2USUUSUUF ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱՅԻ ՏԵՂԵԿԱԳԻՐ ИЗВЕСТИЯ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК АРМЕНИИ

Մեխանիկա

70, №3, 2017

Механика

УДК 539.3

СДВИГОВЫЕ ЭЛЕКТРОУПРУГИЕ НОРМАЛЬНЫЕ ВОЛНЫ В ДВУХСЛОЙНОМ ВОЛНОВОДЕ ПЬЕЗОЭЛЕКТРИК-ПРОВОДНИК

Мкртчян С.А.

Ключевые слова: двухслойный волновод, нормальная волна, локализация волн, распределение волновой энергии, амплитудно-фазовая характеристика.

Keywords: Two-layered waveguide, normal wave, localization of waves, distribution of wave energy, amplitude-phase characteristics.

Բանալի բառեր։ Երկշերտ ալիքատար, նորմալալիք, ալիքի տեղայնացում, ալիքային էներգիալի բաշխում, լայնուլթ-փուլալին բնութագրիչներ։

Mkrtchyan S.H.

Shear electro-elasticity normal waves in the piezoelectric-conductor two-layered waveguide

In this paper, the existence and behavior of electro-elastic shear waves propagating in a two-layer waveguide consisting of a piezoelectric (tetragonal class 4mm or hexagonal class 6mm) and conductive layers that have

different thicknesses $-h_1$, h_2 are investigated. The mathematical boundary-value problem is formulated. Distribution of the electro-elastic wave fields across the thickness of the waveguide, as well as, the characteristic

equation of electro-elastic shear waves in respect to the phase velocity are obtained.

In depending both of the physical-mechanical characteristics of foreign materials and the relative thickness of layers in layered system, the existence of localization of a short electro-elastic shear waves in a layered waveguide is analyses.

The structure and phase behavior of localized surface or volumetric surface waves are studied. The numerical and graphical dispersion analysis of wave propagation is realized.

Մկրտչյան Ս. Հ.

Սահքիէլեկտրաառաձգականնորմալալիքներըպյեզոէլեկտրիկ-հաղորդիչերկշերտալիքատարում

Աշխատանքում հետազոտվում է էլեկտրաառաձգական ալիքների գոյությունը և վարքը երկշերտ ալիքատարում, որը բաղկացած է $h_{
m l}$ հաստությամբ (տետրագոնալ համաչափության 4mm դասի, կամ

հեքսագոնալ համաչափության 6mm դասի) պյեզոէլեկտրիկ և $h_2\,$ հաստությամբ հաղորդիչ շերտերից։

Ձնակերպված են խնդրի եզրային պայմանները, ստացվել են էլեկտրական և առաձգական ալիքային դաշտերը, ինչպես նաև խնդրի բնութագրիչ հավասարումը։

Հետազոտված է էլեկտրաառաձգական ալիքների գոյությունը և վարքը երկշերտ ալիքատարում կախված ալիքատարի ֆիզիկամեխանիկական բնութագրիչներից և շերտի հարաբերական հաստությունից։

ՈՒսումնասիրված են ալիքների կառուցվածքը և ալիքային ձևերի վարքը։ Բերված են ալիքային ձևերի դիսպերսիոն կորերի որակական գրաֆիկները։

В настоящей работе исследуется существование и поведение электроупругих сдвиговых волн, распространяющихся в двухслойном волноводе, состоящий из пьезоэлектрического (пьезо-кристалл класса 4mm тетрагональной или 6mm гексагональной симметрии) и проводящего слоёв, которые имеют разные

толщины h_1, h_2 . Сформулирована математическая граничная задача. Найдены распределения

электроупругого волнового поля по толщине волновода, а также характеристическое уравнение электроупругих сдвиговых волн относительно фазовой скорости.

В зависимости от физико-механических характеристик материала и относительных толщин слоёв в слоистой системе, анализируется возможность локализации коротких электроупругих сдвиговых волн в слоистом волноводе.

Изучены структура и фазовое поведение локализованных поверхностных или объёмных поверхностных волн. Выполнен численно-графический анализ дисперсии распространения волн.

Введение.

Известно, что в слоистых системах, состоящих из упругих материалов с различными механическими свойствами, могут распространяться сдвиговые упругие волны горизонтальной поляризации (волны Лява [1]). Уже давно (по обнаружению волн Гуляева-Блюстейна [2]) появился повышенный интерес к исследованиям особенностей сдвиговых электроупругих волн горизонтальной поляризации в слоистых волноводах, когда один из слоёв является пьезоэлектриком. Этот интерес, в первую очередь, вызван большим практическим и теоретическим значением полученных результатов.

