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OCCCMMMeTpl/l‘lHﬂﬂ yCTOl\/'l‘lPIBOCTL K]JyFJ'IOﬁ KOJIBIIeBOi/'l IUIATHI, IIO)IBep)KeHHOﬁ MEXaHUYCCKHUM U
TePMHUYECKUM HArpy3Kam
KiroueBble cj10Ba: Kpyrias KOJbLEBas IUIACTHHA, YIPYyras yCTOHYUBOCTD, NpE/eNbHAs Harpys3ka, KPUTHYECKOE
3HA4YCHUC, I'IpOI‘I/IG.

HccnenoBana BO3MOXKHOCTb IOTEPH OCECUMMETPUYHOM YCTOMUMBOCTH KpPYIJIOH KOJIBIIEBON IUIACTHHBI,
MO/IBEPTHYTOI0 BO3ICHCTBHIO PAaBHOMEPHO H3MEHSIOLIETOCs M0 paauycy KOJbIa TEIUIOBOrO nojs. BHyTpeHHast
KpOMKa KOJbIla 3a)kaTa WIN IOJABEPIKEHA BO3HeﬁCTBHm BHEIIHUX MEXaHWYSCKMX CcHiI. Ha BHeIrHeMm Kpae
KPYTJIOTO KOJbIIa PAaBHOMEPHO pPACIPEACIICHHUE CHUIIBL ﬂeﬁCTByIOT KaK pacTaruBaromas Wi CXXUMarouas
Harpysku. C Y4e€TOM C(bOpMI/IpOBaHHOI‘O IJIOCKOT'0 HAIIPSKEHHOI'0 COCTOSIHHS B KPYTOBOM KOJIBLE MJIsTI BCEX
CJIy4Ja€B BHYTPEHHHUX HaHpSDKeHI/If/'I B 30HaX CXKaTus ONPEACIICHbI 3HAUYCHHUS NPOAOJIBHOIO CMEIICHUA. B ciryyae
06]116]‘/’[ HarpysKu KoOJibIla HalIPSI)KEHUS BBIPAXKAIOTCSA KakK beHKI_II/Ii[MI/I Beccens TIEPBOr0 U BTOPOTO IOpsAJIKA, TaK U
HHHHHIIpH‘{eCKOﬁ d)yHKI.IPIeﬁ MHHMBIX aprymeHTOB C ﬂeﬁCTBHTeHLHBIMH WHACKCaMH. B HEKOTOPBIX YaCTHBIX
Clly4asiX Harpy>X€Husi KoJiell, ypaBHEHHUs] YCTOMYMBOCTH IIACTHHBI IEPECTPAUBAIOTCS B ypaBHEHHUs THIa Jitnepa,
a HaIPsSDKCHHS B IUIACTHHE BBIPAKAIOTCS Yepe3 AIeMEHTapHbIe (yHKIIMH.

Udtknhywi U.U., Uikpuwbyui .4., Ujkpuwbyub .03
Ukhwuhljwlwi b oipduyhl pinhwdnpdus oppwbiunght onuiljwdl vwh wrwgpwuhdbwnphly
Juyniiinipyniip
Zhttwpwnkp:  opgwiughtt  onuljwdl uw], wpwdquljwt  Yuyniimpnih, uwhdwbughl  phn,

Yphuplulw wpdtp, uwih &ljfudp:

Zhnwgnunnud k, opowbughtt onuljwdl uwih wnpwigpwuhdbnphl juyniinipjub Ynpniunh
htwpwynpnipniup, kpp vwih swpwynny wqpnud £ hwjuwuwpwswth thnthnhdnn ghpdught nuown:
Uwih ubkppht Eqpp wdpulgws b, Juwd bGupwuplhyws b wpuwphtt Jkjuwbhjulwh nidbkph
wqnlignipjutip, hul] wpnwpht kqpnid wqnnud Eu hwjuuwpwywh pughugus ukinunn jud dqnn nidbp:
Ynp opowbughtt vwnd dhwynpyws hwppe jupjwsughtt h&wlhg tkpphtt jwpnuditkph ponp
nhypkph hundwp, whndub nhpnypubpnd npnpynd B pwnwjnuyhtt nhnuihnunipniubph
wpdbpubpp: Ynp uvuyh pughwingp pintwdnpdwt nghypnud, jupnudubpp wpnwhwyundnud o huyybu
Ptuukh wpwehtt b tpypnpy ubinh, wytwbu £ hpwlwb hunkpuubtpny, Yind thnthnjuwlwuih quubwgh
dniuljghwtph dhgngny: Ynp uwh dwubwlh phntwdnpdwb npny nhypbpnd, uwh Juyniinipjun
hwjuwuwpnidp vnwinwd  Eptph hwjuwuwpdwt nbkup, hull jupnudubpp vwnud wpnwhwyngdnud B
hbtdkunwp $nruljghwbpnd:

