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IMarunsH A. C.
OO oHoii 3a1a4e ONTUMAJILHOM CTAOUIN3ALUH M0JIETA KBA/IPOKOIITEpPa
Ki1roueBble ciioBa: J[uHaMU4YeCKHE CHCTEMBI, ONITUMAJIBHOE YIIPABJICHHE, ONITUMAaJIbHASL CTA0MIIN3aLMs,
kBasipokontep BIIA.

B pabore paccmarpuBaercs 3agada ONTHMAIBHOW CTAOWIM3alMM OE3MMJIOTHOTO JICTaTENHHOTO ammapaTa
(kBagpokonTepa) B JuHeiHOM npuOmmwkenun. IlpuBeneHa cucrtema AuQdepeHUHATBHBIX — yPaBHEHHIA,
OIIBICHBAIOIIAsl JMHAMUKA BaJpOKONTEpa, IPOBEpPEHa IIOJHAs YIPABISIEMOCTh JIMHEHHOTO MPHOIMKEHUSI
MOJIYYEHHOH YIpPAaBIsIeMOM CHUCTEMBI, IIOCTABJIEHA U pEIleHa 3a7aya ONTUMAIbHON CTaOMIIM3aLUK 3TOH CUCTEMBI
MmeronoM JlsmyHoBa-Bemmana. Ilomydensl ontumanbHas ¢yHKIWs JIAmyHOBa, ONTHMAaibHBIE YHPaBIIIONIHE

BozzeiicTus. [TocTpoeHb! rpadHKi ONTUMAITBHBIX YIIPABICHHI U ONTHMATBHBIX IBHKCHH.

Cwhpiyuwt U.U.
Lunuph whonusm prynn uwpph oupnnpuluy wnwphywgdwi dh unhp
Zpdtwpuntp” nhtwdhy hwdwlupgtp, oyynhdw) nEjudupnid, oyunhduy unwphjugnid,
puinwupl ULU:

Upjuwwnwbipmd  phuwpyynud £ puwpwpl  wbonwsnt  pnsnn  uwpph  (URU)  owuhduy
unwphjugdwt fuunhpp gdughtt Unnwynpmipjudp: Fipyws E URU phtwdhljut  ujwpugpnn
nhdtipkughwy hwjuuwpnidutph hwdwlwpgp, uvnniqus £ vnwugjws nEjujupynn hwdwlwupgh
gdughtt Unnwynpnipju 1ppy nhujupbihnipniip, dbwlbpyduws b nwsdus b wyn hwdwlwupgh
hwdwp oyunhuw) unwphjugdwt fnunhpp Luwntung-Rhdwh tpubwlny: Unwugjws ki Ljuwyniunyh
oyunhuw] Pniulghutt b owywhdw) nhjwdupnny wqpbgnipmniutbpp: Ywenigyws i owunpuuy
njuyupnidubtph b oyynnpdwy pwpdnidutinh gpudhljubpn:

This paper discusses an optimal stabilization problem of a quadcopter unmanned aerial vehicle (UAV). The
dynamics of the UAV is presented and the linear time invariant (LTI) model of it is considered. The controllability
of the LTI model is checked and an optimal stability problem is defined and solved for the LTI system using
Lyapunov-Bellman method. The Lyapunov optimal function and optimal control inputs are gained. The graphs of
optimal control inputs and optimal trajectories are constructed and presented.

1. Introduction: In this paper we are going to discuss a stabilization problem of a
quadcopter (also called a quadrotor) unmanned aerial vehicle (UAV). A quadcopter is a
helicopter equipped with four engines each of which have a propeller attached. Quadcopters
are of high interest among researchers because of their simple structure. Moreover,
quadcopters are agile and maneuverable which makes it easy to experiment complex control
algorithms using them.
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There are several papers which study the stabilization problem of quadcopters while
approaching the problem from different view angles. Some papers use PID controllers, others
do the job using just PD controllers, some researchers solved the problem using LQR
regulator method. A short description of such papers is given in [1].

In [2] an Optimal Control problem is stated and solved for the linearized model. A numerical example
is also given by presenting optimal control inputs calculated analytically and optimal trajectories of the
motion.

Here in this paper we are going to approach the problem using so called Lyapunov-Bellman
method. Using this method for Linear Time Invariant (LTI) systems we can find a Lyapunov
optimal function, optimal control inputs and optimal trajectories.

What follows the introduction are three sections which are modelling of the system, problem
definition and solution and discussion of results. The discussed system is a quadcopter, and
the model is derived theoretically. Then the problem is defined and solved. The results are
discussed by providing some simulations results and comments.