О возможности возникновения разных типов локализаций волновой энергии встречаемся в первоисточниках [1;3]. Более подробно, об условиях локализации волновой энергии вблизи границ раздела сред, их разновидности в зависимости от характера поверхностных соединений и их применений в различных устройствах, а также довольно солидный обзор литературы о модельных задачах и об особенностях распространений электроупругих волн в слоистых структурах можно найти в [4÷8] и в др. Разные сочетания граничащих материальных слоёв и разных поверхностных электромеханических условий рассмотрены также в [11÷14].

Один из важных вопросов в многослойных волноводах из материалов разных анизотропий является возможность раздельного существования плоского или антиплоского состояний деформации. В случае пьезокристаллических материалов, которые существенно анизотропные, вопрос разделения двух видов деформаций и электроактивности этих полей при этом, исследован в статье [9], которая как отдельный параграф приведена в книге [10].

В настоящей работе проводится амплитудно-фазовый анализ электроупругих сдвиговых нормальных волн в двухслойном волноводе из пьезоэлектрического (пьезокристалл класса 4mm тетрагональной или класса 6mm гексагональной симметрий) и электропроводящего слоёв в дополнение и уточнение полученных в работе [11] результатов. Показано существенное влияния выбора разных сочетаний типов электромеханических граничных условий на внешних поверхностях двухслойного волновода.

1. Основные соотношения и постановка задачи.

Двухслойный волновод, состоящий из электропроводящего слоя толщины h_2 и пьезоэлектрического слоя вышеуказанных кристаллических классов толщины h_1 , отнесён к прямоугольной декартовой системе координат *Oxyz* (Фиг. 1). Декартовая система координат выбрана так, что ось *Oy* направлена параллельно внешним граничным поверхностям волновода $x = -h_2$ и $x = h_1$ соответственно, а ось *Ox* перпендикулярна поверхностям слоёв.

Также, предполагается, что геометрическая ось *ог* параллельна главной оси симметрии пьезоэлектрической среды. Свободная граница пьезоэлектрического слоя

 $x = h_1$ металлизирована, вследствие чего электрическое поле не просачивается в вакуум. В проводящем слое, а следовательно, и в вакуумной области $x < -h_2$ электрическое поле отсутствует.

Фиг. 1. Сечение двухслойного волновода из инородных материалов в плоскости ХОУ

В задаче антиплоской деформации:

$$u = 0, v = 0, w = w(x, y, t).$$
 (1.1)

Сопутствующие колебания электрического поля описываются квазистатическим приближением:

$$\vec{E} = -\text{grad}\phi. \tag{1.2}$$

где $\phi = \phi(x, y, t)$ – квазистатический потенциал электрического поля.

Тогда, для ненулевых компонент упругих деформаций, электромеханических напряжений и индукции электрического поля имеем следующие выражения:

$$\gamma_{13} = \frac{1}{2} \frac{\partial w}{\partial x} ; \qquad \gamma_{23} = \frac{1}{2} \frac{\partial w}{\partial y}.$$
 (1.3)

$$\sigma_{13} = c_{44} \frac{\partial w}{\partial x} + e_{15} \frac{\partial \varphi}{\partial x} ; \qquad \sigma_{23} = c_{44} \frac{\partial w}{\partial y} + e_{15} \frac{\partial \varphi}{\partial y}. \tag{1.4}$$

$$D_{1} = -\varepsilon_{11}\frac{\partial \varphi}{\partial x} + e_{15}\frac{\partial w}{\partial x}; \qquad D_{2} = -\varepsilon_{11}\frac{\partial \varphi}{\partial y} + e_{15}\frac{\partial w}{\partial y}. \tag{1.5}$$

где c_{44} – жёсткость упругого сдвига, e_{15} – пьезомодуль кристалла, \mathcal{E}_{11} – коэффициент диэлектрической проницаемости пьезокристалла.

Для проводящей среды соответствующие соотношения получим, подставляя в (1.4) и (1.5) $\phi = 0$, $e_{15} = 0$.

