,1) =0 (1.4)
Naturally, in the main relations (1.1) and (1.2), the electric field potential @(x,, Xg, 1 )

can be present either only in the group of wave components characterizing the electroactive

state of antiplane deformation {0; 0; u, (x,, Xyt ); o(x,, Xgt )}, or only in the group of

wave components characterizing the state of electroactive plane deformation

{u, (x,, X5, 0); ug(x,,X,0); 05 O(x,,X5,0)}

Table 1. Crystal installation rules by syngonies

Triclinic Monoclinic Rhombic

XX X, 211, X, 22 o0rm X, X5 X, 220rm,
ay#by #¢, , a,#b, #c, , a,#b, #c, ,

a0¢ﬂ0¢70¢900 a0:702900¢ﬂo a0=ﬂ0=7/0:900

Tetragonal Trigonal and | Cubic
Hexagonal

X X X} — x,ye22m; X,y 2m; X, v,z 2442
crystallographic axis of the | 4 = 4;1 Z;)3;§;6;6; a,=b, =c, ,
texture, _
{a,, By, 7} - angles in the W =b#¢ . G =0y %6y ,0 a0:ﬂ0:70:900
sagittal planes, a=pfy=7,=90" | % =5 =90,
{ay,by,c,} - measures of 7, =120°

axial unit vectors

Therefore, in the case of the possible separate excitation and propagation of waves of
elastic strains in an electroelastic medium, only one of them will be electroactive. In both
cases, a group of wave components separated from a given electroelastic wave will already
characterize the non-electroactive state of deformation.

The problems of the possible separate excitation and propagation of the wave of electroactive
plane deformation from the non-electroactive elastic wave of anti-plane deformation, as well
as the separate excitation and propagation of the wave of electroactive anti-plane deformation
from the wave of non-electroactive elastic plane deformation in homogeneous piezoelectric
materials, were studied in [1]. The article shows that if in elastic anisotropic homogeneous
media the separation of the plane elastic deformation wave from the anti-plane elastic

deformation wave in a selected sagittal plane X, ()x[3 of the crystalline medium is ensured by
the absence of the corresponding constant in the structure of the elastic stiffness tensor
Catra) = Calpr) = er) = olre) = Capre) = Capipr) =0 (15
then it is possible to separate the wave of electroactive plane deformation from the non-

electroactive elastic wave of anti-plane deformation when, along with conditions (1.5), the
conditions for the absence of piezoelectric coefficients are satisfied
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0 (1.6)

Cafra) = Ca(sp) = Blra) = G(1p)

Table 2. Rules for selecting crystallographic axes in

Syngony x. X, X,
Triclinic In a plane perpendicular to the | [001]
direction [001]

Monoclinic [100] [010] [001]
Rhombic [100] [010] [001]
Tetragonal [100] [010] [001]
Trigonal and | [100] [010] [001]
Hexagonal

Cubic [100] [010] [001]

Separation of the wave of electroactive anti-plane deformation from the non-electro-active
elastic wave of plane deformation is possible when, along with conditions (1.5), the following
conditions are satisfied in the piezoelectric coefficient tensor of the material

Coa = Cop = Co(ap) = Cpa = €pp = Ey(pa) =0 (1.7)
The problem of separate excitation and propagation of elastic waves of plane and
antiplane deformation in a selected sagittal plane X, 0)CB of anisotropic homogeneous media

(without taking into account any kind of coupled physical fields) was raised in [4]. The author
showed that in elastic anisotropic homogeneous media, the separation of a plane elastic strain

wave from an anti-plane elastic strain wave in a selected sagittal plane X, OxB of a crystalline

medium is ensured by the absence of material constants in the tensor (¢;) of elastic stiffness

(1.5).

The above conditions (1.5) and (1.6), or (1.5) and (1.7), as restrictions on the anisotropy
of the medium for separate excitation and propagation of plane or antiplane stress-strain
states, are necessary, but not sufficient.

Below we will discuss conditions additional to relations (1.5) and (1.6), in which case
separate excitation and propagation of the plane electroactive stress-strain state is possible,
when all components of the electroelastic field belong to the sagittal plane. We will also
discuss conditions additional to relations (1.5) and (1.7), in which case separate excitation
and propagation of antiplane electroactive deformation is possible, when all other
components of the electroelastic field belong to the sagittal plane.

2. Electroactive plane stress-strain state in homogeneous piezoelectric textures

When only the conditions for the absence of the third component of elastic displacement

u, (x,,Xg,1) =0 and derivatives of all other wave field characteristics 8/ ox, =0 are
accepted, the Dbasic relations of general planar electroactive deformation
{ug (X, X, 0); U (X, ,Xg,0); 05 ©(x,,X;,8)}  are obtained from the quasistatic

equations of electroelasticity (1.1), material relations (1.2), taking into account the structure
of the generalized tensor of electroelasticity of piezoelectric materials (1.3). From the
material relations obtained, taking into account the form of the electric field (1.4) and the
corresponding conditions (1.5) and (1.6), it follows that, along with the non-zero stresses
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G0 xa,xﬁ,t), GBB(xa’xﬁ’t) n G, (x,, B,t) characteristic to the plane stress state,

axial mechanical stress also arises in the case of electroactive plane

G, (X, Xg,0) =C, (61,t01/8)cm)+cyB (ﬁuﬁ/axﬁ)Jr
Cyiupy | (O, /Oy )+ (B J0x, ) |+ €, (B0 0, ) + ey, (G0 O, )

Along with the nonzero components of the electrlc displacement of the plane electric field
D, (x,,xg,t) and Dy(x,,x
can also arise

D, (x,,X;,1) :ey(m)(ﬁua/éxa)-}—e (6uﬁ/8x )+e [(Gu /Gx ) (8uﬁ/6xOL )] (2.2)

In all piezoelectric crystals for which conditions (1.5) and (1.6) are satisfied, the dielectric

2.1)

. B,t) the third component of the electric displacement vector

constant tensors (éik) are diagonal. Therefore, in expression (2.2), the third component

3x3

of the electric displacement is represented only by the elastic elongations (aua / axa) s
(51/1B / Ox, ) and the shift ((%tOL / Ox, ) + (8145 / ox, ) in the sagittal plane.

It is known that in any basic plane x, 0x; the elastic stiffnesses ¢,, #0 and ¢, #0,
as well as the elastic compliance coefficients S, = (—I)OHY -ACOLY / A° and

= (—l)ﬁ+y -ACBy / A° cannot be zeros. Therefore, the existence of a non-zero axial
stress O (X,,X;,#) can lead to the axial tensions (compressions) 7, (X,,X;,?) in the

direction of the axis Oxy , violating the planar deformed state.

