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Oo6pa3oBanue u pacnpocrpanenue ynpyrux (SH) cIBHToBbIX BOJIH B C€TYaTOM KOMIIO3MTHOM BOJIHOBOJIE
KiroueBble cJ10Ba: KOMITO3UTHBIH BOJTHOBOJ, CABHIOBAsI BOJIHA, JTOKAIN3ALHs BOTHOBOM SHEPTHH, IIEPHOJHICCKAs
CTPYKTYpa, HEOAHOPOIHBII CIIOH, 3alPETHBIC YACTOTHI, (Pa30Bast CKOPOCTh, CETUATHIN KOMITO3UT.

OOCyXaloTcsi BO3MOXKHBIC BapHAHTBI O0pa3oBaHUs W PACHPOCTPAHEHUs YNPYrodl CIABUIOBON BOJHBI B
CEeTYaTOM KOMIIO3UTHOM BOJIHOBOJE C KAHOHMYECKUMHU HPSMOYTOIbHBIMH sueiikamu. CeTdaTslii KOMIIO3HTHBIN
BOJIHOBO/I MOZCIMPYETCS KaK CJIOHUCTBIH BOITHOBOJ U3 MEPUOJIHICCKH IPOAOIBHO HEOAHOPOAHBIX YIPYTHX CIOEB.
IMomydyeHsl ¥ WcciIeIOBaHBl JUCTICPCHOHHBIC YPaBHEHHs (QHIBTPAlMM YacTOT BJOJb BOJHOBOJA, a TAKKe
JHCIIEPCHOHHBIC ypaBHEHHS (OpMOOOPa30BaHUS B MEPUOAUYECKHX IPOCIOHKAX, IO TOIIIMHE BOJHOBOIA.
IMoka3bIBaeTCsl, YTO HAMICKALIMM BHIOOPOM Map MaTepUaioB B CIOSX MEPHOIMYECKONW CTPYKTYpBI, a TaKXKe
OTHOCUTEIBHBIX TOJNIIMH O3THX CJIOEB, MOXHO JIOCTHYb Pa3HBIX CXEM BOJHOOOpPA30BaHHSA 110 TOJIIHHE
KOMIIO3HUTHOTO BOJTHOBOJA.

UHCIEHHO HCCIENOBaHbBl JUIMHHOBOIHOBOE (HH3KOYACTOTHOE) M KOPOTKOBOJHOBOE (BBICOKOYACTOTHOE)
HPUOIVKEHUs TUCIIEPCUOHHBIX ypaBHEHNH. DOHOHHAS CTPYKTYpa COCTABIAIONIMX CIOEB BOJHOBOJA IPUBOJMT K
Pa3HBIM 30HaM IIPOITYCKAaHUS YacTOT, 00pa3ys (MIIBTP MO OTACTBHBIM CIOSM. JIOKaIM30BaHHbBIC YIbTPAaKOPOTKUE
Me/JICHHBIE YIIPYTHe CIBHIOBEIE BOIHBI IT0 TPAHUIIAM CONPEIeIbHBIX KOMIIO3UTHBIX CIOEB HE PACIIPOCTPAHSIIOTCS.
Jlokanu3anus S3HEprUu yrpyroi CABUTOBOM CMEKHOM BOJIHBI (BoJHA THMA JIsBa) y rpaHUI] CONPENEIbHBIX S4eeK
XapaKTepU3yeTcs MOIYJIAMU (PU3NUECKHUX ITOCTOSHHBIX MAaTEPHaIOB U OTHOIICHUEM JUIMHBI 00pa30BaHHON BOJIHEI
C TOJNIIHAMH COCTaBHBIX CIIOEB.

Uygbknhyuwi U.U,, Muyunpub 4.0.
Unwdquljuit uwhph wihpubph (SH) Abwgnpoudp b mwpudmup gmbgunpy pununpyuy
whpwwnupmyd
Zhdiwpunbp’  pununpjuy  whpwwwp, uwhph  wihp, wihpught  tubpghugh  nbnujiugnd,
wuppbpulul jupnigusp, wihwdwubn obpn, wpghpdus hwdwhuljuinipnitttp, thnyught
wpwgnipinil, gumugunhy Yndynghun:

Yhuwpyynd £ juunthl nmunublmb pohoubpny gwigwwnhy pununpuy)  wihpwwnwpnid
wnwdquijwl uwhph wihpubph dbwynpoidwt b wwpwsdwt htwpudnpoipniip: Swigwnhy
pununpjuy  wihpwwnwpp  Unpijuynpynd Eonpybu wwppbpwlut  Epuyiuut wihwdwubn
wnwdquljul okpntphg juquyws whpuwnwp:

Unugjws b htnwgnundus i whpwwnwph Epuyipny hwdwpwljubughtt quuiwt phuybpuhugh
hwjuwuwpnudubpp, huywbu twl, pun whpwwnwph hwunnpjut yuwppkpuljut Eipwobpnbpnud
whpuyht dukph Yuquwynpoudp: 8nyg b wpynud, np wuppkpuljut wthwdwubn Gipwobpubpnud
Juunuhl pohoutiph wniptph b swihtiph hwdwywwnwupiwb punpnipyudp Jupbh b unwbwg wihpuyght
Aubkph b npuig nwpwsdwt mwuppkp uubdwibkp:

Guunupyws k Epjupwhpuyht (qusphwdwjpulwiwgh) b jupdwihpught (pupdphwdwjuuluiiughiy)
uwhdwbught nphyptph pduyhtt hbnnwgnuumipnit: Ujhpwiwph punugnighs okpnbph $nuntiught
Yupnigjuépp phpmd £ pryguunpbih b wpgbpjnn hwdwumpmbtbph wwppbp  nhpnyptph
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Aliunplijny quuhsibp wnwbidht obpinbipnid: Uwhdwbwlygnn okpintiph dhugdwb dwljkplinygpubph tnwn
nbnuyugdus nyunpuljupd puinun wewdquljut vwhph wihpubp skt wwpwdynid: Lyudh whuwh
wnwdquljwi uwhph  whph Eubpghuyh wnbnuytwgnuip  ghpnbph  uwhdwbwlgdwb  Eqpoid
punipugpynud £ juinthy mnnuuynibubph wompkph  Ynpumipmituiph b nupnublyniiubph
Epupnipiniiitbph hwpwpbkpnipnibbpng:

The cellular composite waveguide is modeled as a layered waveguide of periodically longitudinally inhomogeneous
elastic layers. The dispersion equations of frequencies filtering in periodically inhomogeneous layers, as well as the
dispersion equations of wave formation in the composite stratums are obtained and analyzed. It is shown, that
through the proper selections of pairs of materials in the layers of periodic structure, as well as of the relative
thicknesses of these stratums, different schemes of wave shaping on thickness of the composite waveguide can be
obtained.

Long wavelength (low frequency) and shortwave (high frequency) approximations of the dispersion equations are
numerically examined. A phononic structures of composing layers of the waveguide leads to different zones of the
bandwidth of frequencies forming a filter in the separate layers. The localized ultra-short slow elastic shear waves
by the borders of the adjacent composite layers don't propagate. The localization of energy of adjacent elastic shear
wave (Love type waves) at the borders of neighboring cells is characterized by the modules of physical constants of
materials as well as by the ratio of length of the waves to the thicknesses of the composite layers.

1. Introduction.

Dispersions and/or dissipations in the propagation of a normal wave signal in a
homogeneous, bounded elastic medium depends strictly on the boundary conditions, on the
physico-mechanical characteristics of the neighboring media. The possibility of localization
of the wave energy of plane strain in the surface zone of a mechanically free surface of an
elastic isotropic half-space is already shown in the primary source of research on the possible
localization of wave energy in the propagation of waves Rayleigh J.W. [1] (Rayleigh wave-
1885r.).

In 1911 Love A. E. H. [2] showed that it is possible to localize the wave energy of the elastic
shear in the near-surface zone of joining an elastic half-space with a softer elastic layer. After
some time, in 1924 Stoneley R. [3] showed the possibility of localization of the wave energy
of an elastic plane deformation in the near-surface contact zone of two isotropic elastic half-
spaces if the densities and elastic modules of the boundary media differ insignificantly.

In each of these cases, the wave formation along the thickness of composite structures is
characterized by a phase bond of the length of the formed wave from the source oscillation

frequency — A(®) (or by convenience, the correspondence of frequency and length of the

formed wave —®(A.) ). In all these and other classical problems, the phase relationship, in

addition to the relative values of the physico-mechanical constants of the adjoining media,
also depends on the nature of the surface conditions at the joint boundaries of the contiguous
bodies.

The survey of the most widely used methods for determining the structure of eigenmodes
propagating in periodic structures or the features of wave formation in different composite
structures are presented in particular in Auld's B.A.[4], Achenbach's J. D. [5], Meleshko's
V. V. etal.[6], Gazalet's J. etal. [7] works etc.

In recent years with the development of precise instrumentation, wave phenomena associated
with stratification of waveguides have been widely studied. In the scientific literature one
can find many works devoted to wave processes in transversely inhomogeneous waveguides
or in longitudinally inhomogeneous waveguides. An extensive technical overview of the
latest achievements (more than 400 titles) in the field of problems of the dynamics of elastic
and electro-acoustic waves in periodic structures is given in M.I.Husseinetal’s [8] work.
The inhomogeneity of a periodic interlayers predetermines the nature of the wave form by
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the thickness of the composite waveguide. The results of the investigation of the existence of
the Love type waves of in a three-layer elastic half-space are given in Kaptsov A.V.,
Kuznetsov S.V. [9]. In the paper Avetisyan A.S., Belubekyan M.V., Ghazaryan K.B. [10],
the authors are modeled the joining of two half-spaces, withe the canonical rectangular
projections, as a three-layer periodically inhomogeneous waveguide.

he proposed article discusses possible options for the formation and propagation of an
elastic shear wave in a cellular composite waveguide. The cellular waveguide is modeled as
a three-layer, longitudinally inhomogeneous elastic waveguide, consisting of periodically
alternating composite inhomogeneous layers.

2. Modeling of a composite waveguide and formulation of the mathematical
boundary value problem.

Three-layered waveguide consisting of the identically periodic longitudinally

inhomogeneous layers, with thicknesses 2/, 2A, and 2h, respectively, is represented by

a composite inhomogeneous waveguide of general thickness 2H =2(hy+h +h,)

consisting of periodically alternating composite interlayers of elastic isotropic homogeneous
materials (Fig. 1)

an(x;y;z):{a <x<b;

<oo} 2.1)

in(x;y;z):{OSxSa; 1; z|<oo} (2.2)

Unboundedness along the coordinate z of the constituent layers of the waveguide allows to
proceed to the two-dimensional formulation of the problem.
Each compound layer (2.1) and (2.2) in a periodic cell is formed from three, rectangular cells

{mnm (x; y)} , ideally contacting on the internal surfaces of a layered waveguide y = 1A,

{my ()} ={0<x<a; —h<y<h,}

{my,(x; )} ={a<x<b; —hy <y<h,} 23)
(my ()} ={0<x<a; hy<y<h+2h)

