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Abstract: The theory of linear and nonlinear magnetoelectric effect in layered magnetostrictive-piezoelectric
multiferroics is presented based on the joint solution of the equations of motion and constitutive relations for the
magnetostrictive and piezoelectric subsystems, considering the boundary conditions on the interface. It is shown
that, in weak bias magnetic fields, the value of nonlinear effect is comparable with linear, and along with the main
resonance, there is an additional resonance. Value of the resonance amplitude is not dependent on bias magnetic
field and is excited at the frequency of magnetic field twice less the main resonance frequency. Trilayer nickel-
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polymer—PZT—polymer-nickel disc-shaped structure is designed for the experiment. Frequency and field
dependence of magnetoelectric effect is presented for this structure.

Introduction

Magnetoelectric (ME) effect, theoretically predicted in [1,2] and experimentally observed
in works [3,4] over half a century ago, attracts an increasing number of researchers in
recent years, evidenced by the growing number of publications on this subject [5].

In the past decade, the technology of producing composite ME multiferroics was
improved. This allowed manufacturing structures with sufficient ME parameters to create a
variety of electronic devices [6].

Magnetoelectric effect in layered magnetostrictive-piezoelectric multiferroics occurs
through mechanical interaction between the subsystems. Mechanical oscillations, resulting
in a magnetic material in an alternating magnetic field are transmitted to the piezoelectric
material, which leads to appearance of an electric field. There are peaks at the frequency
dependence of the effect due to electromechanical resonance, because the mechanism of the
ME effect is associated with the propagation of mechanical waves [7].

There are certain problems and inaccuracies in the theories of ME effect [8-18]
currently available. The method of effective parameters proposed in [8] and developed
further in [9-12] is applicable to structures where the characteristic sizes are much smaller
than the length of the waves propagating in the composite. The disadvantage of the method
of effective parameters is also the difficulty of determining the values of effective
parameters themselves. A more accurate method is based on the solution of the equations of
motion and the material equations separately for the magnetic and piezoelectric phases,
then connecting these solutions using boundary conditions. Earlier, the theory of ME effect
in magnetostrictive-piezoelectric structures was proposed using this approach in works
[13-16]. However, there are some inaccuracies in the proposed theory. The interface
between the phases was considered by introducing a coupling coefficient or by the shear-
lag model in [13-15], which were determined empirically. A perfect bonding between the
layers was discussed in [16], and it was assumed that the displacement of the magnet and
the piezoelectric media was the same. As will be shown below, this assumption takes place
in case of thin layers, when the displacements change over the sample thickness can be
neglected.

Theory of the ME effect was presented in [17,18] apparently considering the interface
in bilayer magnetostrictive-piezoelectric structure with perfect bonded layers and glued
magnetostrictive and piezoelectric layers in [19,20]. Magnetoelectric structures of Nickel
and Metglas magnetostrictive layers attached to one free end of piezoelectric Pb(Zr,Ti)O3
(PZT) cantilever was studied in [21]. In these papers, structures in the form of a thin plate
were considered. On the other hand, disc-shaped structures are used in practice more often.
The geometry of disc-shaped structures has a number of different characteristics compared
to the plate, so the equations obtained in [17-21] for the frequency dependence of the ME
effect are not directly applicable for such structures. Enhanced converse ME effect has been
experimentally observed in cylindrical PZT-Terfenol-D piezoelectric-magnetostrictive
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bilayered composites [22]. The theory of linear ME effect is described sufficiently detailed,
but only two papers [23-27] are devoted to the theory of nonlinear ME effect, where the
nonlinear effect was studied in plate samples. In this paper, we present the theory of linear
and nonlinear ME effect for disk-shaped structures considering the explicit account of the
interface between the phase boundaries.

1. Model and basic equations

As a model, we consider a structure of disc-shaped layers of radius R, consisting of
mechanically interacting magnet and piezoelectric layers of thickness 7, and 7,. Thin

metal contacts are applied on the top and the bottom of the plate (Fig.1).