The existence of a non-zero axial component of the electric displacement vector
D, (xa,xﬁ,t) along the axis Ox, violates the plane electric field.

From relation (2.2) it is obvious that, taking into account the arbitrariness of elastic

elongations (u,/dx, ), (auﬁ /axﬁ), and elastic shear (61/1(1 / 6xB)+(6uB / 8xa) in the

sagittal plane, the axial component of the electric displacement vector DY (xa, B,t)

disappears in the piezoelectric crystals in which
€ (up) = 0, € (0a) = 0, €,mp) = 0. (2.3)
The fulfillment of identity (2.3) means the absence of a direct piezoelectric effect in the
perpendicular direction to a given sagittal plane of the piezocrystal. Then the condition for
compatibility of axial elastic elongations (compressions) and polarizations of the electric field

in the basal plane X OXB relative to axial elongations (compressions) can be written as

¢, (Ouy [Ox,)+c, (8uB /ox, ) +Cyop) [(ﬁua/éxﬁ ) + (8uB Jox, )] = (2.4)
=—¢,,, (0p/x,) ey, (&p/@xB )
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If we take into account that in all piezocrystals for which conditions (1.5) and (1.6) are
satisfied, there are no constants C,lap) in the elastic stiffness tensor:
€y =0, 2.5)

then, the compatibility ratio of elastic non-zero axial elongations (compressions) is finally
written in the form

(0u, /0x,) =~(e Je ) (Ouy o5, ) =] ey, (00/ 0%, )+ (B0/0%, ) [, 20)
If there is also no inverse piezoelectric effect in the perpendicular direction to a given
sagittal plane X, Ox13 of the piezocrystal, when ea(w) =0 and eﬁ(w) =0, the compatibility

condition for elastic non-zero axial elongations (compressions) is written as in the case of
non-electroactive elastic anisotropic medium

Co (6uOt /Gxa) =—C, (Guﬁ/éxﬁ) 2.7

Statement -1: Electro-elastic state of plane deformation
{ua (%, %5,0); 1y (%, %5,0); 05 OQ(x,, X, t)/axu ; G(p(xa,xﬁ,t)/ax ; 0} (2.8)
in the sagittal plane X Oxﬁ of a homogeneous piezoelectric medium induces an electroactive
generalized plane stress state

O (X5 Xgs0); Opg (X, X5,0); 0 05 0; o,5(x,,%5,0)

D, (xa,xﬁ,t); D[3 (xa,xﬁ,t); 0;

in piezoelectric crystals, in the generalized electroelastic tensor of which the following
conditions are satisfied

2.9)

€ar) =0 Capn =05 =0 €001 =0 Capyre)=0> oy =0 Cria=0> (2.10)
=0, €,(5p)= 0.

The compatibility condition for elastic non-zero axial elongations (compressions) in the
sagittal plane, in this case, has the form

(Ou, Jox, )= —(cyﬁ/cw)(('iuﬁ/ﬁ)c[5 ) — [ea(w) (0/0x, )+ ey (ch/axﬁ )}/cm (2.11)

The electroactive generalized planar stress-strain state of type (2.8) and (2.9), taking into
account conditions (2.10) and compatibility conditions of elastic axial elongations
(compressions) (2.11), is represented by the nonzero components of electromechanical
stresses

O (X Xy) = o (001, [0, )+ €, o | (B, J O3 )+ (Ot fx, ) |+
+e,, (00/0x, ) + e, (0p/ox,)

O (X %y) = g (Ot 0% ) + €y, [(a”a/axﬁ )+ (0uy fx, )] *
+ e, (09/0x, )+ ey, (0/0x, )

Co1a) = 0, ea(yﬁ)EO, €hre) = 0, eﬁ(yﬁ)EO’ €, o) = 0, e,

Yo ¥ ao)

(2.12)

(2.13)
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and the non-zero components of electric displacement

(o) (O0/0x, ) + ey,

 (00/

Gx)

e (018,05, ) 4 gy [ (O, f 2, )+ (0 0, ) |+

O (X, Xp) = c(oLB

D, (x,,x;) =e,, (0u, [ox, )+ea(aﬁ)[(8ua/8xﬁ)+(8uﬁ/8xa)}—

Dy(x,,x5) =

—&,, (0p/ox, ) —¢,, (a(p/axﬁ)

e;; (8uOL /ox, ) + €405 [(8%/8)% ) + (8% /qu )] -

—gg, (00/0x, ) — g (ﬁcp/éxﬁ)

(2.14)

(2.15)

(2.16)

In the newly obtained material relations (2.12)+(2.16), the physicomechanical constants
corresponding to the two-dimensional electroelastic problem are indicated with asterisks

(table 3).

Table 3. Reduced physicomechanical constants of electroelastic

generalized plane stress-strain state

Cou Cou ~ Cop (C}/a / cyﬂ) e:z(aﬁ) Cotap) ~ (cwﬂw /¢ ) Ca
Cpp Cpp = Cpa (C;/ﬂ /¢.) €ap) esap = (Capn ) e
Capra | Cama = Camp (€ /) Cuc (€ /Cn)
o ¢ ~(Cap /)€ € o~ (Cyﬁ/ € ) e
| (/) 2 Eua +(Capur /)
e e ~(Cap /)€, Egp £ +(€pupy )
Cup e (/)€ Zp (e /<)
S;xa (e 1€y [ Cra )

From (2.12)+(2.16) and from Table 3 it follows that the electroactive planar stress-strain state
in the sagittal plane is formulated with reduced anisotropy. The reduced anisotropy in the
selected sagittal plane differs from the natural anisotropy both qualitatively and
quantitatively. New piezoelectric coefficients and dielectric coefficients may appear. The
electromechanical properties of the medium in the modeled material plane can also change.