{m,(x;y)} ={a<x<b; hy<y<h,+2h} 2.4)
{mzl(X;J/)}:{O x< ;—hO—théyS—ho}

{mzz(x y)={a<x<b; —h,—2h, SyS—ho}} 2.5)

the waveguide, and m =1; 2 are the numbers of distinguished composite interlayers in

periodic cells.
In general, the materials in the isolated rectangular cells are different and, accordingly, are

characterized by shear modules G

.m and densities P, =~ of elastic materials.
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Fig. 1.1 The cellular structure of the periodically inhomogeneous three-layer elastic waveguide

where n=0; 1; 2 are the numbers of periodically inhomogeneous layers in if a flat normal
(SH) wave signal of elastic shear W (x; y;t) = w(x;y)-exp(—iwt) is fed into the
waveguide then along the formed three longitudinally inhomogeneous channels of the
waveguide the interrelated elastic shear modes propagate. To study the patterns of wave
propagation in a composite waveguide, rectangular cells will solve the wave equations of
antiplane deformation In order to study the laws of wave propagation in composite
waveguide the wave equations of the antiplane deformation will be solved in rectangular cells

{m,, (x; )}
62anm (‘x9 y) + 62anm (‘x9 y) — _(DZC—Z 3

ox’ oy’ "
where C,,, = «/Gnm / P, 1s the velocity of the volume shear wave in the material of the

W, (X)), (2.6)

corresponding cell {mnm (x; y)} .

In each layer n e {0; 1; 2} on all the lateral surfaces of the adjacent interlayers, the

conditions for complete mechanical contact are satisfied. On the section x = a, these
conditions will be written in the known form:

Wnl(aDybt) = WnZ(aDyﬂt)5
G, oW, (x; ;1) /x| _ =G, -0w,,(x; ;0)/0x| _ 2.7)

Taking into account the periodicity of the structure in the direction of wave propagation, the

xX=a

conditions for the conjugation of mechanical fields on the sections X =0 and x=a+b
are written in the form:

w, (a+b;y;t)=p"'w,,(0;y;1)
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G, -u-@wnl(x;y;t)/axL:M =G, 0w,,(x;y; t)/@xLC:0 (2.8)
In the boundary conditions (2.8) W =exp(Lk) is the Floquet multiplier (frequency

coefficient) and L =a+b is the linear parameter of periodicity. k(OJ) = 2712/ X(O)) —is
the wave number of the formed wave (the Floquet wave number) corresponding to the
permitted wavelengths A(®) .

In all relations (in all three layers) (2.8) the Floquet multiplier is the same, because the
canonical structure of the cellular waveguide leads to the same geometric periodicity in all
three channels.

The conditions for complete mechanical contact are also satisfied on the contact surfaces of
periodically inhomogeneous layers. Taking into account the periodicity of the waveguide

structure, the conjugacy conditions of the mechanical fields on the inner surfaces y = ho
and y = —ho of the waveguide will be written in the following form, respectively:

W oy (X5 hg58) = W, (x5 7y 5 1)

G,, - 0w, (x; y;1) /0y sy = O 0w (3 y;t)/8y|y:ho @9)
Wy (X5 =h1g32) = W, (X5 =Py 3 1)

Gy, - 0w, (x; J/;t)/8y|y:7h0 =G,, ~8w2](x;y;t)/8y|y?ho (2.10)
W, (X3 hy5t) =W, (x5 hy51)

Gy, - OW, (x; y31) /Oy o =G 0wy (x; y;t)/8y|y:h0 @11)
W (X5 =93 0) = Wy, (5= g3 1) o1

Gy, - OW (X;y;t)/aﬂy:,ho =G, -8W22(x;y;t)/0y|y}ho

On the external mechanically free surfaces y =/h,+2h and y=—h,—2h, of the
waveguide, the boundary conditions are written in the following form, respectively:

oW, (0[O, L, =0 oW, (1D, =0 (2.13)
oW, (s y0/oy] L, L, =0 owy, (/o] =0 (2.14)

3. Solution of the mathematical boundary value problem.
Taking into account the identical periodicity of all three layers (channels) of the waveguide
and 2the invariance of the systems of equations (1.6) in all cells of the cellular waveguide,
we construct the solution of the boundary value problem by the method of separation of
variables W, (xy)=X o (x)- Y (7). We obtain six systems of ordinary differential

m

equations:

d’X,,(x)/d< +k;, - X, (x)=0
d’Y,,(»)/dy’ - k.00, Y, () =0

Each system of equations (3.1) describes the state of the cell {mnm('x; y)}, where

(3.1)

n=0; 1; 2 are the numbers of the layers in the waveguide and m =1; 2 are the numbers
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. . . [ 2/p2 2 .
of the interlayers in the periodic cells, &, =+/l—® / k. c. are the wave formation

coefficients in the corresponding cells, k£, () is the wave number in the given cell.

nm
The integrity of the wave process and the interconnection of wave formation along the
thickness of the composite waveguide is ensured by the synchronism of the propagation of

waves in the corresponding adjacent rectangular cells of the selected interlayers m =1; 2.
Therefore, the solutions of the first equations of all six systems (3.1) in periodically
longitudinally inhomogeneous channels 77 € {O; I 2} are written as harmonic functions:
X, (x)=C sin(k x)+D, cos(k,x) (3.2)
For convenience in the analysis of the problem of localization of high-frequency waves, the
solutions of the second equations of systems (3.1) will be written down by hyperbolic

functions. Then the wave field in each cell of the composite waveguide will be written in the
form

w,, (5 y;0) =X, (x)[4,,-sh(k,a,,»)+B,, -ch(k,a,.v)]-exp(-iot)  (3.3)
Taking into account the same periodicity of all three layers of the waveguide, we use the