Из уравнений электроупругости и упругости, используя вышеприведённые соотношения, получим следующие уравнения, описывающие распространение электроупругих возмущений в пьезоэлектрическом слое и упругие возмущения в проводящем слое:

для пьезоэлектрического слоя:

$$\frac{\partial^2 w_1}{\partial t^2} = S_1^2 \Delta w_1 \quad ; \qquad \Delta \varphi_1' = 0, \tag{1.6}$$

где приняты следующие обозначения:

$$S_{1}^{2} = \frac{\overline{c_{1}}}{\rho_{1}} = \frac{c_{1}}{\rho_{1}} (1 + \chi_{1}^{2}) = S_{10}^{2} (1 + \chi_{1}^{2}); \\ S_{10}^{2} = \frac{c_{1}}{\rho_{1}}, \\ \phi_{1}' = \phi_{1} - \overline{e_{1}} w_{1}; \\ c_{1} = c_{1} (1 + \chi_{1}^{2}); \\ \chi_{1}^{2} = \frac{\overline{e_{1}} e_{1}}{c_{1}}; \\ \overline{e_{1}} = \frac{e_{1}}{\varepsilon_{1}}; \\ e_{1} = e_{15}^{(1)}; \\ \varepsilon_{1} = \varepsilon_{11}^{(1)}.$$
(1.7)

 S_1 – скорость распространения сдвиговых объёмных электроупругих волн в пьезоэлектрической среде, S_{10} – скорость распространения сдвиговых объёмных упругих волн в пьезоэлектрической среде при пренебрежении пьезоэффектом, $\phi'_1(x; y; t)$ – приведённый потенциал электрического поля, зависящий от истинного потенциала $\phi_1(x; y; t)$ и перемещений пьезоэлектрической среды $w_1(x; y; t)$.

– для проводяшего слоя:

$$\frac{\partial^2 w_2}{\partial t^2} = S_2^2 \Delta w_1; \qquad S_2^2 = \frac{c_2}{\rho_2}; \qquad c_2 = c_{44}^{(2)}, \qquad (1.8)$$

 c_2 – жёсткость упругого сдвига проводящего материала, ρ_2 – плотность проводящего материала, S_2 – скорость распространения объёмных упругих волн в проводящем слое.

Электромеханические граничные условия на наружных поверхностях волновода $x = h_1$ и $x = -h_2$ соответственно будут иметь вид:

А) на механически свободной и электрически открытой поверхности пьезоэлектрического слоя $x = h_1$:

$$\sigma_{13}^{(1)} = 0; \qquad D_1 = 0. \tag{1.9}$$

Б) на механически свободной поверхности электропроводящего слоя $x = -h_2$:

$$\sigma_{13}^{(2)} = 0. \tag{1.10}$$

В) контактные условия на поверхности x = 0:

$$\sigma_{31}^{(1)} = \sigma_{31}^{(2)}; \quad w_1 = w_2; \quad \varphi_1 = 0.$$
(1.11)

2. Решения задачи. Амплитудно-частотная характеристика волнового процесса.

Решения для упругого перемещения w_1 и приведённого потенциала ϕ'_1 в области $0 \le x \le h_1$ и для упругого перемещения w_2 в области $-h_2 \le x \le 0$ представляются в виде плоских волн:

$$w_{1} = W_{1}(x)e^{i(py-\omega t)}; \ \phi_{1}' = \Phi_{1}(x)e^{i(py-\omega t)};$$

$$w_{2} = W_{2}(x)e^{i(py-\omega t)},$$
(2.1)

где $W_1(x)$, $\Phi_1(x)$, $W_2(x)$ – искомые амплитуды распространяющейся волны, p > 0 – волновое число, $\omega > 0$ – круговая частота.

Подставляя выражения (2.1) в (1.6) и (1.8), получим уравнение для определения амплитуд $W_1(x)$, $\Phi_1(x)$, $W_2(x)$, общее решение которого:

$$W_{1}(x) = W_{10}^{+} \exp(ip\beta_{1}x) + W_{10}^{-} \exp(-ip\beta_{1}x).$$
(2.2)

$$\Phi_1(x) = \Phi_{10}^+ \exp(px) + \Phi_{10}^- \exp(-px).$$
(2.3)

$$W_2(x) = W_{20}^+ \exp(ip\beta_2 x) + W_{20}^- \exp(-ip\beta_2 x).$$
(2.4)

$$V = \frac{\omega}{p}$$
 – фазовая скорость волны, $\beta_1 = \sqrt{V^2/S_1^2 - 1};$ и $\beta_2 = \sqrt{V^2/S_2^2 - 1}$ –

коэффициенты затухания (или коэффициенты формообразования по толщине волновода).