2. Model of the System: To derive the pure theoretical dynamics of a UAV let us fix a
coordinate system Oxyz . Let O be the origin. We will also need another coordinate system
OsX3 Y2y fixed in the center of mass O, of the UAV (fig.1). The torques and forces
generated by each of the propellers are shown in the Figure 1. The propellers are numbered
1to 4 [1].

Let E=(x y 2z) be the
coordinates of the center of
mass of the UAV with respect
to the system Oxyz. As
mentioned above, the center of
the mass of the UAV coincides
with the origin of the
coordinate system OgXgYgZg -
Figure 1. Let us describe the inclined
position of the UAV about the
point O, using yaw, pitch and roll angles. Let @ be the pitch angle, ® be the roll angle
and, finally, let ¥ be the yaw angle. Then we will have two vectors describing the position
of the UAV. Those are the following:

T T
E=(x y z), n=(® O V¥) 1)
In the coordinate system the linear velocities V, and the angular velocities v are the

following

T T
Ve = (VBX Ve, VBZ) ' V= ( P q I’) )
In this setup we will have the dynamics of the system as given below [1; 3].

x—Tcsc +Tss y—Tssc Tcs 7= g+ch
m‘l‘@d) m‘I’ED’ m‘P@CI) m‘PCD’ m@EI)’
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Where  the  following  notations are  used: C,=cosa, S, =sina,

Ik(—mg—i-mi)
Ty =[To |=|k(-0f+0}) | and T=Y.F =Yk, T=(0 0 T)
Ty > i i

Let us do the following notations and linearize the system around the origin.

X\ =X X=X, X=Y, X, =Y, X =2, X; =1, @
=D, %=0, ;=Y X,=p, X; =0, X, =T
We will have
X1=X21 XzngB’ X3=X4’ X4=_9X71 )'(5=X6, X6:u1
L _ _ . U, Uy U, 5)
X7—X10’ X8—X11, X9_X12' X10—|_1 X11—|_1 X12_|_

XX yy 2z

T
Where U =—-—0, U, =T,, U; =T, U, =Ty
m
In [2] it is discussed and shown that the system (5) is fully controllable.
3. Stabilization Problem: Let us now define the stabilization problem that we want to

solve.
Problem: Given the system (1.8), the initial position of the system x(O) =X, , find control

inputs u® =(u uj ug ufj)T such that it drives the system from the given initial position

to asymptotically stable state, while minimizing the given linear quadratic regulator

J[.]=I@xi2+gufjdr. ©

Solution: We will follow Lyapunov-Bellman method to solve this problem. Notice that the
system (5) can be decomposed into 4 systems which are the following.
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u

>‘<1=x2.>'<2=9x8,>'<8=><11,>'<11=ﬁ ©)
o =X Xy =00, Xy = Ky Ry = 1 ®)
Xs = X5, % =, ©)
Xy = X0 gy = (10)

IZZ
So, we will have 4 independent systems which are fully controllable. This means we can
solve the problem for each of these systems separately. In this case (6) will be written as

J ['] =J; [']+‘]2 [°]+‘]3 [°]+‘]4 [']

where

Ji[e]

J[o]= (3 +3 +35 +x5 +ui [, J,[ J'(x9 +% +uZYdr.

As we see that system (5) can be divided into four subsystems then it is convenient to search
for a Lyapunov function in the form
V(X X5 ) = V3 (X X6 )+ Vs (Xgs Xgr Xg X0 ) +
+V3(X1vX2’X81X11)+V4(Xglxlz)
We will show the steps for one of the above subsystems (say (7)) and will present the

solutions of other three systems instantly.
So, for (7) Bellman equation will be as follows.

o'—~.8 Oy 8

(x2+x+uf )T, I, T (X2 + ¢+ + x5 +uj Jdt,
0

oV, oV,
23[]—axz _gxs &Xn axnau3+xi+xz+xs+x11+u3 (11)
Where a = S = Ii Now differentiating (11) and making it equal to 0 we get that
XX yy
ug =_1 ﬂ (12)
2 0O,

Then we will have

2
R [ RIS e (13)
R C &% % 4 oy

We are looking for Lyapunov function in the form shown below.