Taking into account the material relations (2.12)+(2.16) and the expression of the new
constants in Table 3, the quasistatic equations of the electroelastic plane stress-strain state
can be written in a single form

[cm —(c +c

(aB)(aB) )(Cvoc /¢ )] (azua fox; ) t Capyap) (azua/ o ) *

FTCo(ap) (azuﬁ/ o, ) + [c(umﬁ - (coc(ocB) t Clapa )(cvﬁ/ o )J (82“3/ ox; ) +
+ [e(m —e,, (Cas + Clupyap) )/ ](82 /8x ) [eﬁa + €4 up) ] (82(p/8xa8xﬁ ) -
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—[ew (Camﬁ) +C(aB)[3) ¢ty (caﬁ +Clapyap) ) / cyﬁ](ach/ 8xu8xﬁ) +

+[eﬁ(am ~2¢, (Ca(am/ cw)](ach/ o, ) =p (azua/ atz)’

| Clapre =y (/) | (00 /052 ) + Gy (00, [ 07 ) +

FTCapyap) (az”‘ﬁ/ o, ) + [CBB _(Cﬁa F Clapyap) )(CYB/ %a )] (azuﬁ/ o ) +

+ [eawm - (ew/ /¢ )(c(aﬁ)ﬁ tCap) T Caprop) )] (82(9/ o, ) +

+ [eﬁﬁ - (el?»v /€ )(Cﬁu *Cagap) T Clapyop) )} (aZ(P/ ox; ) +

+ (e;ﬁeg(am_eav (c(aﬁ)(aﬁ)/ Cra )_eﬁv (CB(aB)/ Cyp ))(az‘p/ O, 0 ):p(a%/ ot 2)

[ =y (/) | (0, /02 )+ €y (0, f 07 ) +

+ [e;}; ~ Caop) (CYB/ % )] (azuﬁ/ ox; ) t Co(op) (82”13 / ox, ) -

—[g:a + (eﬁ(aﬁ)euv [ )} (azq’/ o, ) - [SEB + (eummeﬁv /€1 )} (azq’/ oy ) -
[ et + &0+ (€atupyCar /) (€ [ ) | (0700, 0, ) = 0.

From the deduced quasistatic equations of the plane stress-strain state (2.17)+(2.19) it can
be seen that, taking into account the compatibility conditions of axial elastic elongations
(compressions) (2.11):

— the equations do not contain mixed derivatives of the components of the elastic
displacement,

(2.17)

(2.18)

(2.19)

£ kS
— non-diagonal reduced coefficients €,5 and €g, of permittivity may appear in the
equations.
In non-piezoelectric anisotropic media, for which ej(mn) =0 the necessary and sufficient

conditions for the possible separation of the plane stress-strain state are the conditions of the
first row (2.10) and the compatibility ratio of axial elastic elongations (compressions) (2.7).

In this case, in Table 3 there are only expressions of reduced elastic stiffnesses. The
material relation (2.12)+(2.14) and equations of electroelasticity (2.17) + (2.19) are
simplified.

O oo (X5 Xg) = € (O /O, )+ Coopy [(&tm/(’ﬂxB ) + (8%/6)60L )J ,
O (X5 X5) = Cyp (8uB /0%, ) +Chap) [(&ta/&cﬁ ) + (8uﬁ /ox, )] , (2.20)

G (%05 X5) = Clugya (Ol /0%, )+ Capyiap) [(8%/6)6[3 ) + ((’ﬁu[3 /ox, )]
The equations of electro elasticity (2.17) and (2.18) take the form
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[C;a ~ Clop)op) (Cva [ )] (az’“‘a fox; ) +Coprop) (azua/ 2n ) +
+Cy(aop) (quB /ﬁxi ) + Crapyp (82% /8x§ ) =p (azua /81‘2 )
Copro (62% /ox ) * Coiap) (ﬁzua/éxé ) * Clapyop) (62”13 Jox; ) *
+ [C;B ~ Clapyap) (CYB [ )] (82uﬁ/ax§ ) = p(azuﬁ/atz )

In the two other sagittal planes of piezoelectric crystals Xyoxa and XBOXy, the

2.21)

(2.22)

conditions for the existence of an electroelastic generalized plane stress-strain state, the
material relations of non-zero electromechanical components, the reduced electromechanical
coefficients, as well as the quasistatic equations of electroelasticity for the corresponding
plane stress-strain states of the type (2.8) and (2.9)

U, (x,,%,,0); 05w, (x,,x,,0); 09(x,,x,,t)/0x,; 0; Op(x,,X,,t)/0x,; (2.23)
G (X,5%,,1);0; o (x,,x,,0); 0; o, (x,,%,,0); 0;D,(x,,x,,0); 0; D, (x,,x,,)
and
0; 1y (xyx, 005 10, (xyx,00; 05 03 Q(xy,x,,0)/0x,5 O0(x,,x,,1)/0x,
0; 04, (x5,x,,0); O, (x5, %,,8); Op, (X5, %,,8); 05 05 05 Dy(xy,x,,8); D, (xg,,,7)
(2.24)
are obtained by rotating silent indexes {y,a,B} = {a,B,y} = {B,y,a} in relations
(2.1)+(2.19), respectively.

2.1. Material relations and quasistatic equations of an electroelastic generalized plane
stress-strain state in the sagittal plane x,Ox, .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic plane stress-strain state (2.10) take the form

¢, =0, ¢.=0,¢,=0,c¢,.=0,¢,=0, c.=0, ¢,, =0,
14 15 24 25 64 65 36 (225)
€,=0,¢5,=0,¢,=0,¢,.,=0,¢6,=0, ¢,=0, e, =0.

Only the generalized tensors of electroelasticity of piezoelectric media from classes 6,

6m2 of hexagonal symmetry correspond to such restrictions.
Taking into account the compatibility conditions of elastic non-zero axial elongations
(compressions)

(6, /0x,) =—(cy3 /s ) (O, [Ox, )~ (&3 /5, ) (O@/Ox; ) — (€33 / 3, ) (8p/ Ox, ) . (2.26)

the material relations of non-zero electromechanical components in these media can be
written in the general form

6, = (011 _CIZ)(aul/axl)+e:1 (a(P/axl)"'e; (8(p/6x2),
G,, = (c11 —cp, )(8u2/6x2)+el*2 (acp/&xl)+e;2 (8(p/8x2), (2.27)
G, =Cy [(aul/axz )+(0u, /ox, )] +e,,(00/0x, ) + e, (Op/ Ox, ).
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D,=¢,,(0u, /ox, J+e,,(Ou, [Ox, )+e; [(&tl Jox, )+(0u, /ox, )]—811(6(p/8x1 ),
D, zezl (Oul /0x, )+e;2 (8u2 /0x, )+e;6 [(6u1 /ox, )+(8u2 /0x, )]—81 . (8([)/6)62 ) .