Подставляя решения (2.2) – (2.4) в граничные (1.9), (1.10) и контактные условия (1.11), получим следующие уравнения для определения искомых амплитуд:

$$\begin{split} &i\overline{c_{1}}\beta_{1}e^{i\beta_{1}\xi^{r}}W_{10}^{+} - i\overline{c_{1}}\beta_{1}e^{-i\beta_{1}\xi^{r}}W_{10}^{-} + e_{1}e^{\xi^{r}}\Phi_{10}^{+} - e_{1}e^{-\xi^{r}}\Phi_{10}^{-} = 0; \\ &-\varepsilon_{11}e^{\xi^{r}}\Phi_{10}^{+} + \varepsilon_{11}e^{-\xi^{r}}\Phi_{10}^{-} = 0; \\ &W_{10}^{+} + W_{10}^{-} - W_{20}^{+} - W_{20}^{-} = 0, \quad \overline{e_{1}}W_{10}^{+} + \overline{e_{1}}W_{10}^{-} + \Phi_{10}^{+} + \Phi_{10}^{-} = 0; \\ &i\overline{c_{1}}\beta_{1}W_{10}^{+} - i\overline{c_{1}}\beta_{1}W_{10}^{-} - ic_{2}\beta_{2}W_{20}^{+} + ic_{2}\beta_{2}W_{20}^{-} + e_{1}\Phi_{10}^{+} - e_{1}\Phi_{10}^{-} = 0; \\ &e^{-i\beta_{2}\xi}W_{20}^{+} - e^{i\beta_{2}\xi}W_{20}^{-} = 0, \quad r = h_{1} / h_{2}, \quad \xi = ph_{2}. \end{split}$$

Условием существования нетривиальных решений системы (2.5) является равенство нулю его определителя. В результате приходим к следуюшему дисперсионному уравнению:

$$c_1\beta_1 tg\alpha_1 + c_2\beta_2 tg\alpha_2 - e_1\overline{e_1} th\alpha = 0, \qquad (2.6)$$

где
$$\alpha_1 = \beta_1 \xi r; \ \alpha_2 = \beta_2 \xi; \ \alpha = \xi r.$$
 (2.7)

Для выявления существующего многообразия, далее рассматриваются дисперсионные уравнения в частных случаях конструирования волновода.

2.а. Пьезоеэффект отсутствует.

То есть $e_1 = \overline{e_1} = 0$. В этом случае (2.6) сводится к уравнению:

$$c_1\beta_1 tg\alpha_1 + c_2\beta_2 tg\alpha_2 = 0 \tag{2.8}$$

или

$$\gamma_1 \text{th}(\xi r \gamma_1) = c\beta_2 \text{tg}(\xi \beta_2), \qquad (2.9)$$

где соответственно $\gamma_1 = \sqrt{1 - V^2 / S_1^2}$ и $c = c_2 / c_1$.

Это уравнение совпадает с уравнением, полученным в работе [13].

2.б. Дисперсионное уравнение для классической задачи Лява.

При $h_1 \rightarrow 0$ и $h_2 \rightarrow \infty$ имеем th $(\xi r \gamma_1) \rightarrow 1$ и уравнение (2.9) принимает вид:

$$\sqrt{1 - V^2 / S_1^2} = c \sqrt{V^2 / S_2^2 - 1} \cdot \operatorname{tg}(\xi \cdot \sqrt{V^2 / S_2^2 - 1}).$$
(2.10)

Это является дисперсионным уравнением для классической упругой задачи Лява. **2.в. Дисперсионное уравнение для электроупругих волн Лява:**

71

при $h_1 \rightarrow \infty$ из (2.6) получаем:

$$\gamma_1 = e_1 \overline{e_1} / c_1 - c\beta_2 tg\alpha_2; \ \gamma_1 = \sqrt{1 - V^2 / S_1^2}; \ c = c_2 / c_1.$$
(2.11)

Аналитически рассматриваются четыре варианта приближений для основного дисперсионного уравнения (2.6).

Вариант 1.

Рассматривается случай, когда $(ph_1)^2 \ll 1$, $(ph_2)^2 \ll 1$, (длинные волны или низкочастотное приближение, волны Стоунли).

Из (2.6) будем иметь:

$$tg\alpha_{1} = \alpha_{1} = \sqrt{V^{2}/S_{1}^{2} - 1ph_{1}};$$

$$tg\alpha_{2} = \alpha_{2} = \sqrt{V^{2}/S_{2}^{2} - 1ph_{2}};$$
(2.12)

th $\alpha = ph_1$.

Подставляя (2.12) в (2.6), получается: $c_1(V^2/S_1^2 - 1)h_1 + c_2(V^2/S_2^2 - 1)h_2 - e_1\overline{e_1}h_1 = 0.$

При $h_1 = 0$ (2.13) принимает вид:

$$V^2 / S_2^2 = 1. (2.14)$$

(2.13)

При $h_2 = 0$ (2.13) принимает вид:

$$V^{2}/S_{2}^{2} = 1 + e_{1}\overline{e_{1}} / c_{1}.$$
(2.15)
Пьезоэфект увеличивает скорость.