The possibility of loss of the axisymmetric stability of a circular ring plate is investigated, when uniformly
varying thermal field impacts over plate radius. The inner border of the plate is clamped or is exposed to the
impact of external mechanical forces. Uniformly distributed tensile or compressive forces impact at the outer
border of the plate. Taking into account the formed flat stress state in the circular ring plate, the values of the
longitudinal displacements are determined for all cases of internal stresses in the compression zones. In the case of
the general loading of the ring plate, the stresses are expressed by both first-order and second-order Bessel's
functions, as well as by cylindrical functions of imaginary arguments with real indices. In the cases of ring plate
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partial loading, the equations of plate stability get the look of Euler type equations, and the stresses in the plate are
expressed by elementary functions.

Introduction

The problem of circular ring plate stability subjected to the compressive forces at the
mid-plane first time was investigated in [1]. The problem of axisymmetric stability loss of
the circular ring plate subjected to the uniformly distributed compressive forces is
considered in [2]. The general case of the above-mentioned problem is in paper [3]. The
investigations of the problems of axisymmetric and non-axisymmetric stability of ring plate
have been done in [4, 5] for two different cases: a) the circular ring plate is subjected to the
uniformly distributed compressive forces along the outer border of the plate; b) the circular
ring plate is subjected to the uniformly distributed tensile (radial) forces along the inner
border of the plate.

The generalized problem of stability of the circular ring plate subjected to the uniformly
distributed tensile and compressive (radial) forces along the outer and inner borders is
considered in [6]. In this article, the various cases of boundary conditions are satisfied
taking into account the longitudinal displacements determined from the formulas of plate
stability problem. Equations of critical values of unknown parameters are received from the
conditions of non-zero solution of the homogeneous equations’ system for integration
constants.

In technical report [7], an analysis of the stability of circular ring plates under uniformly
distributed radial load is presented. It was found that, in general, the critical mode shapes
are combinations of in- and out-of-plane displacements and they occur when loads
considerably are below the classical (in-plane) critical load. In paper [8], the stability of
circular ring plate, pre-stressed by temperature-like intrinsic deformation, is studied using
the equations of the nonlinear theory of rods. The temperature gradient in the radial
direction results in a bending moment. The analytical solutions are successfully compared
against results of finite element simulations for a shell model of the ring.

In papers [9,10] the linearized problems on the stability of a circular ring sandwich of
symmetric structure under axially symmetric temperature field, inhomogeneous through the
core thickness, are stated and their analytical solutions are given. The deformation
processes for the load-carrying layers are described by the Kirchhoff-Love model. For the
core of arbitrary thickness, the deformation process is described - by two models, namely
by the equations of the plane problem of elasticity theory and by the model of a
transversely soft layer of arbitrary thickness.

1. The problem statement. Plane stress state of circular ring plate.

Let us consider a circular ring plate with the thickness h, which is clamped at the inner
border I =b, and is subjected to the tensile or compressive uniformly distributed load with
intensity P at outer border r =a. The plate is also exposed to uniformly varying
temperature along radius of the ring plate. The plane stress state of axisymmetric circular
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ring plate is characterized by the direction of radius via the non-zero component of
displacement u at the middle plane of the plate [11].

b<r<a

u, =Clr+%, (1.1)

Corresponding to the arising internal stresses G, and Gy, the arising at the circular

ring plate internal efforts N, (r), Ny(r) and N, (r) are determined by the following

formulas
Eh | du u
N, (r)= —+v—-—(1 T
(1) l—vz{dr +v ; (1+v)a }
Eh | u du,
Ne(r)zl—vz |:T+V ™ —(l+v)ocT} (1.2)
N,, (r)=0.