In the selected sagittal plane of these classes of media, it is also convenient to write down
the quasistatic equations of electro elasticity (2.17)+(2.19) in general form

Ceo (0w, [0 )+ g (07w, [0 ) - p (7w, [0 ) =

=—¢, (0°p/ox] ) (e, +ey; ) (0°p/axox, ) - €3, (0°0/ x5 ),
Coo (0uy [0x7 )+ i (07w, [ 07 )~ p (&7, /0 ) =
=—e,,(0°0/ox} )~ (e} +ei, ) (0°0/ox0x, ) - 5, (0903 ),
(e —e3 ey, ) (07w, /07 ) + € (071, 057 ) + ey (7w, 0] ) +

* * * 2 2 2 2 2 2
+(€22 —e, —621)(6 u2/6x2 ) =g, (8 (p/@xl )+811 (6 (p/ax2 )
The coefficients with asterisks in the relations (2.23)+(2.25) are given in Table 4.

(2.29)

Table 4. Values of reduced coefficients with asterisks of the simulated two-
dimensional problem in the sagittal plane X10x2

* * * * * * *

Ces € €, € €»n €5 €
. 6 (C“ —Clz)/z e —€ €y | €pn €y | ~é
D
w
»n —
g e |0 0 0
C 6m?2 (C“ —Clz)/z e €n €

In view of Table 4, it is obvious that the material relations of the non-zero electromechanical
components (2.23) and (2.24), as well as the equations of electroelasticity (2.25) for

simulated two-dimensional problems in the sagittal plane x,0x, of the media of class 6m2
have more simplified forms than for the media of class 6. Despite this, from the derived
material relations and the equations of electroelasticity it follows that in the media of class
6m2 , axial elongations (compression) aul/ Ox, =—0u, / 0Ox, lead to electric polarization

with induction D, (x;,x,,1) =¢, (0w, /0x; ), and the elastic shear (0w, /0x, ) +(0u,/dx,) leads

to electric polarization with induction D,(x,,x,,?) = ¢, [(aul Jox,)+(0u, [ox, )] .

2.2. Material relations and quasistatic equations of the electroelastic generalized plane
stress-strain statein the sagittal plane x,Ox;, .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic plane stress-strain state (2.10) take the form

€5 =0, =0, ¢35=0, ¢,=0, ¢,;5=0, ¢,=0, ¢, =0, (2.30)
e, =0, e,=0,¢e,=0,¢,=0, ¢,=0, ¢,=0, ¢,=0. '
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Such restrictions on the anisotropy of the medium correspond to the structure of the
generalized tensors of electroelasticity of piezoelectric media, only from the classes 6mm
of hexagonal, 4mm of tetragonal and mm2 of rhombic symmetries.

Taking into account the compatibility condition of elastic non-zero axial elongations
(compressions)

(auz/axz) = _(013/012)(au3/ax3)_(621/012)(a@/axz)_(631/012)(6@/8763) (2.31)

the material relations of non-zero electromechanical components in these media can be
written in the general form

6, =¢, (Ou,/0x, )+ (Ouy /ox,) + e, (Op/Ox, ),

Gy =Cp5 (0, /Ox, ) + ¢35 (Ous [ 0xy ) + €5, (O Ox, ),

6,3 =y ((Ouy /0, ) +(0u, /0x,) ) + €3, (Op/ex, ). (2.32)
D, =e, ((6u3/6x2 )+ (0u, [ ox, )) —&,, (0¢/ox, ),

D, = ey, (0u, [0x, ) + ey, (Ouy /ox,) — €5, (Op/ ox; ).

In the selected sagittal plane of these classes of media, it is also convenient to write down
the quasistatic equations of electro elasticity (2.17)+(2.19) in general form

(cn—cpn ) (0%, f0x3 )+ 3, (07w, /07 ) — p(%u, [0 ) = (€3, + €5, — €3, ) (07 /O, 0x; )
(c3s—cn )(0°us Jox3 )+ ¢y (OPus [0 ) — p(0%us f0r7 ) =
=—c,, (0°0/ax] ) (e}, — ey, ) (0P 0/0x5 ),

&) (ach/axg)+[833 ~e, (e, +¢l,) /cu](ach/axf) =

=e, (8 u3/8x2 )+ (e33 —(624 +e32)823)(8 u3/8x3 )
The coefficients with asterisks in the relations (2.32)+(2.33) are given in Table 5.

(2.33)

Table 5. Values of reduced coefficients with asterisks of a simulated two-dimensional
problem in the sagittal plane X20X3

* * * * * *

Cis Ciy & € | n
( (01261*3 )/013 & (01*3/012) € s €
amm | (¢ +c,,) (clch3 )/c13 e, (c;/clz) e | es | g,
( (

mm?2 * *
C2Gi3 )/(213 & (013 /CIZ ) € €2 €y

6mm Cl3 + C44 )

Classes

Gy +ey)

In view of Table 5, it is obvious that the material relations of the non-zero electromechanical
components (2.32) and the electroelasticity equations (2.33) of the simulated two-
dimensional problems for the classes 6mm of hexagonal and 4mm of tetragonal symmetries
in the sagittal plane x,0x, coincide.
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From the derived material relations and equations of electroelasticity it also follows that axial
elongations (compression) in these media lead to the electric polarization with induction

Dy(x,,x,,t), and the elastic shear (Ou,/ 8x2)+(8u2 / 8x3) leads to the electric polarization

with induction D, (x,, x;,t) . The equations also include the compatibility coefficient of axial
elongations (compressions) 3,, = (013 / C12) (Poisson's ratio).

2.3. Material relations and quasistatic equations of the electroelastic generalized plane
stress-strain state in the sagittal plane x,0x, .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic plane stress-strain state (2.10) take the form

€3=0,04=0,¢,=0,¢,=0,¢,=0,¢,=0, ¢, =0,
(2.34)
e, =0,¢,=0, ¢,=0,¢,=0,¢e,=0, ¢,=0, ¢, =0.

Such restrictions on the anisotropy of the medium correspond to the structures of the
generalized tensors of electroelasticity of piezoelectric media, only from the classes 6mm

and 6m2 of hexagonal, 4mm and 422 of tetragonal and mm2 of rhombic symmetries.
Taking into account the compatibility condition of elastic non-zero axial elongations
(compressions)

(8”1/ax1) =—(023/021)(&13/8)63)—(612/621)(8@/5)61)—(632/021)(8([)/8)63)(2_35)

the material relations of non-zero electromechanical components in these media can be
written in the general form:

0, =¢, (0w, /ox,)+ ;5 (Ous [oxy) + e, (Op/ox, ) + ey, (O/Ox, ),

Gy =05 (Ou, [Ox,)+ ¢y (Ouy O, ) + €, (D) x5,

O, = Cis [(8u3/8x1 )+ (0u, /ox, )] +e,5(0¢/ox,). (2.36)
D, =¢, (0u,[ox, ) +e;s [(8u3/8x1)+(8u1/8x3)]—811 (0¢/ox,),

D, = e, (0u, [ox, ) + ey, (Ou, /0x,) — &, (Op/Ox, ).