Пьезоэфект увеличивает скорость. Вариант 2.

Рассматривается случай, когда $(ph_1)^2 >> 1$, $(ph_2)^2 >> 1$, (короткие волны или высокочастотное приближение, или тонкая пластинка).

$$tg\alpha_1 = -ithi\alpha_1 = -i, tg\alpha_2 = -ithi\alpha_2 = -i, th\alpha = 1.$$
 (2.16)
Подставляя (2.16) в (2.6), получим:

$$c_1\sqrt{1-V^2/S_1^2} + c_2\sqrt{1-V^2/S_2^2} - e_1\overline{e_1} = 0.$$
 (2.17)
Такие решения не существуют.

Вариант 3.

Рассматривается случай, когда $(ph_1)^2 \ll 1, (ph_2)^2 \gg 1$. Из (2.6):

при
$$(ph_1)^2 \ll 1$$
:

$$tg\alpha_1 = \alpha_1 = ph_1 \sqrt{V^2 / S_1^2 - 1}.$$
(2.18)

$$th\alpha = \alpha = ph_1. \tag{2.19}$$

При $(ph_2)^2 >> 1$:

$$tg\alpha_2 = -ithi\alpha_2 = -i. \tag{2.20}$$

$$c_1 p h_1 (V^2 / S_1^2 - 1) + c_2 \sqrt{1 - V^2 / S_2^2} - e_1 \overline{e_1} p h_1 = 0.$$
(2.21)

При $h_1 = 0$ (2.21) принимает вид:

$$V^2 / S_2^2 = 1. (2.22)$$

Рассматривается случай, когда $(ph_1)^2 >> 1$, $(ph_2)^2 << 1$.

$$(2.6)$$
:
 $\Pi_{\rm DM} (nh)^2 >> 1$.

$$tg\alpha_{i} = -ithi\alpha_{i} = -i$$
(2.23)

$$th\alpha = 1.$$
(2.24)

При
$$(ph_2)^2 << 1$$

$$tg\alpha_2 = \alpha_2 = ph_2 \sqrt{V^2/S_2^2 - 1}.$$
 (2.25)

Подставляя (2.23) - (2.25) в (2.6), получим:

$$c_1 \sqrt{1 - V^2 / S_1^2} + c_2 (V^2 / S_2^2 - 1) ph_2 - e_1 \overline{e_1} = 0.$$
(2.26)

При $h_2 = 0$ (2.26) принимает вид:

$$V^2/S_2^2 = 1 + e_1^2 \overline{e_1}^2/c_1^2$$
.
Пьезоэфект увеличивает скорость.
3. Численный анализ. (2.27)

Дисперсионные уравнения (2.6) и (2.8) исследованы численно в трёх случаях, когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой изготовлен из следующих материалов: Al, Au, Pt.

В Табица 1 приведены значения постоянных рассматриваемых материалов.

Ниже представлены результаты численного анализа дисперсионных уравнений (2.6) и (2.8) совмещенных на одном графике.

				Табица
	Al	Au	Pt	ЦТС-4
C ₄₄	2,83x10 ¹⁰ Па	4,24x10 ¹⁰ Па	7,65x10 ¹⁰ Па	2,56x10 ¹⁰ Па
ρ	2,702x10 ³ кг/м ³	19,3х10 ³ кг/м ³	21,4x10 ³ кг/м ³	7,5x10 ³ кг/м ³

Ниже на фиг. 2.1–2.22 показаны дисперсионные кривые численного расчёта в виде зависимости $V = V(\xi)$ (для уравнений 2.6) и $V_{10} = V_{10}(\xi)$ (для уравнений 2.8) при разных соотношениях толщин $r = h_1 / h_2$ слоистой системы.

3.а. Числено-графическое исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой – из Al.

Численное исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой из материала Al, при условии $S_{10} < S_1 < S_2$ (фиг. 2.1÷рис. 2.6) показало, что:

1) при отсутствии пьэзоэффекта (2.8), $(e_1 = \overline{e_1} = 0)$ для каждого значения соотношения толщин слоёв r сдвиговые возникают объёмные электроупругие волны типа Лява со скоростью распространения V_{10} . Из этих волн при некоторых определенных критических значениях относительной толщины ξ рождаются первый, второй, третий и следующие высшие моды, причём для первой моды $\xi_1 \to 0$. При увеличении параметра ξ скорости всех мод уменьшаются. В переделе при $\xi \rightarrow \infty$, сливаясь между собой, эти образуют единственную волны объёмно-поверхностную волну, которая распространяется со скоростью $V_{10} = S_{10}$.