Here, Eis the modulus of elasticity, v is the Poisson’s ratio, O is the coefficient of
thermal expansion, T is the temperature change correspondingly for a plate material.
Based on (1.1) and (1.2), as well as satisfying the boundary conditions on the edge of the
circular ring plate

ul,, =0, N |_.=p. (1.3)
we obtain the following relations for the cutting forces:
Eh | b*v’ a ]
N, (r)=———| P(1+ +oTl? (-1 |,
(1) 1+ V)3 | o+=2) (e D
Eh [ bV’ a’
N,(r)=———| B(1—- —aTl*(=+1 1.4
0= e PO~ eT )| 14

Here, v' =(1-v)/(1+v), 8=1+Vv'I*>, B, =P(+V)/Eh, and |=b/a are

dimensionless parameters of the circular ring plate.

If either tensile or compressive forces (P >0 or P <0) impact on the outer border of
the circular ring plate and either steady increase or steady decrease of temperature (T >0
orT <0) is influencing the thermal expansion of the circular ring plate, the forces defined
by equation (1.4) on the plane of the circular ring plate can be tensile or compressive, i.e.
the strips (zones) of tension or compression forces are located on the circular ring plate. For
any force, the presence of compressive zone is pointing out the lost of stability of the

circular ring plate. Therefore, if B, >0 and T >0 then N, >0 forr €[b;a], meanwhile
N, for [b;a] can have a compressive zone. Furthermore, if B, <0 and T <0 then

N, <0 forr e[b;a], meanwhile N, can change the sign.
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Similar to the above-mentioned consideration, it is easy to prove that for P, and T

having opposite signs, N, and N, in the interval [b;a] can contain compressive zones.

Consequently, in any case, the circular ring plate can lose the stability.
The forces defined by formula (1.4) can be expressed as follows:

N (r)—E—h (P—aTI2)+(Pv*+0LT)E (1.5)
o A+v)s| ° 0 r '

2. The problem of stability lost of axisymmetric circular ring plate
In the problem of stability lost of the axisymmetric circular ring plate losing its stability,
the deflection w(r) satisfies to the following equation [2-6]

d*w(r) N 1 dw(r)

dr? “rodr
where D = Eh’ / 12(1-=v?) is cylindrical flexural rigidity of the circular ring plate, and
A(e) = (d2 /dr? ) +(1/r)-(d/dr) is a one-dimensional differential operator.

DAAW(r) = N, @1

Based on expressions (1.5), the equation (2.1) can be expressed in the following way:

_ 2 22 2 212
AAW(r) = Eh(P, —aTl") 12 b™ Yd w(r) i y'b™ |1 dw(r) 22
D(1+v)d r’ dr’ r’ Jr dr

where “+” sign should be chosen for the values (P, —aTl1?) and (P,v" +aT) having
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the same sign; sign should be chosen for the values having opposite signs, and

vy’ =|Rv +aT|/|R -aT?|.
The following status options of equation (2.2) determining for w(I') are considered:

L. if F(‘)—OLT|2>O,and Bv'+aT >0 then

’b? \d*w(r) v?b* |1 dw(r)
Aw(r) =B || 147 +]1- — =0. 23
w(r) BK rzj dr? r’ Jr dr 23)
II. if P—aTl>>0and Pv"+aT <0 then
2|2 2 2|2
|y b diw(r) y b ) ldw(r)|_
AAW(r)—pf Hl 5 ) e +(1+ = Jr—dr }_O. 2.4
where p* = 12(1-v)(P, —aTI?)/h*5 .
. if P—aTl’> <0 and Pv' +aT <0 then
2142 2 2142
Adw(r)y+p || 14 220 |90y v D Tdw )] 2.5)
r dr r- Jr dr
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Iv. if B—aTl?> <0and PV’ +aT >0 then

AAW(r) + P [[1 - VZ?Z jm+ (1 + 72?2 )1 dw(r)} -0, 2.6)

r dr? r’ Jr dr

where B} =12(1-v)|R, —aTI?| /5.
It is evident that here the following limiting cases are possible.