In the selected sagittal plane of these classes of media, it is also convenient to write down
the quasistatic equations of electro elasticity (2.17)+(2.19) in general form

[cn ¢, (e +cis) /c13](62u1 Jox? )+ css (0%u, /ox?) —p(0%u, [or* ) =

- [el*l —epy (e +ci) /c;}(ach/axf)—[e;; ~¢; (cis /013)](62@/6x18x3),

cis (0%, fox? ) + [033 — ey (s ) /clz](az% Jox?)+

+e, (82(p/<9x12 ) + [e; —e), (013 +c. )/c12 ] (62(p/<9)c32 ) + (2.37)
+[e;; (e +cis) /clz](ﬁz(p/axla)%) =p(0%u, for?),

69



811(62([’/63612 )"’(833 -, (el*S +e;, )/Cl2 )(az(p/@xf )_61*1 (61*5 +ey, )/012 (82(p/8x16x3)

=e (qul/axf ) +e (62u3/8x12 ) + (e;ﬁ3 _(61*5 +e, )(cn/c12 ))(62u3/6x32).
The coefficients with asterisks in the ratios (2.36) and (2.37) are given in Table 6.

From the material relations of non-zero electromechanical components (2.36) and
electroelastic equations (2.37), taking into account Table 5 it follows that in the sagittal plane

x,0x, of piezoelectric classes 6m2 of hexagonal and 422 of tetragonal symmetry classes,

direct and inverse piezoelectric effects are formed by axial polarization 8([)/ 5xl .

Table 6. Values of the reduced coefficients with asterisks of the simulated two-dimensional
problem in the sagittal plane x20x3

* * * * * * * *

Gy Css € €y €5 € € €33
8 6mm Ci3 Cyy 0 0 €5 € € €33
172]
cc pa—
S 6m2 Cis Cyy e, —é 0 0 0 0
Q
£
g 4mm Ci3 Cyq 0 0 s €3 €3 €33
£y
g 422 C3 Cyy 0 0 s 0 0 0
=
© mm2 Ci3 Css 0 0 s €3 €3 €33

In media with the 6m2 hexagonal symmetry class texture, the axial polarization (3([)/ 6xl
results in axial elongations only. In media with the 422 tetragonal symmetry class texture,

the axial polarization 8([)/ axl leads only to elastic shear (8u3 / 6‘x1) + (&t1 / 8x3) in the plane
x,0x, .
3. Anti-flat electroactive stress-strain state in homogeneous piezoelectric textures
When the conditions for the absence of two components of elastic displacement
u, (xa > X t ) =0 and Ug (Xa, Xg> t ) =0 and derivatives of all other characteristics of the

electroactive stress-strain field J[-]/0x, =0 are accepted only, the main relations of

electroactive antiplane deformation
{0:05 1, (x50 0); B, (X, X5.0); By (x,.%,.0); 0} @3.1)
in the sagittal plane X, ()xB of an anisotropic piezoelectric medium are obtained from the

equations of electroelasticity (1.1) and material relations (1.2), taking into account the
structure of the tensor (1.3). Taking into account only the corresponding conditions (1.5) and

(1.7), it follows that in this case, along with the nonzero pure shear stresses O, (xa s Xp t),
Oy, (xa s Xp t) characteristic to antiplanar stress state and nonzero components of electric

displacement D, (X,,,Xy,) and Dy (x,,,X;,7)
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Gﬁy(xa,xﬁ,t):
C(or)(a) (6u /ox, )+cYB 1) (8u /6xﬁ)+e (6(p/ax )+e (6@/8)63)

G (Xys Xp,1) =

3.2)

= Cla)ior) (6u /8)613)7%‘0LB o) (614 Jox, )+e0L 1 (09/0x, )+ ey, (acp/axﬁ) G
D, (x,,%5,1) =€, (auy/ax )+e (Guy/ax ) oo (00/0x,,) (3.4)
Dy (x5 X5.1) = € (8u [ox, )+e (au [ ox, ) €4 (a(p/@xﬁ) (3.5)

axial mechanical stress G, (x,, Xg, 1 ) and the third component of the electric displacement
vector D (xa,xB,t ) also occur

G, (X5 Xp,0) =

=Cp) (&ty/@)cB ) +C, ) (8u Jox, )+ e (8(p/8x )+ 8y (Ekp/@xB )
D, (x,,x;,t)=¢, (auy/éxa)+ey(ﬁy)(Guy/axﬁ) (3.7)

As in the case of an electroactive plane stress-strain state, the existence of axial stress

(3.6)

c,, (xa,xﬁ,l‘) can lead to axial tensions (compressions) disrupting the anti-plane strain

state. The existence of the axial component of the electric displacement vector Dv (x,, Xg > t)

can lead to axial polarization, violating the plane electric field.
To exclude the violation of the antiplanar stress—strain state of the sagittal plane, it is
necessary, similarly to the hypothesis that there are no pressure of the thin layers (sagittal

planes X, Ox[3 = const ) of the continuum on each other, to accept the compatibility of

elastic shears and the third component of the axial polarization of the electric field.
The compatibility condition is obtained from the condition for the existence of nontrivial
solutions of the system of algebraic equations

cymy)(8uy/8xa)+cy(ym(8uy/6x )+e (6([)/8)6 )+e (8([)/8)6 )
(8u /ox, )+e (8u [ )

From (3.8) it follows that nonzero elastic shifts (@uy / axa) and (ﬁuy / axB) are

(3.8)

possible in piezoelectrics, in the electroelastic tensor (1.3) of which there are no coefficients
of piezoelectric constants e and e
() (

v(B)
€, (o) = 0, €,y = 0. (3.9)

In contrast to the case of plane deformation, included in the first equation of system (3.8),

the elastic stiffnesses ¢

- (ay) and C,(,p) are not imperatively nonzero. Therefore, the linear
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relation with respect to arbitrary non-zero elastic shifts (ﬁuy / 6xa), (ﬁuy / axB), and

electric field strengths (8([)/ axa) and (8(p/ 8xB ) , is equal to zero at zero coefficients
=0, e