Когда $r \to 0, V_{10} \to S_1$, при увеличении значения параметра r скорости распространения объёмных электроупругих волн уменьшаются. (см. Таблица 2);

 при наличии пьэзоэффекта (2.6), для каждого значения соотношения

толщин слоёв ґ возникают сдвиговые объёмные электроупругие волны типа Лява, со скоростью распространения V. Из этих волн при некотоопределённых критических рых значениях относительной толщины ξ рождаются первый, второй, третий и следующие высшие моды. При увеличении параметра ξ скорости всех мод уменьшаются. В переделе при $\xi \rightarrow \infty$, сливаясь между собой эти волны образуют единственную объёмно-поверхностную волну, которая распространяется со скоростью $V = S_1$. Когда $r \to 0$, $V \to S_2$, при увеличении значения параметра *r* скорости распространения объёмных электроупругих волн уменьшаются. (см. Таблица 2). Следует подчеркнуть, увеличением что значения С параметра *r* значения скоростей распространения объёмных электроупругих волн V, V_{10} и параметра $\boldsymbol{\xi}$ при которых зарождаются новые моды волн, уменьшаются.

В Таблица 2 приведены значения скоростей распространения сдвиговых объёмных электроупругих волн в структуре V, V_{10} для соответствующих значений соотношений толщин слоев r, и значения скоростей распространения сдвиговых объёмных электроупругих волн в пьезоэлектрической среде S_1 , S_{10} , и в проводящем слое – S_2 .

					Таблица 2
r	V	V_{10}	<i>S</i> ₁₀	S_1	S_2
,	м/с	м/с	м/с	м/с	м/с
0	3236,31	3236,31	1847,52	3136,84	3236,31
0,05	3235,59	3100,53			
0,5	3226,82	2523,91			
1,0	3226,64	2298,54			
1,5	3226,56	2186,54			
2,0	3226,52	2119,20			

75

3.6. Численное исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой – из материала Au.

Численное исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой из материала Au при условии $S_1 > S_{10} > S_2$ (фиг.2.7÷фиг.2.13) показало, что:

1) при отсутствии пьэзоэффекта (2.8), ($e_1 = \overline{e_1} = 0$) при каждом значении соотношений толщин слоёв *r* возникают сдвиговые электроупругие волны типа Лява со скоростью распространения V_{10} . Из этих волн при некоторых определённых критических значениях относительной толщины ξ , рождаются первый, второй, третий и следующие высшие моды.

ξ При увеличении параметра скорости всех мод уменьшаются. В пределе при $\xi \rightarrow \infty$, сливаясь между собой, эти волны образуют единственную объёмно-поверхностную волну, которая распространяется со скоростью $V_{10} = S_2$. Когда $r \rightarrow 0$, $V_{10} \rightarrow S_2$, а при увеличении значения параметра г скорости распространения объёмных электроупругих волн увеличиваются стремятся скорости И распространения объёмных электроупругих волн в пьезоэлектрическом среде при пренебрежении пьезоэффектом – S_{10} .

2) при наличии пьэзоэффекта (2.6) для каждго значения соотношения толщин слоёв r возникают сдвиговые электроупругие волны типа Лява со скоростью распространения V. Из этих волн при некоторых определённых критических значениях относительной толщины ξ рождаются первый, второй, третий и следующие высшие моды. При увеличении параметра ξ скорости всех мод уменьшаются. В пределе при $\xi \rightarrow \infty$, сливаясь между собой, эти волны образуют единственную объёмно-поверхностную волну, которая распространяется со скоростью $V = S_2$. Когда $r \rightarrow 0$, $V \rightarrow S_2$, а при увеличении значения параметра *r* скорости распространения объёмных электроупругих волн увеличиваются и при некотором значении соотношения толщин слоёв *г* становятся равными скорости распространения сдвиговых объёмных электроупругих волн в пьезоэлектрической среде – S₁. В

Таблица 3 приведены значения скоростей распространения сдвиговых объёмных электроупругих волн в структуре -V, V_{10} , для соответствующих значений соотношений толщин слоёв r, и значения скоростей распространения сдвиговых объёмных электроупругих волн в пьезоэлектрической среде S_1 , S_{10} , и в проводящем слое $-S_2$.