1. In case of P, —aTl>=0 and Pv'+aT #0 , the equation (2.1) can be

expressed as follows

Ldzw(r) ~ 1 dw(r)
r> dr* r* dr
where H? =12(1-v)b*(P,v’ +OLT)/h28, and as follows
idzw(r) _ldw(r)
r’ dr®>  r dr
where H? =12(1-v)b’|[Rv" +aT| /I3

AAW(I‘)—Hz[ ij,for Rv'+aT >0, 2.7

AAW(r) + I-_I2[ ]zO, for PRv'+aT <0, (2.8)

2. Inthe case of P, —oTl?#0 and Pvi+aT =0:if R, —aTl? >0 then
N, =N, = Eh(F:(') - 0LT|2)/8(1+V) >0, in re[aDb]. Therefore, the plate is
subjected to all-around tension; meanwhile, the plate doesn’t lose the stability.

3. If P —aTl><0 and Pv" +aT =0 then
N, =N, = Eh(F% —OLle)/(l+v)8<O . In this case, the circular ring plate is

subjected to all-around compression. Consequently, the circular ring plate can lose the
stability [12]. For this purpose, the equation (2.1) should be expressed as follows

AAW +HAw =0, where H; =12(1-v)|B, - aTI*|/(1+v)3 2.9)

4. IfP —aTl?=0 and Pv'+aT =0 then P,=0 and aT =0.

In this case, the circular ring plate is free from external mechanical and thermal actions
and it will by stabile.

3. Integration of stability equations of the circular ring plate.
Replacing variables X = 3 - I' , equations (2.3) and (2.4) can be expressed as follows:

AAW(X) _{(1 N d*p’ ] d*w(x) +(1 ~ dp? ]l dw(X)} 0, G1)

X dx? X Ix dx
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X dx? X Ix dx

where d* =7°b%, A, =(d2 / dX2)+(l/ X)(d/dx) - is a one-dimensional differential

AAW(X) _{(1 3 dp’ j d’*w(x) +(1 N d’p? ]l dw(X)} 0, (32)

operator. If denote z(X) = dw(X)/dX, the equations (3.1) and (3.2) can be represented as

follows:
x[xzz" +Xx2 - (] + xz)z} —[xzz” +XZ —(n; + xz)z] =0, (3.3)
x[xzz” +X2 - (3 + xz)z} —[xz Z'+x2' —(n; + xz)z] =0, (3.4)

where 1’]12,2 =1+d°p’.
Integrating equations (3.3) and (3.4), the following equations can be obtained:

X*Z"+x2' —(n; +%x*)z=Cx, (3.5)

X*Z"+ X2 —(n} + x*)z=Cx, (3.6)

here C and C are integration constants. The solution of equations (3.5) and (3.6) should
be determined by the following expressions.

z=C,(¥!, (X)+C,(xK, ()
2=E,(x)1, (% +E, (0K, (X G

where | (X) and K, (X) are the cylindrical function of imaginary arguments with the

real indexes; C,(X), E (X) (i =1,2) are arbitrary functions defined by the variation

method of arbitrary constants.
The solutions of equations (3.5) and (3.6) can be expressed as follows:

z=Cl, (%) +C,K, (x)+Cf (X

— — _ . (3.8)
z=El (X +EK, (X)+Cf,(x)
The corresponding deflections can be defined by the following equations:
W(X) = j [C1, (0+C,K, (x)]dx+C j f (x)dx+ H,
(3.9

w(x) = [[El, (0+EK, ()ldx+C[ f,()dx+ H, ’
where C;E ;H, (i =1,2) are integration constants, and
F)=1, (% j K, ()dx— K, (X) j I (0dx (i =12).

Denoting X, = B]r , equations (2.5) and (2.6) can be represented as follows:
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2n2 2 2n2
R U i ()
dx; X )% dx
2n2 2 2n2
AXAXW(XI)+(1—d P, Jd W(2X1)+(1+d P, ]idw(xl) =0. @11
)(1 dxl Xl Xl dxl

The integration of equations (3.10) and (3.11) can be reduced to the integration of
Bessel’s non-homogeneous equations.