Floquet-Lyapunov theory.
Substituting the solutions in the cells of a periodic cell (interlayers numbered m =1; 2)

w,, (x; ;1) =[ C,, sin(k,x) + D, cos(k,x)] x
><|:14nl ' Sh(klanly) + Bnl ' Ch(klanly)] : eXp(_l(Dt)

. (3.4
W, (x5 y;8) = [an sin(k,x)+D,, Cos(kzx)] x

X[An2 ) Sh(k2an2y) +B,," Ch(kzanzy)] -exp(—iot)

into the conditions of complete mechanical contact on the face of the cells, taking into
account the periodicity of the channel structures (2.7) and (2.8), for nontrivial wave
distributions in periodic composite interlayers we obtain three dispersion filtration equations
for each layer by the number n

{cos (Lkn )} = {cos(lc1 a)-cos(k,b) Gk +Gky

sin| -sin(k,b 3.5
26 4Gk (ka)-sin(k, )} (3.5)

Each of these equations 7 € { 0; L 2} corresponds to one of the channels in a three-layer

waveguide. From each equation (3.5) the solvable wavelengths are determined, with the
corresponding bands of admissible (or forbidden) frequencies

A, () =27 /arccos { cos(k,a) - cos(k,b) — Axsin(k,a) - sin(k,b)} (3.6)
where A =[ Gk} () + Gk (0) ] /[2G, k(@) Gk, ()]

The solvable wave numbers determined in each channel (in layer with number
n E{O; 1; 2}) k,(®), k (w) and k, (o), and also the corresponding zones of
admissible frequencies must be matched by the condition of synchronous propagation over
the interlayers. The wave number k(co) = 2712/ 7»((0) (wave number of Floquet) of the
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formed wave corresponding to the admissible frequencies @ is already defined as the cross
section of the sets over the entire composite waveguide

{k(@)} ={k (@)} "k (@)} N {K; (@)} (3.7)
It is obvious from (3.7) that the multilayer reduces the region of admissible frequencies. The
measure of reduction depends on the difference in the physico-mechanical characteristics of

the materials and the linear dimensions of the neighboring cells (see Fig. 3.a, 3.b and 6).
At first glance, from (3.5) and (3.6) it follows that the filtration property of a composite

waveguide is mainly determined by the parameters of the longitudinal inhomogeneity Gnl ,

an , a and b. But, as it turns out later, the filtering features in the composite waveguide
are determined by the composite nature of the periodic layers. The composition of materials
and the linear dimensions of the cells in the interlayers determine the character of the formed

waveformk, (®) in the interlayers. Wave numbers &, (®) and k,(®) in the corresponding
interlayers of a periodic cell are determined from the boundary value problems formed in

these composite interlayers.

Substituting the solutions of (3.4) of the second equations of the systems (3.1) of the
corresponding cells, {mnl(‘x; y)}, where 7 E{O; 1; 2}, into the boundary conditions
(2.9), (2.10), the first of (2.13) and the first of (2.14), and the solutions of the corresponding
cells {ng (x; y)}, where 1 € {0; I 2} , into the boundary conditions (2.11), (2.12), the

second of (2.13) and the second of (2.14), we obtain two dispersion equations of wave
formation characterizing the distributions of nontrivial solutions along the thickness of the

interlayers in (x;y;z) and an (x;;z) of the composite waveguide in general form:
1m 2m

th(zaomkmho) — M’Om lth(zalmkmhl) + M’On; th(2'a‘2mkth)

1 + Hoﬁth(zalmklmhl) ' Hozth(ZG‘kath)

In the dispersion equations of the wave formations (3.8) kl (®) and k2 () are the desired

(3.8)

wave numbers in the corresponding interlayers of the periodic waveguide -cell,

a,, = \/1—(02 / (ki (co)cjm) are the attenuation coefficients of the slow waves in the

corresponding  waveguide  cell {mnm (x; y)} , ur£G, o, / G,, 0, and
“(2)2 = G,,0,, / G,, 0, are the characteristic relative coefficients of the slow waves.

By the definition of the wave numbers &, (®) and k,(®) from equations (3.8), in fact, we
determine the phase velocities V:bm ((D) = (D/ km ((D) and shapes of the formed wave in each

periodic composite layer of the waveguide when the wave signal passes with the frequency
.

By substituting the obtained values k,(®) and k,(®) into the dispersion equations (3.5)

characterizing the passage of waves, at 7 = {0; I; 2} , we obtain zones of admissible (or
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forbidden) frequencies {k; (0))}, {kl* (0))} and {k; (0))} for each channel (along the
periodically longitudinally inhomogeneous layer). The zones of admissible (or forbidden)

frequencies {k(CO)} of the cellular composite waveguide are obtained from the relation

3.7.
It should be noted that the dispersion equations of the formations (3.8) in the above form
correspond to slow SH elastic-shear waves when the phase velocity of the formed wave

. . 2 /72 : 2 . .
satisfies the condition I/m¢ (w)=o / k(o)< rI})lll’l2 {Cnm} in each interlayer. For waves
n=01;

of other characteristic types, the dispersion equations of the formations (3.8) are respectively
transformed. In the case of studying of the propagation of fast waves: — with phase velocities

Voo (0)=0" / k’i (0) > 'galxz{cfm} , or adjacent waves — with phase velocities

: 2 2 . . .
n’%lln2 {Cnm} < I/m(l) (w) < rr})alxz{cnm} in the layers of the composite waveguide the
n=01; n=0;1;

dispersion equations of the formations (3.8) are respectively transformed to the following
form:

1m 2m
vt eta(2B, k h)+v:" -te(2B, k h
tg(zﬁomkmho): Omlm g( Blm m 1) O;r;m g( BZm m 2)
1_VOm : tg(zﬁlmklmhl) ' VOm : tg(zﬁzmkth)
where vi" =G, B, /G,.B,, and vi" =G, B, /G, B,, — characteristic relative

coefficients of fast waves. In the case of studying of the propagation of adjacent waves, for
which the phase velocities in periodic interlayers in different ratios with the space velocities

(3.9)

. 2 2 . . . .
in the cells Min {cnm} < Vm¢ (®) < max {Cnm} , the dispersion equations of the formations
n=0;1;2 n=0;1;2

(3.8) are respectively transformed to the form:

8" -th(2a, k h)+8." -th(2a, k h
tg(zﬁomkmho): 1i’),lm ( 1m™“m 1) — 0m ( 2m’ " m 2)
6Omth(zalmklmh’l) '80m ’ th(2a2mkth)_l
where 3" £G,, a,,/Go.Bo, and 8" £G,, a,,/G,.B,, — characteristic relative

coefficients for adjacent waves.

From the inferential dispersion equations of formation (3.8) + (3.10) it is obvious that the
existence of their respective solutions uniquely depends both on the relationships of the
physical-mechanical characteristics of the materials and on the relative linear dimensions that
make up the rectangular elements of the composite waveguide.

On the other hand, the obtained forms will propagate in the region determined from (3.5),
(3.6) and (3.7).

It is clear that even in the case of a three-layered, periodic longitudinally inhomogeneous
waveguide, there are many choices of different possible combinations and a group of
materials and linear dimensions that make up the cellular waveguide of rectangular cells. In
practice, many applied problems in which the achievement of the desired solution depends
on the choice of different combinations of physical-mechanical characteristics of the
materials of rectangular cells and/or the relative linear dimensions of the elements of the
composite waveguide. Of course, this can be achieved by a machine choice. Here we will

(3.10)
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investigate the characteristic model cases of propagation of a wave signal in structures with
known parameters.

4. Model cases of propagation of shear wave signals in a three-layered
cellular waveguide.
For the convenience of studying the wave process, we represent the dispersion equations of
the wave formation (3.8) in the form

G201, ke 1)+ 2% (200, K )

1 + m7m_, th(zalmkmhl) P 2m2m th(z(x‘kath)

Omu‘()m Omu‘()m
where the factors (factors of the Love problem) like (th(ZOL mknh;) / G,,o jm)

characterize the form of the wave in each layer.

Dispersion equations are easily derived from (4.1) in the limiting cases of the wave formation
process: in the long-wave (low-frequency) and short-wave (high-frequency) approximations.
In studies of limiting cases, we shall conventionally assume that in a three-layered cellular

waveguide, the thickness of the inner inhomogeneous layer is either less ho < min {hl ; hz}

, or greater /i, > maX{hl;hz} than the thicknesses of the remaining two layers. In

numerical calculations, these and other linear dimensions of the canonical rectangular cells
will be taken in accordance with the requirements of the problem under study.

Table 1. Shear Modules, densities and velocities of shear waves in some good conductors
and piezoelectric crystals

Gold Au Copper Silver Ag | PZT-4 Zinc
Cu oxide
Zn0

Shear module ofthe | 27x10"° | 4.833x10" 3.03x10"° | 2.56x10" | 4.25x10"
material of cells

G (/md)

nm

Density of the | 19.32x10°| 8.93x10° | 10.49x10°| 7.5x10° 5.68x10°
material of the cells

P, (kg/m?)

Velocity of the | 1.182x10°| 2.326x10°| 1.67x10° | 1.85x10° | 2.74x10°
volume (SH) wave

c,, (m/sec)

Also, we will assume that the speed of volume shear waves in materials of rectangular cells

{mOm(x; y)} of the inner layer is less than volume velocities of shear waves
G <min{C 'sz} or greater than the volume velocities of shear waves

Im>

G, > maX{Clm;sz} in neighboring cells m,, (x;y) and m,, (X;y), respectively,
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where m =1;2 . Numerical analysis will be carried out by choosing different combinations

of materials for contiguous cells of periodic layers from Table 1.

4.a. Propagation of low-frequency shear waves (long waves) in a three-layered
cellular waveguide.
In case of a low-frequency propagation of shear waves in a waveguide, long waves are

formed for which 2Tthn /7\,m (w) <1 or km (0)- hn <1 for all values of m € {1;2} ,

ne {0;1;2} . In this case, from (4.1) we obtain dispersion equations for the formation in

periodic layers of the waveguide simplified by long-wave approximation:

kihy =[ (05, + 041, ) 03 =, |- kB3 +(0,5,0,,,0 = p,, )y =0 (4.2)
where 9n = (1 —=8,0Y10m — 020Y20m )/4810620Y10mY20m and
P =(1=8,0P10m = S20P20m )/4810820Y10my20m are the parameters of the waveguide
that depend on the relative thicknesses of the layers composing the waveguide 6}'10 = hn / ho
, the relative stiffness’s of the shear P, =P,m / Py, and the relative densities
Voom =G /Gy »and 0, = c2. /¢, is the ratio of the squares of the velocities of the
volume waves of shear of the materials of the neighboring cells in the interlayers m € {l; 2}

and ne {0;1;2}, ®, = ((Dho / COm) is the dimensionless frequency normalized by the

parameters of the inner layer of the waveguide. From the form of the dispersion equations
for the formation (4.2) it follows that for the existence of two pairs of long waves with respect

to the thickness of the inner thin layer of the waveguide &, (®)-/, <1, in each composite
interlayer it is sufficient to require
1- 810p10m — 820[320m .