Cyom = 0, Cap) = 0, Ca(r) B(vy)
In the cases of restrictions (3.9) and (3.10) on the anisotropy of the medium, the
compatibility condition for nonzero elastic shifts and the electric field under which there are

=0. (3.10)

no pressures of the thin layers (sagittal planes X, OxB = const) of the continuum on each

other is automatically satisfied.
If in the electroelastic tensor (1.3) of the piezoelectrics at least one of the elastic

stiffnesses C. and Cyyp)» OF the piezoelectric constants e () e

y(ay) a(ry)> “B(vy) > v(oy) and ev(ﬁ“/)

is nonzero, then the elastic displacements (ﬁuY / ox,, ), (8uY / ﬁxﬁ) and the electric field

strength (8(p/ axa ) u (a(p / 8xB ) will not correspond to the non-zero antiplane stress-strain

state.
In the absence of the piezoelectric effect in the medium, the compatibility condition of elastic
shifts becomes the hypothesis that there is no pressure of the thin layers (sagittal planes

X, Oxﬁ = const ) of the continuum on each other, when

Cap =05 € =0 (3.11)
Statement-2: State of electro-elastic anti-flat deformation
{0; 05w, (0 X0 0); 0Q(x,,X,.0) /0%, 5 0Q(x,,%,,1)/0xy 5 0 (3.12)

in the sagittal plane XQOXB of the homogeneous piezoelectric medium induces an
electroactive generalized antiplane stress state
{05 0; 05 6,5 (3,0 %5.0); 0, (%0 %5.0) 03 Dy (3,2 %, 0); Dy(x,.%,1); 0f (3.13)

in piezoelectric crystals, in the generalized electroelastic tensor of which the following
conditions are satisfied

Cotra) = 05 Cogp) =05 oy =05 Chi) =00 Capyia) =05 oy =05
€, =0, e, =0, €oap) = 0, €,=0, ¢€;,=0, €h(pa) = 0, (3.14)
Crap) = 0, Cropy = 0, ev(ow) =0, ev(BY) =0, eﬂ(W) =0, eB(W) =0.

Compatibility conditions for elastic non-zero shifts and electric field strength in the sagittal
plane, in this case, are performed automatically.

The electroactive generalized antiplane stress-strain state of the type (3.12) and (3.13), taking
into account conditions (3.14), is represented by the nonzero components of
electromechanical stresses

O, (X5 X 1) = Cpypy) (a“y/ Oixg ) + €, (09/ 0, ) + €, (a@/ Oxg ) (3.15)
G (%05 X551) = Clorpan) (Guy Jox, ) +€,00) (00/0x, )+ €50, (8@/8)6[3 ) (3.16)

and nonzero components of the displacement of the electric field

72



D, (x,,X5,t) = €, (8uy/8xﬁ ) + €, 0,0 (Guy/ﬁxa ) —£,, (0p/ox,) (3.17)
Dy (x,,X5,1) = €55, (Guy /0%, ) + €50 (Guy /0x, ) — g (8@/8)%) (3.18)

The form of material relations (3.15)+(3.18) allows us to formally preserve the general
form of the system of quasistatic equations of the electroactive antiplane stress-strain state

oo (071, /003 )+ €y (O, /055 ) + €y (070/ 0 )+
+ (ea(vﬁ) ) )(azq)/ OxOX, g ) t ) (azq’/ ox; ) =P (azuv / or’ )
Caya) (62%/ o, ) + (eawm t ) )(azuv / Ox,, 0, ) tE0p) (azuv / O ) B

6, (0°0/0x} )~y (0°0/0x; ) =0 (3.20)

Obviously, the material relations (3.17)+(3.20) and the quasistatic equations (3.21) and
(3.22) of the generalized antiplanar stress-strain state coincide, respectively, with the material
relations and the equations of electroelastic antiplane deformation [1].

The automatic fulfillment of the compatibility conditions for nonzero elastic shifts and
electric field strength in the sagittal plane of the chosen piezoelectric textures does not change
the material relations and quasistatic equations, but can narrow the quantity of textures where
an anti-plane stress-strain state is possible.

(3.19)

In the other two sagittal planes of piezoelectric crystals )CYOJCOt and xBOxy, the

conditions for the existence of an antiplane stress-strain state, the material relations of
nonzero electromechanical components, the reduced elastic stiffnesses and piezoelectric
coefficients, as well as the equations of electroelasticity for the corresponding antiplane
stress-strain states of the type (3.13) and (3.14)

0;  uy(x,,x,,0); 0; 8(p(xa,xy,t)/6xa; 0; 8(p()cm,xy,t)/8xy

3.21
0; 0; 0; 0,5(x,,%,,1); 05 G (x,5%,,0); Dy (X, %,,); 05 D, (x,,X,,7) e
or
Uy (X, %,,0); 0, 05 05 O0(xy,x,,1)/0xg5  Op(x;,X,,1)/Ox, ;
(3.22)

0; 0; 0; 0; 0., (X3, %,,1); Oop(xp,%,,8); 05 Dy(xy,x,,0); D, (x5,%,,1)

are obtained by rotating silent indexes {y, o, B} 2 {a,[,7} 2 {B,V,a} in all relations
(3.1)=(3.22).
3.1. Material relationships and quasistatic equations of the electroelastic generalized
antiplanar stress-strain state in the sagittal plane x,0x, .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic antiplane stress-strain state (3.14) take the form

€y =0, ¢5=0, ¢, =0, ¢;5=0, ¢, =0, ¢5=0, ¢;;=0, ¢;, =0, ¢;, =0, (3.23)
€,=0,¢,=0,¢,=0, ¢,=0,¢,=0,¢e,=0, e,=0, e,,=0, e,; =0.

Only the generalized tensors of electroelasticity of piezoelectric media from the classes

43m and 23 of cubic, 622, 6 , 6mm of hexagonal, 4 , 4, 4mm , 2m of tetragonal and
222 , mm2 of thombic symmetries correspond to these restrictions.
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Material relationships of non-zero electromechanical components in these media can be
written in the general form

0,5 (x;,X,,1) = ¢, (Ou, /Ox, ) + e, (0¢/0x, ) + €, (Op/ox, )
63, (X,, X, 1) = 55 (Ous [Ox, ) + €5 (O/ Ox, ) + e,5 (Op/ Ox, )
D, (x,,x,,t) = e, (Ou, /Ox, ) + €5 (Ou, [Ox, ) — &, (O¢/0x, )

D, (x,,x,,t) = €,, (Ou; /0x, ) + €,5 (Ou, [ Ox, ) — &5, (Op/ 0x, )

In the selected sagittal plane of these classes of media, it is convenient to write down also
the quasistatic equations of electroelasticity in general form

Ca (82u3/6x12 ) +c,, (62u3/8x22 ) + (el*4 +e, )(82(p/8x16x2 ) +
+e;s (0°0/ox] )+, (8°9/0x] ) = p(0°u, [or’)
es (62u3 /lez ) + (el*4 +e, )(82u3/8x18x2 ) +e,, (82u3/6x22 ) -

, , . (nd , , (3.26)
—&p (a (P/axl )_822 (6 (P/axz ) =0
The coefficients with asterisks in the relations (3.24)+(3.26) are given in Table 7.