XZ'+ %27 = (& -%)z=CX.
X2 +x7 - (& -x)z=C,X, (3.12)
where z(x)=dw(x)/dx ,C,, 60 are integration constants.

The generalized solutions of equations (3.12) are the following

Z(%) = E‘ng (X)+ Engl (%) +(1IC0/2)(1)1(X1)

_ _ _ (3.13)
2(x) = H,J, (x)+H,Y, (x)+(nC,/2)¢,(x)
The corresponding deflections can be obtained from the following relations
= — nC,
w(x) = [ EJ, () +EY, 04) b + =2 [4,(x)dx +E,
— , (3.14)

w(x) = [[ H3, 00)+H,Y, (%) Jdx +“—§0j¢2(xl)dx1 +H,
where J,(X) and Y,(X) are the first-order and the second-order Bessel’s functions;
E .H,.E,,H, (i=1,2) are integration constants; and
6 06) = Y5 ) [ 35 00 - 3, 00) [ ¥y (%), (1=1.2).

For the first limiting case (P, —aTl?> =0, Pvi+aT #0) and
Pv' +aT >0, the force w(X) is obeying equation (2.7). Meanwhile, for

PVv'+aT <0, the force w(X,) is obeying equation (2.8). The equation (2.7) is an

equation of Eulerian kind:
2 1 1

wY+Ew" 1+ H) 5w +(1+H)Sw' =0, (3.15)
r r r

where H? =12(1-v)b>(Pv* +aT)/h* (1+Vv'1?).

Denoting X=r/a,| <x<1,|=b/a, equation (3.15) can be represented as follows:

Xw + 2w —x(@+HHW" +(1+HH)wW' =0. (3.16)
The generalized solution of eq. (3.16) is the following
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w(X)=C, +C,x* +C,x"™  + C, X", (3.17)
where k =1+ H? .

In case of P,v" + T < 0, the equation (2.8) can be represented as follows
Xw () +2xw" () - x(1-H)w" +1-H>)w'(x) =0, (3.18)
where H” =12(1- V)b’ |[Rv" +aT| /0’ 1+ V1)

In the case of 1—H? >0, the deflection can be written using the generalized solution
of equation (3.18)

w(X) =B, +B,x* + B,x"™ + B,x ™. (3.19)

Similarly, in the case of 1— H? <0, the corresponding solution of equation (3.18) can
be obtained as

w(X) =D, + D,X* + X-[D, cos(BIn X) + D, sin(BIn X)], (3.20)
where B> =H? -1,
For 1 —H? =0, deflections can be defined as
w(X)=Cx-Inx+C,x* +C,x+C,. (3.21)
For the second limiting case P, —aTl >#0 and Pv®+aT =0, the circular ring
plate can lose its stability, if F% —aTl> <0 . For this case, the deflection can be

determined by equation (2.9). Replacing variables p =T / a ., | <p<1, equation (2.9)
can be represented as follows [12]:

A A W(X)+ KA w(X) =0, (3.22)
Where k> =12a’(1-v)|P, —aTl’| /b (1+ V1),
A = d*/dp? +(1/p)(d/dp).

Denoting X = Kp, the following equation is obtained:
AAWX)+AW(X)=0. (3.23)

Meanwhile, denoting W' = Z, the following equation is obtained:

!

X[ XZ(0)+X2(x)~(1=-X)2(X) | =[ XZ'(0+X2 ()~ (1-x)Z(x)]=0.

Integrating the last equation, the following equation is obtained:

X*Z'(X) + xZ(X) - (1-x*)z(X) =C, X, (3.24)
where Co is an integration constant.

The generalized solution of equation (3.24) can be defined in the following way:
z(x)=AJ,(X)+BY,(x)+C,/X. (3.25)
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Taking into account Z(X)=dw(X)/dX and integrating eq. (3.25), the following equation
can be obtained:

w(X)=AJ,(X)+B,)Y,(X)+C,Inx+D,, (3.26)

where A, B,,C,,and D, are integration constants.