AZ

Fig. 1. Schematic view of disc-shaped layered sample

Longitudinal orientation of the electric and magnetic fields is investigated for this
structure. In case of longitudinal fields the magnetic fields (constant Hpiss and alternating H
with the frequency ®) coincide in direction with the polarization vector P. Due to the
symmetry of the problem, we choose a cylindrical coordinate system. The origin of the
coordinates coincides with the boundary between the layers and the direction Z is
perpendicular to that boundary. Preliminarily, the piezoelectric layer is polarized
perpendicularly to the contact (Z axis). The interaction between the magnet and the
piezoelectric is carried out via the interface by shear stresses. Due to the axial symmetry of
the problem, the nonzero components of the stress tensor 7, in cylindrical coordinates are

only T, T

760

T, and T, . Consequently, the equations for the stress tensor and the electric

induction are of the form

Y
T’ =—“2(S;; +vS! —(1+v)d31E3), (1)
(1-v)
Y
T =(1_—’;/2)(VS§ +8p —(1+v)d,E, ) , 2)
D3 = 533E3 +d31(Trf<) +T91(;) > 3)



T = o (S vsE - (1eAH)). )
)

T = to(usm v Sm - (1e)AH)). )
1)

where Y, (a =p, m) are the first order Young’s moduli for the magnet and piezoelectric,

o

respectively, v is the Poisson’s ratio, expected the same for both media. S” =—= and
or
. 1ou, ) . .
o = +— are the components of deformation tensor, u, and u, are the
r oo r

components of medium displacement vector, d;, is the piezo-electric tensor, A(H) is the

magnetostriction of the magnet, H and E are the external magnetic and induced electric
field.

Since the magnetostriction is a nonlinear function of the magnetic field, in general, the
magnetic stress tensor will also be a nonlinear way dependent on the strength of the
magnetic field. The dependence of magnetostriction for nickel and permendur materials
will have the form shown in Fig.2, according to [28].
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Fig. 2. Field dependence of magnetostriction X(H ) for permendur (P)

and nickel (Ni) [28]
In weak 11€10S, magnerostriction can be presented 1n tne 1orm or an expansion in degrees

of magnetic field, and, as can be seen from Fig.2, it is sufficient to consider the first terms
of that expansion, i.e.,
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Equation (6) for the magnetostriction can be written in the following form:

MH)=qH +gH", (N
o _ _ _ _ 1 o°x ,
where ¢ =— is the piezomagnetic coefficient and g=—— is the
OH o, 2 0H o
=Hpjas =Hbias

magnetostriction coefficient.
It is clear that in the absence of the bias field, point Hpiss= 0, the piezomagnetic
coefficient is g =0, whereas the magnetostriction coefficient is g # 0. Consequently, the

linear ME effect is observed only at a bias magnetic field, while a nonlinear ME effect
exists at Hpias=0. As can be seen from Figure 2, piezomagnetic coefficient initially
increases with the increasing bias field, and then decreases. This leads to an increase of the
effect value with increasing bias field reaching its maximum and then to a decrease. The
value of magnetostrictive coefficient g is not dependent on the bias magnetic field, unlike
the piezomagnetic coefficient g, which follows from Eq. (6) in weak fields. This leads to a
value of nonlinear ME effect not dependent on Hpias in weak fields, which is validated
experimentally in works [16-19].

The equation of motion for the radial component of the displacement vector can be
written in the following form:

" 00

o or p oz

ot ort T -1 8r¢
p,—=——+ +—=, (®

where 77 is the tangential component of the stress tensor, arising from the interface

between the phases The relation between the stress and its appropriate component of the
strain tensor is described by the Hooke's law

T =G5, )

a~rz
a
a r

are the shear strains.

where G, = are the shear moduli and S =

2(1+v) 0z
The solution of Eq. (8) can be written as follows:
ul(t,r,z)=u’(r,z)exp(iot), (10)
where u” (r,z) are the coordinates part of the function, @ is the frequency of the medium
oscillation. Medium oscillations with @' frequency are caused after the sample is placed in
an alternating magnetic field, whose frequency is @, = @’ in case of linear ME effect and
, =20 in case of nonlinear ME effect, due to the quadratic dependence.

It should be noticed, that here only the radial oscillations and ME effect caused by
displacement of radial waves in structure (basic contribution of ME effect) is considered.
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Ou,

That is why the component is not taken into account in the Hooke's law in Eq. (9).

Z

Coordinate part of the wave function can be written in the following form:
ul (r.z) =g, (z)(4J, (kr)+ BY, (kr)), (11)
where g, (z) is a function which describes the change of the amplitude of medium

displacement along the axis of the disk, J, (kr), Y, (kr) are the Bessel functions of first

order and second order, respectively, k£ is the wave number, 4 and B are the constants of
integration.