					Таблица 3
r	V	V_{10}	S_{10}	S_1	S_2
,	м/с	м/с	м/с	м/с	м/с
0	1482,19	1482,19			
0,05	1540,16	1489,99			
0,5	1961,97	1547,51			
1,0	2303,36	1592,89	1847,52	3136,84	1482,19
1,5	2559,21	1626,3			
2,0	2784,58	1651,93			
3,06	3136,72	1690,40			

3.в. Численное исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой изготовлен из материала ЦТС-4 (пьезокерамика), а проводящий слой – из материала Pt:

Численное исследование дисперсионных уравнений (2.6) и (2.8), когда пьезоэлектрический слой, изготовленный из материала ЦТС-4 (пьезокерамика), а проводящий слой–из материала Рt при условии $S_1 > S_2 > S_{10}$ (фиг. 2.14÷фиг. 2.20) показали, что:

1) при отсутствии пьэзоэффекта (2.8), $(e_1 = \overline{e_1} = 0)$ для каждого значения соотношения толщин слоёв *г* возникают сдвиговые электроупругие волны типа Лява со скоростью распространения V_{10} . Из этих волн при некоторых определённых критических значениях относительной толщины §, рождаются первый, второй, третий и следующие высшие моды. При увеличении параметра ξ скорости всех мод уменьшаются. В пределе при $\xi \to 0$, сливаясь между собой, эти волны образуют единственную объёмно-поверхностную волну, которая распространяется со скоростью $V_{10}=S_{10}$. Когда r
ightarrow 0,

 $V_{10} \rightarrow S_2$ а при увеличении значения параметра *r* скорости распространения объёмных электроупругих волн уменьшаются и стремятся к скорости распространения объёмных электроупругих волн в пьезоэлектрической среде при пренебрежении пьезоэффектом – S_{10} ;

2) при наличии пьэзоэффекта (2.6) для каждого значения соотношения толщин слоёв Г возникают сдвиговые электроупругие волны типа Лява со скоростью распространения V. Из этих волн при некоторых определённых критических значени-٤. ях относительной толщины рождаются первый, второй, третий и следующие высшие моды. При увеличении параметра ξ скорости всех мод уменьшаются. В переделе при $\xi \to 0$, сливаясь между собой, эти волны образуют единственную объёмно-поверхностную волну, которая распространяется со ско- $V = S_2$. Когда $r \to 0$, ростью $V \rightarrow S_2$ а при увеличении значения параметра r скорости распространения объёмных электроупругих волн увеличиваются и при некотором значении соотношения толщин слоёв г становятся равны-ΜИ скорости распространения объёмных электроупругих волн в пьезоэлектрической среде – S₁.

В

Таблица 4 приведены значения скоростей распространения сдвиговых объёмных электроупругих волн в структуре -V, V_{10} , для соответствующих значений соотношений

толщин слоёв r, и значения скоростей распространения сдвиговых объёмных электроупругих волн в пьезоэлектрической среде – S_1 , S_{10} , и в проводящем слое – S_2 .

					Таблица 4
r	V_{\perp}	V_{10}	S_{10}	S_1	S_2
,	м/с	м/с	м/с	м/с	м/с
0	1890,71	1890,71	1847,52	3136,84	1890,71
0,05	1929,91	1889,97			
0,5	2235,03	1884,33			
1,0	2502,4	1879,59			
1,5	2713,85	1875,94			
2,0	2902,35	1873,03			
2,87	3136,40	1869,52			

Заключение.

Амплитудно-фазовый анализ волнового процесса в двухслойном волноводе из пьезоэлектрического и идеально проводящего слоёв показал, что:

1) В слоистой системе из пьезоэлектрического слоя, изготовленного из материала ЦТС-4 (пьезокерамика), и проводящего слоя, изготовленного из следующих материалов Al, при условии $S_{10} < S_1 < S_2$, Au при условии $S_1 > S_{20} > S_2$, Pt при условии $S_1 > S_2 > S_{10}$ электроупругие волны Лява существуют и имеют следующую структуру: число волн бесконечно, и скорости распространения волн зависят от соотношений толщин слоёв r и величины параметра ξ .

 Наличие пьезоэффекта увеличивает скорость распространения сдвиговых объемных электроупругих волн.

3) При условии S₁₀ < S₁ < S₂, (проводящий слой изготовлен из материала Al) увеличение значения параметра r (соотношения толщин слоёв), и при наличии и при отсутствии пьэзоэффекта уменьшает скорость распространения сдвиговых объёмных электроупругих волн.

4) При условии S₁ > S₁₀ > S₂, (проводящий слой изготовлен из материала Au) увеличение значения параметра r (соотношения толщин слоёв), и при наличии и при отсутствии пьэзоэффекта увеличивает скорость распространения сдвиговых объёмных электроупругих волн.