48,0850P10,P20m ,

(ohy/c,, ) > max s s (4.3)
— 059~ Oy (YZOm/Ylom)
45,0, [pZOm *+Piom (Yzom/Ymm )]
Then, for the positive determinant of the biquadratic equation (4.2)
(Dg —20,,,0,,, '|:qm - me/(e(nm —0 )2} ) (Dé + 4.4)

+q;/(901m _602m )2 20

the formation of waves along the layers of the waveguide along with the condition (4.3) will
depend on the presence of zones of the dimensionless frequency in a limited band of low
frequencies
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2p,
q,— -
2 (901»1 _602m )2
((’OhO/COm) = 610m620m X - 4.5)
~llqg - 2p, _ eélme§2m .Qi
"’ (901m - eozm )2 (eom - eozm )2

or in a semi-restricted band of relatively high frequencies

2p,
4y ——— 3 |+
(6 m- 0 m)
(('OhO/cOm )2 20,0,,00,,% - - 3 (4.6)
" (601m _eozm )2 (601m _eozm )2

The solutions of the dispersion equations for the shaping in both periodic layers of the
waveguide (4.2) in a limited band of low frequencies {(4.3);(4.5);(4.6)} will be written in the
form

12
[( 41, + 0021 ) (’)(2> B qm:l
+ 1 2
k, (@)= ™ 0 +0. o ’
0 + B
* I:( Olm 02m ) @ " G ] - eolmemmwg + p’”w(z)

4
Substituting the obtained values of the wave numbers kl () and k2 (®) into the dispersion

equations of the channels (filtration equations) (3.5) and comparing the solutions with the
frequency bands {(4.3);(4.5);(4.6)}, we find bands of admissible (or forbidden) frequencies

through the channels # € {0; I 2} . From (3.6) we also find admissible wavelengths A’ (@)

through the channels 7 € {0;1;2} . All the results obtained are related to the long-wave
approximation.  The  results, that are in the  approximation range
th2a,, k, h,) =20,k h are suitable, with the corresponding channel numbers

ne {0; 1;2} and periodic interlayers m € {1;2} )

In order not to lose the effect of the periodic inhomogeneity of the waveguide, for long-wave
approximations, it is necessary to take into account the correspondence of the linear
parameters

(n%@g}{hn}j/xm (@)=l = ( min}{hn})/min{a;b} <1 (4.7)

A, (®) <min{a;b} el
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Consequently, the long-wavelength approximation is suitable for thin three-layer waveguides
with a relatively large linear periodicity parameter L =a+b .

k(w)
i kiflwl -
1000 - .~
| ‘/‘
[ P
800 R -
r .~ -
: ‘,' ~ P d
a0 - -~ -
[ = - -
i B - _ -
a0 -, kilel _ = -
- ko] o _ - P
[ < < kilew
200 f ~ P - s - 2[ ]
- < Ve 7
P L Il L I L L Il l\ L L L Il L L L L Il g\)
- 500000 10 = 108 15 x 108 20 <10

Fig. 2.a Wave numbers of wave formation in interlayers k1+ (m)ﬁ{Cu+Au+ZnO},

k; () ﬁ{PZT —4+Ag+ZI’lO} of the composite waveguide with a thick inner layer

hy=1.0x107m, h =1.0x107 mand h, = 2.0 x 10~ m. in the case of long-wave approximation.

In the first layer for the adjoining cells of copper — ¢, = 2.326 x 10> m/sec, of gold —
Cop =1.182x% 10> m/sec, of zinc oxide — c,, =2.735x% 10° m/sec and in the second
layer of the piezoelectric crystal PZT-4 - ¢, =1.848x 10° m/sec, of silver -
¢y, =1.67x10° m/sec and of zinc oxide - ¢,, = 2.735x10°m / sec , in the frequency

range € [O; 106] Hertz, the dispersion equation for the formation (4.2) for each

interlayer has two solutions (Fig. 2.a and Fig. 2.b).

Fig. 2.a shows the wave numbers for the formation in the case of a relatively thick
(centimeter) inner layer of the waveguide.

From these graphs it follows that the lengths of the first two branches of the formed wave in
the interlayers are above the centimeter thickness

{X;min (0); A ((D)} >h,=1.0x107 m, up to the value of the frequency
o =1.0x10° Hertz.
The lengths of the second pair of branches of the formed wave, which are formed at relatively

. . - 6 . . . .
higher frequencies ®,; = 0.8x10° Hertz in the interlayers remain above the centimeter

thickness {k;min((»); M min ((D)} >h,=1.0x107 m at rather large values of the
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frequency ®_. =~ 2.0x 10° +2.5x10° Hertz.

Fig.2.b shows the wave numbers of the formation in the case of a relatively thin (millimeter)
inner layer of the waveguide. In this case, two pairs of wave branches are also formed. From

these graphs it follows that up to the value of the frequency w;ﬁn =1.0x10° Hertz the
lengths of the first two branches of the formed wave in the interlayers are already at the limit

(w); A (@)} ~3.0x107° m.

of millimeter waves {7»+

2min 1min
k(w)

i ki ] i
m L e o v e e s m— s w— s s — - -

: /
1500 L

r ki l«]
100

i _ -

| — -—

: kil«] P
50 ===

L _ = - = - kz_[CU]

i _==

r —-—

P I I I Il I I I Il I I I I Il I I I I Il g}
- 500000 10 =108 15 x 108 20 x 10

The lengths of the second pair of branches of the formed wave which are also formed at very
low frequencies in interlayers remain above the millimeter

Fig. 2b  Wave numbers of wave formation in interlayers
k' (o) 2{Cu+ Au+ZnO}  k; (0) 2{PZT -4+ Ag+Zn0O}  of the
composite waveguide with a thin inner layer 4, =1.0x10*m, h =1.0x10"m and

h, =2.0x107> m. in the case of long-wave approximation.

thickness {k;min (0); A (0))} 2 max {h1 ; hz} =2.0x107 m also at rather large

values of the frequency (x);laX ~2.5x10° +3.0x10° Hertz.