4. Determination of parameters critical values
Longitudinal displacements defined by the integration of stability equations of the
circular ring plate should satisfy the boundary conditions on the plate borders.
In practice, the following cases of boundary conditions are considered (Figure 1. +
Figure 4.)
1.

maT

Figure 1. The internal border of the plate I =b is clamped, and the external
border of the plate I = a is free

with the following boundary conditions,
dw

dr|r=b:O’ Mr r=a:0’ Qr|r=a:O (41)

w r=b:O’

2.

aT aT

Figure 2. The internal border of the plate I =b is hinged, and the external border
of the plate I = a is free.

with the following boundary conditions,

Wr:b:O’ Mr r=b:0’ Mr _09 Qr|r=a:0 (4~2)

r=a
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aT

Figure 3. The borders of the plate are clamped.

with the following boundary conditions,

dw dw
»=0, —|,_,=0, w|_,=0, —|_ =0 4.3
Wirop ar | =b dr | (4.3)
4.
P_ .. o P

Figure 4. The borders of the plate are hinged

with the following boundary conditions,

wl,=0, M]|_,=0, M]|_=0, w|_=0 (4.4)
In the problem of axisymmetric stability of the plate, bending moments and cutting

forces through forces w(I') can be defined by the following equations:

2
M, :—D[d W+Xd—WJ , r=—D%(Aw) or

d? d Dp*,
Mrz—DBZ(dX\;V %d—\;’}:— E(xz +vz); (4.5)
, d{d*w 1dw) DB* [ 5., , Lo a0y
Q=P gl e Fxa T (XEHE ) xbre

In the view of the determination of critical values of parameters, let’s consider the

fourth option (P, — Tl ’<0, Pv'+aT >0). In this case, from equations (3.13)

and (3.14), Z=w'(X) and W(X ) can be expressed as follows:
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z(x) = H, J. (x1)+H Y. (x)+ 0(1)2(><1) (4.6)

X

w(x)= [

pib
Where X, =B,I, &, =B21d2, dzzyzbz, B,d<x <B,a,and

(x) dx +H,, 4.7)

6, () ==3., 00) [ Y, 09dx+Y,, (%) [ I, ()
Bib Bb

Satisfying the boundary conditions (4.1) and based on equations (4.6) - (4.7), we can
receive the following system of equations:
H,=0
H1J, (Bb)+H:Y, (Bb)=0
HiJ, (Ba)+H:Y, (Ba)+

ga Bia C 4.8
+ “;:0 {—ng (B,a) j Y. (x)dx+ Y, (B,a) j J. (x)dx & 5
Bib Bib B

Bla(l - YZI 2)
H1J.(B,a)+H2Y, (Ba)+

TCC() P2 VEO
J Y., (x)dx +Y J X |+ ————55-=
{ (B2 J , (dx+ Y (B,2) j OO | e LTS

For the boundary condition (4.2), the following system of equations can be obtained:

Ho =
[32Bb)+ v, (Bb) [Hi +[ Y. (Bb)+ VY., (B,b) |H:
HJ! (B]a)+ HoY/ (Ba)+

P c (4.9)
~J; (B,a) j Y., (9dx+ Y, (B,a) [ 3., (0 |+ Vo -
Bib b |

prat(l-vy1%)

nCo
+

H1J, (Ba)+H:Y, (Ba)+
Bal—y’1%)

TCE i pia pia ]
+2 =3, (B Y, 00dk Y (B2 [ 9, (9l -
L pib pib i

Based on the existence condition of non-zero solution of the system of homogeneous
equations for the integration constants obtained by equations (4.8) and (4.9), the
transcendent equation for any random parameter can be determined taking into account that
the rest of parameters have received specified values.
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For the first limiting case (B, —aTl =0, PV’ +aT #0), the force w(X) can be
obtained by equations (3.17) and (3.19) in case of P)v" — aTl? < 0. Determining the
force w(X) by equation (3.19) and satisfying the boundary conditions (4.3), for the

determination of integration parameters B, the following system of homogeneous equations

will be received.
B+BI'+B|l"+BJ|"=0
21B, +B,(1+Kk)I*+B,(1-k)*“=0
B+B,+B+B,=0
2B, +(1+k)B +(1-k)B, =0
Taking into account that
P-aTl*>=0 P =aTl’ P >0
Pv'+aT <0 aT(1+v1*)>0 - {T<0

and based on the existence condition of non-zero solution of the system of homogeneous
equations (4.10), the following equation can be obtained:

—4K + (1+k»)A-1*)sh(k In) + 2k (1 +1*)ch(k In]) = 0. @.11)

Consequently, for the plate losing the plane stability, either P, or the minimal critical

(4.10)

value |T| can be determined.