5) При условии $S_1 > S_2 > S_{10}$, (проводящий слой изготовлен из материала Pt) увеличение значения параметра r (соотношение толщин слоёв) при наличии пьэзоэффекта увеличивает скорость распространения сдвиговых объёмных электроупругих волн, а при отсутствии пьэзоэффекта уменьшает скорость распространения сдвиговых объёмных электроупругих волн.

ЛИТЕРАТУРА

- 1. LoveA.E.H., «Some problems of geodynamics», first published in 1911 by the Cambridge University Press and published again in 1967 by Dover, NewYork, USA. (Chapter 11: Theory of the propagation of seismic waves).
- Bleustein J.L., A new surface wave in piezoelectric materials. Appl. phys. Lett., 1968, v.13, №2, p.412-413.
- Lord Rayleigh (1885). «On Waves Propagated along the Plane Surface of an Elastic Solid». Proc. London Math. Soc. s1-17 (1): 4–11.
- Багдасарян Г.Е., Даноян З.Н., Электро магнитоупругие волны. Ереван: Изд. ЕУ, 2006, 492 с. Baghdasaryan G. E., Danoyan Z. N., Electro-magnetoelastic waves. Yerevan. EU. 2006, p 492.
- Achenbach, J. D., "Wave Propagation in Elastic Solids". New York: Elsevier, 1984, p. 364.
- 6. Biryukov S.V., Gulyaev Y. V., Krylov V., Plessky V., Surface acoustic waves in inhomogeneous media, Springer Series on Wave Phenomena, Vol. 20, 1995, 388.
- D. Royer, E. Dieulesaint, Elastic Waves in Solids I: Free and Guided Propagation, Springer Science & Business Media, 2000, 374.
- 8. L Brekhovskikh, Waves in Layered Media 2e, Applied mathematics and mechanics, Elsevier Science, 2012, 520 p.
- Аветисян А. С. К задаче распространения сдвиговых волн в пьезо-электрической среде // Изв. АН Арм. ССР. Механика. 1985. Т.38. 11. С.12-19. Avetisyan A. S., Problem of the propagation of transversal waves in piezoelectric. Mechanics. Proceedings of National Academy of Sciences of Armenia, 38 (1). pp. 12-19.
- Партон В.З., Кудрявцев Б.А. Электромагнитоупругость пьезоэлектрических и электропроводных тел, //М.: Наука, 1988, 472 стр. Patron V. Z. Kudryavtsev B.A., Electromagnetoelactic of piezoelectric and electrowire bodies [Electromagnetoelactic piezoelectric and conductive bodies]. Moscow: Nauka 1988, 472 p.
- Даноян З.Н., Мкртчян С.А., Сдвиговые волны в двухслойной среде из пьезоэлектрического и проводящего материалов, Ереван: Изд. НУАСА, Механика 2016, ст. 55-59. Danoyan Z.N., Mkrtchyan S.H., Shear waves in two-layered medium consisting of piezo-electric and conducting materials. Mechanics 2016. PROCEEDINGS International School-Conference Young Scientists. pp. 55-59.
- Белубекян М.В., Белубекян В.М. О сдвиговой волне, локализованной вдоль движущейся границы раздела пьезоэлектриков // Изв. НАН Армении. Механика. 1994. Т.47. 1 3–4. С.78–82. Belubekyan M. V., Belubekyan V. M., About shear localized wave propagation along the moving surfaces of piezoelectrics. Mechanics. Proceedings of National Academy of Sciences of Armenia, 47 (3-4). pp. 78-82.
- Jones J.P. Wave propagation a two-layered medium. Journal of Applied Mechanics, 1964, June, pp. 213-222.

 Погосян Н.Д., Саноян Ю.Г., Терзян С.А. Распространение сдвиговых волн в двухслойной среде в антиплоской постановке. Изв. НАН РА, Механика, 2013, т.66, No. 4, ст. 12-16. Poghosyan N. D., Sanoyan Ju. G., Terzyan S. A. Shear Waves Propagation in Two-Layer Media. Mechanics. Proceedings of National Academy of Sciences of Armenia, 66 (4). pp. 12-16.

Сведения об авторе:

Мкртчян Сурик Акопович – аспирант Института механики НАН РА. Адрес: 0019; Армения, Ереван, пр. Маршала Баграмяна 24/2. Тел.: (+37477)050538 E-mail: <u>sur_mkrtchyan@mail.ru</u>.

Поступила в редакцию 20.02.2017