Comparative analysis indicates that for a given choice of boundary materials and different
relative thicknesses of the waveguide layers, both millimeter and centimeter waves can be
formed in the interlayers. From the point of view of the long-wave approximation of the
widths of the cells (or interlayers) in each case of investigations the thicknesses of the layers

{a;b} ~ maX{ho;}ll;}lz;7\,max ((D)} should be taken so as for the formed wavelengths

A (@) < min {a; b} .
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Then from the dispersion equation of the filtration (3.6) we find the lengths of the admissible
waves, as well as the bands of permissible (and forbidden) frequencies along the channels of
a periodically longitudinally inhomogeneous waveguide (Fig. 3.a and Fig. 3.b).

From the curves given in the figures 3.a and 3.b it follows that the transmitted waves with
their zones of permissible and forbidden frequencies are formed both for a pair of branches

of waves with smaller wave numbers & (®) (red lines) and for a pair of branches of waves

with larger wave numbers &, (®) (blue lines).

The zones of permissible frequencies for relatively short forms formed in this case are rather
narrow. Joint zones of admissible frequencies in both cases of millimeter and centimeter
waves are located in sections of the bands of permissible frequencies of the waveguide
channels.

In the case of the given set of cell materials and their linear dimensions, the cross-section of
the permissible zones is mainly related to the wavelength spectrum

o (@) 21 (@) €[0; 10] mm.
A(w)

0.6

0_55— k,;((()) k,f;((d)

0.4 H

0.3F

02|

0.1}

1 1 1

0 500000 1.0x10% 1.5x10° 2.0x10§u

Fig.3a. The lengths of the permissible waves 7\,(0)) in the case of a millimeter inner layer of a

composite waveguide A, =1.0x 10* m with the given wave numbers k;r (o)

Zones of admissible frequencies of long centimeter waves appear immediately, even at
lower frequencies (Fig.3.b). These zones and zones of forbidden frequencies are rather
wide in comparison with the zones of long millimeter frequencies (Fig. 3.a). In the case of
millimeter long waves, the bands of permissible frequencies for the relatively short formed

forms are in the region of frequencies @, ~6.0 x10° Hertz (Fig.3.a).
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Fig. 3.b The lengths of permissible waves A() in the case of a centimeter inner layer of a

composite waveguide /, =1.0x 107 m . with the given wave numbers k& ;’; (o) (Fig:2.a).

4.b. Propagation of high-frequency shear waves (short waves) in a three-layer
cellular waveguide.
During the propagation of high-frequency shear wave signals, short waves are formed in the

waveguide, for which 27h, /A, (©)>1 for all values of the numbers of periodic

interlayers m 6{1;2} and for waveguide channels 7 6{0;1;2}. In this case, from
equations (4.1) we obtain simplified dispersion equations for the formation in the short-

wavelength approximation for both periodic layers of the waveguide m € {l; 2}
[le()meom +¥20n002m ~ 1= 01,005, } M, (@) +
+|:(1 - Y;OmOOZm ) (1 - Y120n1 ) +(1 - Y120m601n1 ) (1 - ’Y§0m )j| ' nfn ((’0) + (48)

+|:(Y10n1 + Yo20m )2 _(1 + Y10mY 20m )2:| =0

In addition to the notations adopted, in (4.8) we also introduced the notation for the
normalized phase velocities in the interlayers 1, (®) = OJ/ (k,, (@)cy,, )-

From (4.8) it follows that the possible propagation of a high-frequency waves in a cellular
waveguide, as well as the values of the phase velocities in periodic interlayers depend only
on the relative physical-mechanical characteristics of the materials in the neighboring
rectangular cells of the waveguide.

Here, the short-wavelength approximation (4.8) is given for the case of slow short waves, at

a,, km hn ~ 27 . The taken approximation makes it possible to represent the phase velocities

of possible high-frequency waveforms (and also the corresponding wave numbers) in the
interlayers in the following form:
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k, (@)= max {((D/cnm )- \/1 +(2nc,, [ho) };
V,,(®)= min {cnm/\/l+(27wnm/hn(’°)2}

n=0;1;2;

(4.9)

The obtained solutions of equations (3.9) in the interlayers 1, () must satisfy the condition

N, (®) = ,Eéﬁ%{"’/(km (0)c,, )} <1 (4.10)

From the representation (4.9) we find the suitable values for the length of the waves formed
in the interlayers, which will be short in all three layers of the waveguide

A, (®) = min {hn/\/1+(hnco/2ncnm )2} (4.11)

n=0;1;2;

Alw)
0.0020

0.0015 |

0.0010

0.0005

1 T i Il L L

20x10° 40x10° 6.0x10® 8.0x10° 1.0x10° 1.2x10° 1.4x10°

w

Fig. 4. The lengths of the formed waves in the interlayers in the case of high-frequency slow
waves

Based on the convenience for a comparative analysis of the results, the numerical calculations
are carried out for the same sets of materials of the waveguide cells for which the calculations
were made in the case of the long-wave approximation.