(3.24)

(3.25)

B

Table 7. Values of physicomechanical coefficients with asterisks for the
problem of antiplane stress-strain state in the sagittal plane X10x2

" " - " " "
Css €y €;s €y €s &n

Bmf23 | e, 0 0 e, &,
6mm Cyy 0 s [ 0 &

§ 6 Cyy €. € €;s —€y 2t
‘; 622 Cus € 0 0 €y &y
E 4 Cyq €y €;s €5 —€y &y
E 4 Cuy €4 ;s ek s &
§ 4mm Ca 0 e e 0 &,
& 42m Cyy €y 0 0 €y &
222, Css e, 0 0 eys &5

mm?2 Css 0 e ey, 0 &

From Table 7 it is seen that the material relations of the electromechanical components (3.24)
and (3.25), as well as the equations of electroelasticity (3.26) of the problems of the antiplanar

stress-strain state in the sagittal plane x,0x, for media from the classes 43m and 23 of

cubic, 622 of hexagonal, 42m of tetragonal and 222 of rhombic symmetries fundamentally
coincide.
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In the sagittal plane x, Ox, , the material relationships and the equations of electroelasticity

of the problems of antiplanar stress-strain state for media from the classes 6mm of hexagonal,
4mm of tetragonal and mm2 of rhombic symmetries also fundamentally coincide.

3.2. Material relationships and quasistatic equations of the electroelastic generalized
antiplanar stress-strain state in the sagittal plane x,0x; .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic antiplane stress-strain state

{ul (%, X,,0); 0, 0; 0; 00(x,,x;,0)/0x,;  OQ(x,,X,,8)/0x;; }

(3.27)

0; 0; 05 05 6,5(x,,%5,0); ©15(%,,%5,8); 05 D, (x,,5,1); Dy (x,,x5,1)

are written as follows

¢s=0, ¢5=0, =0, ¢,5=0, ¢;5=0, ¢;3=0, ¢,4=0, ¢,;=0, (3.28)

e,=0,¢,=0,¢e,=0,¢e,=0,¢e,=0,¢,=0,¢,=0,e,=0,e,=0, e, =0.
Only the generalized tensors of electroelasticity of piezoelectric media from the classes

6m?2 of hexagonal and 422 of tetragonal symmetries correspond to these restrictions.

Material relationships of non-zero electromechanical components in these media can be
written in the general form

0,5 (x,%,,1) = ¢35 (O, /Ox;y ) + €5 (O9/ Ox, ) + €55 (Op/ O, )
61, (X,,Xg,1) = ¢4 (Ou, [ Ox, ) + e (O/ Ox, ) + €5 (Op/ Ox, )
D, (x,,x;,t) = €5 (Ou, /0x, ) + e (Ou, /Ox, ) —¢,, (0¢/0x,)
Dy (x,,%,,1) = ey (Ou, /0x; ) + ey (Ou, /Ox, ) — €5, (O¢/0x, )

In the selected sagittal plane of these classes of media, it is convenient to write down also
the quasistatic equations of electro elasticity in general form

czé (82u1 /8x§ ) + C; (azul /8x32 ) + (e;5 + e; ) (82(p/8x28x3 ) +
+ey (0°p/0x; )+ el 670/ ax} ) = p (07w, /0t

e; (a2ul /ﬁxf ) + (e;6 + e; )(82”1 /8x28x3 ) + e; (azul/ﬁxf ) -
—€, (62([)/6x§ ) —&y, (62(|)/6x32 ) =0

Table 8. Values of physicomechanical coefficients with asterisks of the problem of antiplanar
stress-strain state in the sagittal plane X20x3

(3.29)

(3.30)

B

, (3.31)

* * * * * * * *

Css Ces € €6 €35 €3 25 &3

g |2 | e | 0 0 0 o | & | &
g 422

o Cus Ces e 0 0 0 én €33

The coefficients with asterisks in the relations (3.24)+(3.26) are given in Table 8.
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Table 8 shows that the problem of an antiplane stress-strain state in the sagittal plane x,0x,

is not electroactive for media of the hexagonal symmetry class 6m2 .

3.3. Material relationships and quasistatic equations of the electroelastic generalized
antiplane stress-strain state in the sagittal plane x,0x, .

In this sagittal plane of piezocrystalline textures, the conditions for the existence of an
electroelastic antiplane stress-strain state

{0; u,(x,%,,0); 0, 09(x,x;,0)/x,; 0; 00(x,,x;,1)/0x, } 532)
0; 0; 0; 6,5(x;,x5,0); 05 0y, (x;,x5,2); Dy(3x,,%5,0); 0 Dy(x,,%;,1) '
take the following form

€3 =0,¢4=0, ¢,,=0, cs=0, ¢;,=0, ¢;,4=0, ¢, =0, ¢;,=0, e, =0, (3.33)
e, =0, ,=0, ¢;=0, ¢,=0 ¢,=0, ¢,=0,¢e,=0, e,=0, e, =0,

Only the generalized tensors of electroelasticity of piezoelectric media from the classes
43m and 23 of cubic, 42m of tetragonal, and 222 of rhombic symmetries correspond to
these restrictions.