L A kl
2 .ﬂ_d___dlff_;_,_.ﬂ-_f' 1.0 1.2
[=0.25
-01 1=0.125
_,——‘—'/
0.2
~0.3F
—0.4f I=0,I\

Figure 5. Characteristic stability curves of a circular ring plate with a joint thermo mechanical load
from equation (4.11) and satisfying the boundary conditions (4.3)

Replacing B, with C, and K with K in equations (4.10) and (4.11), C, constants and

the critical values of parameters can be determined if the force is stated by equation (3.17).
The characteristic lines in accordance with equation (4.11), for different linear

dimensions | = b/ a of a circular disc, are shown in Figure 5.
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Taking into account that
P-aTl*<0 P1+v1*)<0 P <0
= =
Pvi+aT =0 aT =-RV’

limiting case of the plate, the deflection w(X) and Z=w'(X) obtained from the equations

, and based on the second
aT >0

(3.25) - (3.26), as well as, satisfying the boundary condition (4.1), the following system of
equations can be defined:

AJ,(K)+B,Y,(k)+C,In(k)+D, =0

AJ (K)+ Bo\q(kl)—%zo

AJ(K)+B)Y(k)=0

AJ/(k)+B)Y/(k)-C, ll:—zv =0, (4.12)

where k> =12(1-v)|R|a® /n* =12(1-v)aTa’ /h*v" (4.13)

Based on the existence condition of non-zero solution of the system of homogeneous
equations (4.12), the following transcendent equation can be obtained:

3,0, (€)= 3, ()Y, (k) = ﬁ @.14)

Based on the known physical mechanical constants and geometrical parameters, the
minimal positive value of K can be gotten from the equation (4.14), and either the value of

the force |P0|cr or the value of temperature T, corresponding to the value of K can be

obtained from equation (4.13).
The characteristic lines in accordance with equation (4.14), for different linear

dimensions | = b/ a of a circular disc, are shown in Figure 6.

Fik)
0.2F

of =025

-01F

=0.2F

Figure 6. Characteristic stability curves of a circular ring plate with a joint thermo mechanical
load from equation (4.14) and satisfying the boundary conditions (4.1)
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Therefore, if the inner radius of circular ring plate 0 — 0, i.e. the circular ring plate is
reduced to the circular plate, the components of displacement u(r) and internal forces

corresponding to u(r) will act on the mid-plane of the plate.

Then, we will have the following values:

u=Cr, N, :NezlE—h(Cl—ocT) , Ng=0,0<r<a
%

Satisfying the boundary condition N, | r—a = P, the following expressions are obtained:

C,=P(1-v)/Eh+aT,N, =N, =P 0<r<a.

Therefore, the internal forces are not dependent on the changes of temperature (in the
case of uniform thermal variations, stresses do not emerge in the body). The circular plate

can lose its stability if P <0, so that the plate is subjected to the uniformly distributed
compression N, =N, =P <0.

The problem of axisymmetric stability loss of the circular plate clamped on the border
subjected to the uniformly distributed forces in the direction of the diameter edge is

considered by Bryan [13]. The problem of plate clamped on the border is investigated by
Dinnik [14].

Conclusion.

The values of the longitudinal displacement are determined based in the formed flat
stress state in a circular ring plate for all cases of internal stresses in the compression zones.

In the case of a general load, the stress rings are expressed by both first-order and
second-order Bessel functions, and by cylindrical functions of imaginary arguments with
real indices. In the cases of partial loading of the ring plates, the stability equations of the
plate take the look of Euler type equations, and the stresses in the plate are expressed by
elementary functions.

The internal forces are not dependent on the changes of temperature (in the case of
uniform thermal variations, stresses don’t emerge in the body free of the external
constrains). The circular plate can lose its stability if P <0, so that the plate is subjected

to the uniformly distributed compression N, =N, =P <0.
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