In the considered case the lengths of the formed waves in the interlayers have the form which
is specific for the high-frequency slow waves (Fig. 4). From the figure it is also obvious that

. —4 . .
short waves max {Xnm (0))} < rrgjllnz{hn} ~10™ m corresponding to the thicknesses of
n=0;1; n=0;1;

the layers of the waveguide are formed only at values higher than the frequency

o ~1.75x10" Hertz.

Substituting the solutions of equations (4.8), which correspond to the representation (4.9) and
satisfy the condition (4.10), into the dispersion equations of channels (3.5) and into the
relation (3.6) we find the bands of permissible (or forbidden) frequencies, as well as the
admissible lengths of the propagating short wave for each channel (Fig.5.a, Fig.5b and Fig.
5.c) of the composite waveguide and also for whole waveguide (Fig.6).
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‘a.Tue I Fig. 5.a. Transmitting hard layer with
’ ‘ } parameters C,, =2.735x10" m/sec;
u,%g» . 1 ’ | a=1.0x10"m;, C, =2.326x10°m/sec;
; | | bh=2.5x10"2m;
| | [ ] With soft cells in the interlayers
0l 1 | |
\\ ," | }{ ~.1 C, =1.182x10° m/sec;
umz\K / \\ // \ C, =1.67x10°m/sec; ~ Thinness  of
waveguide layers i, =1.0x107* m;
0
s —— v b =1.x10"m; b, =2.x10" m;
e Fig. 5.b. Transmitting soft and thin layer
o I I Ii ‘ with parameters
ok ‘ H I H C,, =1.182x10° m/sec; a=1.0x10" m,
wt (8. B ]\ | C,, =1.67x10° m/sec; b=2.5x107 m;
‘ 1 ‘ It A A B ~
wet 1 1A ABNANAN hy =1.0x107" m; b =1.x10" m;
:\f v \ | ‘n. »"‘ \/\\ f' \. ’ ‘U Y ‘Ii [ | / 9 ‘ ) 3 " " "
o000 \j \/ v \‘/v' “\/" U h2 =2.x10" m;
mf“" Fig. 5.c. Transmitting layer with parameters
| ‘ | | C, =2.326x10° m/sec; a=1.0x107 m;
0.006 -
‘ ‘ ‘ ‘ . C, =1.848x10° m/sec; b=2.5x10"m;
ooosf
\ | 1 ‘1 l‘ With soft cells in the interlayers
- ’4 l1 | | A C,, =1.182x10° m/sec;
( 3k \
=t 1| [ C,, =1.67x10° m/sec;
oo '\ / \ / \ Thinness of waveguide layers
am:/ \, / \ S \ ) h, =1.0x10" m; h, =1.x10"m;
195 B }12:2.><1()‘3 m;

Fig.5. Zones of admissible and forbidden frequencies of high-frequency elastic shear waves in
periodically longitudinally inhomogeneous layers of a composite waveguide

These calculations were carried out in the determination region of short-wave frequencies:

® >1.85x10" Hertz. From Fig.5.a, Fig.5.b and Fig.5.c it follows that when the rigid cells
(the lower layer in Fig.1.1) are adjacent, the bands of admissible frequencies are wide and
separated from each other by relatively wide bands of forbidden frequencies (Fig.5.a).

In the case of a hard and soft neighboring cells (the upper layer in Fig.1.1), the bands of
admissible frequencies are rather thin and separated from each other by relatively thin bands
of forbidden frequencies (Fig. 5.c). In the case of two neighboring soft cells with the selected
combination of materials and linear cell sizes, a continuous spectrum of admissible
frequencies is obtained. Shorter wavelengths are passed through this channel. But in all these
cases the propagation of short slow waves of length
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max {Xnm ((D)} < min {hn} ~10™" m formed along the thickness of the waveguide is not
n=0;1;2 n=0;1;2

allowed.

Fig.6. Zones of permissible and forbidden frequencies of high-frequency elastic shear waves in
a periodically longitudinally inhomogeneous composite waveguide
The cross sections of the resulting zones of permitting frequencies along the waveguide
channels (Fig.5.a, Fig.5.b, Fig.5.c) give the band of admissible frequencies and the
corresponding lengths of admissible waves in the composite waveguide (Fig. 6).
From all these figures it is seen that along the thickness of a composite waveguide millimeter

short waves of the length of the order A(®) = 1.0x10™* m can be formed. But the channels

are allowed to propagate only waves of the length of the order A(®)>5.0x107" m.

5. Conclusion. The cellular composite waveguide is modeled as a three-layer (three-
channel), periodically longitudinally inhomogeneous waveguide of canonical rectangular
cells.

The dispersion equations of wave transmission (filtering of frequencies) for each periodically
inhomogeneous channel are derived.

In the case of propagation of a high-frequency (short-wave) wave signal of elastic shear and
in the case of propagation of a low-frequency (long-wave) wave signal of elastic shear, the
dispersion equations of wave formation in periodic composite layers of the waveguide were
obtained and investigated.

The zones of admissible (or forbidden) frequencies are obtained both along the channels of
the waveguide and in the whole waveguide from the dispersion equations of frequency
filtration in accordance with the wave numbers in vertical composite layers.

The phonon structure of the constituent layers of the waveguide leads to different frequency
transmission bands, forming a filter on separate layers, localizing the wave energy at the
boundary segments of certain cells of the composite. It is shown that the formation along the
waveguide thickness in periodic layers is determined by the physical-mechanical and linear
parameters of the constituent cells of the interlayer.

The localization of the energy of an elastic shear wave (Love-type wave) at the boundaries
of contiguous cells is characterized by the modules of physical constants of materials and the
relative thicknesses of the constituent layers.
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In the process of filtering of the frequencies of the formed waveforms, the physicomechanical
and linear parameters of neighboring cells of inhomogeneous channels play the determinative
role.
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