B

1
V3 (X1v Xy1 Xgs X11) = E (cuxf +Cyp Xzz + Cssxg + c1111)(121 + 2C12X1X2 + 2C18X1X8 + (14)
+ 2C111X1X11 + ZCZSXZXB + 2(:211)(2 X11 + 20811X8X11)
Substituting (14) into (13) leads us to following equation.
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(CiaXy +Cia Xy +CigXg +CiyyXo ) X +(Cip Xy +Cpp X, +CogXs +Copy Xy ) O +

(15)

1, 2
+(018X1 +CogX, +CggXg + Csnxn)xn ——a (C111X1 +Cpy X, +Cgpy X5 + c1111X11) +

4
XX +x2+x5 =0

Because the coefficients of polynomials in opposite sides of an equity must be equal, then
from (15) it simply follows that

1 1
—Zachu +1=0, —Za2c§11+c12 +1=0,

1 1
—Zazcjn +0C, +1=0, —Za2cfm +Cyyy +1=0,

1 1
_Eazcmczn +Cy = 0, _Eazculcsu +0C, = 0, (16)

1., 1.,
- E a Gy tCg = 0, - E A7Cyy4Cgyy +Cig +0Cy, = 0,

1., 1,
- E A7Cy11Cy11y TGy +Cp = 0, - E A7Cgy1Cyyqq +0Cyy +Cgg = 0

Here the parameters have the values a =205.93, g =9.81. The solution of (16) that makes
V, (x) apositive definite function is the following:

¢, =2912, ¢c,, =1.423, c,, =11.148, c,,,, =0.00997, ¢,, =1.121

s =2.053, ¢, =0.00971, c,, =2.979, c,,, =0.0141, c,,, =0.0534

It only remains to substitute values from (17) into (14) and then substitute into (12). Thus,
we will have u .

(A7)

By doing the same steps we will get also V,, V,,V, and u?, u3, uj. For V,, V,,V,,V, we
will have.

V; (X, X ) =1.732x¢ + 2X,Xs +1.732x;

V, (Xg, X, X7, X ) = 1.457x2 +0.712x2 +5.574x2 +0.00499x% +1.121x,X, —

—2.053%,X; —0.00971x,x,, —2.979X,X, —0.0141x,X,, +0.0534X, X, (18)
V(X X5 X, Xy ) = 1.457%2 +0.712%% +5.574x% +0.00499%7) +1.121x,X, +

+2.053x,X,+0.00971x,X,, +2.979X, X, +0.0141x, x,, +0.0534x, X,

V, (X, %, ) =1.009%; +0.0176XyX,, +0.0089x;,

Hence, optimal control inputs will be:
o 1V L,

u, = —%, —1.732x,,u) = —=a—2 =1.00082x, +1.452x, —5.498x, —1.0276
1 26X6 5 612 2 axlo 3 4 7 X10 (19)
u = 1 -1.00082x, —1.452x, —5.498%, —1.0276x,,,uS = LN %, —1.0112x,,

2 0x, 20X,

Where b=i=113.62. And Lyapunov function for the system (5) will be the sum of

z

Lyapunov functions of subsystems (7) -(10). That is
VO (X X ) = V0 (%60 % ) V2 (%0 X0 X700 )+ V5 (X0 X X X4 ) V4 (%%, )
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And the minimal value of (6) is [5]
J° [‘] =V° (xl,O""’ X12,0)
Where x, =% (0), i=1,...,12.

4. Discussion of Results: To visualize the results, we did some simulations. To do this,
we simply substituted the optimal control inputs into the system (5) and get a system of first
order ordinary differential equations. By solving that system, we will get the analytic forms
of optimal trajectories. It is not convenient to show them in the paper because of their
enormous sizes. The initial conditions and values of the parameters are assumed to be the
following:

X o= 50, X0 = 0, X350 = 30, Xp0 = 0, X5 0 =10, Xeo = 0, X0 = 0, Xg0 = 0,

- 1000 1000
=T :Oa :Ol :O’a: ’b:
X0 =21 %00 =0 X0 =0 Xizg 4856 8.801

So, for these initial conditions we will have our constraint optimal value equal to
J° [.] =8766.99. The trajectories of states will have the form given below. The results of

the simulation are presented below by presenting some of the graphs of optimal trajectories
numbered as Fig.2 to Fig.5.

1\
Fig. 2: Trajectory of state X, (t) Fig. 3: Trajectory of state X, (t)
4t | i PE—
i I| 0
4 Ill
sb '
Fig. 4: Trajectory of state X, (t) Fig. 5: Trajectory of state X, (t)
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Conclusion
The problem discussed in this paper is solved using Lyapunov-Bellman method. Lyapunov
Optimal function is acquired, and the optimal control inputs are constructed. Using those
results we also constructed the optimal trajectories of UAV including both geometrical
coordinates and their velocities. Also, the optimal value of the energy constraint is calculated
and given in discussion of results section. The results are then discussed by simulating them
in MATLAB R2018a. Finally, the simulation results are shown in form of graphs.
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