Material relationships of non-zero electromechanical components in these media can be
written in general form

s (X, %5, 1) = €y (Ou, /Oxy ) + e, (0p/ox, )+ e, (6g/ox,) .
G, (X, x5,1) = 626 (8142/8)61 ) + 81*6 (8@/8951 ) + 6;6 (8([)/5)63)
D, (x,,x,,t) = e]*4 (8u2/8x3)+e]*6 (Guz/éxl)—sll (a(p/ax] ) (3.35)

D, (x,,x,1) = e, (Ou, /0x, ) + ey (Ou, /Ox, ) — &5 (Op/Ox;)

In the selected sagittal plane of these classes of media, it is convenient to write down also
the quasistatic equations of electro elasticity in general form

Ceg (82u2/8x12 ) +c,, (82u2/6x§)+ (61*4 + e;)(ach/axl@)@ ) +
+e, (82(p/6x12)+ e, (ach/éxf) = p(azuz/aﬁ)
ey (62u2/8x12)+(el*4 +ez6)(62u2/8x18x3)+e:4 (quz/éxf)—

, (3.36)
2 2 £ (2 2
—&n (5 (P/axl )_833 (a (p/6x3 ) =0
The coefficients with asterisks in the relations (3.34)+(3.36) are given in Table 9.

B

Table 9. Values of the physicomechanical coefficients with asterisks of the problem of
anti-planar stress-strain state in the sagittal plane X10x3

* * * * * *
C6 €4 €6 G4 &6 &3
Bmf23 | ¢, e, 0 0 e, &,
wn
]
3 -
E 42m C(,@ e]4 0 0 e}é 833
Q
222 Co6 €y 0 0 €36 &3
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From Table 9 it follows that in all three cases in the equations of electroelasticity (3.36) of

the anti-planar stress-strain state for media from the classes 43m and 23 of cubic, 42m of
tetragonal and 222 of rhombic symmetries, the coupling of the elastic and electric fields
occurs through mixed derivatives of the electric field potential and elastic displacement,
respectively. From the equations of electroelasticity (3.36) it also follows that in problems of
the antiplanar stress-strain state for media from the classes 43m and 23 of cubic symmetry,
in contrast to problems for media from the classes 42m of tetragonal and 222 of rhombic
symmetries, the piezoelectric effect is equivalent in coordinates x, and x,.

4. Comparative analysis.

Comparative analysis shows that, taking into account the conditions of compatibility of
nonzero elastic axial elongations (compressions) and electric field strengths (2.11) and (3.8),
the sets of piezocrystalline classes of anisotropy, which allow separate excitation and
propagation of electroelastic planar or electroelastic antiplane stress deformed states in
piezoelectric media do not change accordingly.

Taking into account the conditions of compatibility of nonzero elastic axial elongations
(compressions) and electric field strength, leads to refinement of the notation of material
relations, electroelastic equations, and necessary and sufficient conditions that allow separate
excitation and propagation of a plane (or anti-planar) electro-elastic stress-strain state in the
corresponding problems.

Using the simple interaction of mechanical and electric fields as an example, we see that
the two-dimensional problem of plane deformation in the sagittal plane x,0x, for the class

6m2 is formulated by material relations of non-zero electro-mechanical characteristics

o, =¢, (Ou, /0x,)+ ;s (Ouy /Ox;y) + e, (O9/0x, ),
G,y = €1 (Ouy [0, ) + 5 (Ous /0x; ) — e, (09/ Ox, ),

(3.37)
033 = ¢y (Ou, [0x, )+ ¢35 (Ouy [Oxy), 05, =cyy [(8u3/8x1 )+ (0u, [ ox, )] ,
Dy =e, (aul/axl ) —&n (a(P/axl)> Dy =—gy (6@/&‘3)-
Quasistatic equations in this case are written as follows
¢, (82u1/8x12 ) +c,, (82u1/8x32 ) +( ey + ey )(82u3 /6x18x3 ) +
(3.38)

+e, (0g/ox) ) =p(0u, [or’)
Cuy (82u3 Jox? ) +cy3 (82u3 Jon? ) +( 3 +cuy) (82u1 /ox,0x, ) =p (82u3 ot ) (3.39)
e, (0u, [ox] ) —&,, (0°¢/ax} )~ &4 (097 /ox7 ) =0 (3.40)

The problem of the plane stress-strain state in the same plane for the class 6m2 is formulated
by the material relations of non-zero electromechanical characteristics (4.1) with the

compatibility condition of elastic non-zero axial elongations (compressions) G,, = 0:

¢, (Ou, /0%, ) + ¢, (Ouy [ Ox, ) — e, (Op/dx, ) =0 (3.41)

In view of (4.5), equations (4.2)+(4.4) can be written as follows
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“ on? ox; o’
o’u NGET . o’¢ o’u
Cua ax123 +(Cs3 _613) ax323 —4 (013/013)8 ox, =p 82‘23 ; (3.42)
o’u 0’ 0’
e = &, (2p_833 (2P=O’
Oox; Ox, Oox;

where it is clearly seen that both the new stiffness coefficients ¢ s = (c,; +¢,, )¢, /c,, and
¢, =(c3+¢y)e, fe,  “soften” the longitudinal stiffnesses and “tighten” the direct

piezoelectric effect in the medium.

The equivalence of two-dimensional problems of electroelasticity of plane deformation and
plane stress-strain state is ensured by taking into account the electro-mechanical conditions
in the infinitely distant ends x, =+ oo of a long waveguide.

5. Conclusion.

The necessary and sufficient conditions are derived that allow separate excitation and
propagation of the electroelastic plane and also anti-plane stress-strain states in piezoelectric
media:

- Conditions of type (2.10) and the compatibility condition of non-zero elastic axial
elongations (compressions) and electric field strength (2.11) allow separate excitation and
propagation of a plane electroelastic stress-strain state of type {(2.8), (2.9)} in the sagittal

plane x,, 0x;.

- Conditions of the type (3.14) allow separate excitation and propagation of the antiplane
electroelastic stress-strain state {(3.12), (3.13)} in the sagittal plane X 0)6B .

The introduced compatibility conditions for elastic non-zero axial elongations
(compressions) and electric field strengths (2.11) and (3.8) correspond to the requirements of
hypotheses about the nature of the distribution of the mechanical field in thin-walled

structural elements:
- In the case of a plane electroelastic stress-strain state of the type {(2.8), (2.9)}, all the

characteristics of the wave field lie in the sagittal plane X ())CB and there is no pressure of

parallel material planes X, = const on each other.

- In the case of an antiplane electroelastic stress-strain state of the type {(3.12), (3.13)}, the
mechanical characteristics of the wave field do not distort the sagittal plane x,0x;, the

characteristics of the electric field lie in the sagittal plane and there is no pressure of parallel
material planes X, = const on each other.

In all sagittal planes of all textures of piezoelectric crystals, the material relations of
nonzero electromechanical components and quasistatic equations of electroelasticity are
derived. This allows to choose different combinations of piezoelectric materials in layered
waveguides in studies of the joint propagation of electroactive waves of plane and antiplane
stress-strain state.
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