This solution g, (z) fully characterizes inhomogeneous displacement of the waves

along the thickness of the sample, namely along Z axis.
We obtain the value for the constant integration B =0, since the center of the disc is

ul(r,z)=0.
Substituting expression (11) into Eq. (8) we obtain the following expression for the
function g, (z):

ga<z)"+(£j{%—k2}ga(z>=0, (12)

where the prime of the g, (z) function indicates differentiation with respect to the variable

z. V; :L in Eq. (12) are the square of the velocities of propagation of elastic
p.(1-v%)

waves in the magnet and piezoelectric phases. As can be seen in Eq. (12), the components

of H external magnetic and E induced electric fields are not included after substituting

a

u, (r,z) into (8), by means of the second-order differential equation for the g _(z)

function. Value of the second bracket in Eq. (12) equal to zero gives the dispersion relation

for the propagation of elastic waves in pure magnet (a =m) or piezoelectric (a = p). The

wave velocities propagating in bilayer structure will be in the interval between the wave
velocities in magnet and piezoelectric phases. Consequently, the value of the expression in
square brackets in Eq. (12) for the first phase will be positive, while negative for the second
one. Let us consider the most typical case, when the velocity of the waves in the
piezoelectric is less than in the magnet. In this case, the solution of equation (12) has the
form:

g,(2)=C exp(,2) + G, exp(-4,2) , (13)
g,(z2)=C;cos(y,2)+C,sin(y,2), (14)
. . 2 2 a)z 2
where Ci .. C4 are the constants of integration, y, = Tl k° |,
—v( P

P

2 602
2 2
x _ﬁ(_z_k j
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We use the boundary conditions to determine the constants of integration Cj... Cs. In the

point z=0 the components of the displacement vector u (r,O)zuf (r,O) and the
tangential components of the stress tensor 7,7 (r,0) =7 (r,0) . In points z=—¢, and z =1,

the tangential components of the stress tensor 77(r,—t,)=0 and T.”(r,7,)=0. These

conditions provide a system of four equations which solution gives an expression that
defines the relationship between the frequency and the wave vector in the following form:

Yanth(x,) = Y,z,te(x,). (15)
where «, =y, and x, =y, are non-dimensional parameters. It should be noted that a

similar relation is derived for the plate in [16,17]. Dependence of the angular frequency @
on the wave vector £, as it follows from Eq. (15), is of a nonlinear character. For thin layers
this relationship can be represented in an approximate expression by expanding functions in
a series of small parameters in next form:

w=V1+5)k. (16)

= Y . . . . . . .
where V' = |———- is the velocity of propagating elastic waves in a medium with

pI=v7)
averaged parameters, J is a corrective which describes the deviation from the linear

relationship between @ and k. Here I_/=(Y t +Yt

m'm p'p

)/(t,+1t,) is the average value the

elasticity modulus, ,1_) =(p,t, +p,t,)/ (,+1,) is the average value of the medium density.

In the first approximation, the 6 corrective is given by the following form:

W) L[V 10,7 1] a2 +x0, [ 17,7 1] G, )

o= 17
3 Y1, +Ye, 1n
Finally, for the constants of integration Ci... C4 we obtain the following expressions:
C =1, C,=exp(2x,), C, =1+exp(2x,), C, =—(1+exp(2x, ))tg(/(p) . (18)

Boundary conditions on the side surface of the disk are written in Eq. (19) using the
condition of mechanical equilibrium in the following form:

0 Iy
j T’ (R,z)dz +JT:’ (R,z)dz=0. (19)
—t 0

The constant of integration 4, can be obtained using (19) by carrying out integration for

linear effect in next form:

1+v R d31thpE3 +Y,1,49,H,
L= L L L’ (20)

A, 1+exp(2x,) tgic, tgx

ol I +Y.t, ="

K, K

where x, =k, R and A, = x,J,(x,)—(1-v)J,(x,).

The constant of the integration 4,, for the nonlinear effect have the next form:
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1+ R dy Yt E +Y,1, g H;

m‘m
NL —

A 21
o 2]

A, 1+exp(2xk,

NL
tgx,

YP tl’ NL m“m NL
Kp m

where &, =ky, R and A, =K,,J, (%, )—(1-v)J, (k)

The principal difference between the variables with indexes L and NL, such as «*, x"*

m m

L NL
and K,, K,

is that parameter k, is included in the variables with the index L in the
expression for linear effect. Parameter k, is determined from the relation (16), in which the
frequency of the oscillations of the medium is @, = @', where @' is the frequency of the
external magnetic field. Variables with index, on the other hand, include parameter k,, ,

which is determined from the relation (16), where the frequency of the oscillations of the
medium is @,, =20".

2. Magnetoelectric effect

Potential difference between electrodes of the sample can be obtained from the expression

0
U= [ Ed:. (22)
The potential difference generated between electrodes in case of the linear effect can be
obtained expressing the electric field through the stress tensor in Eq. (3) and using Egs. (1)
and (2) taking into account expression (11). The final expression can be derived for the

r 2z
potential difference using the open circuit condition J'rdr I D,d6 =0 which can be given
0 0
by the following form:
U - 2d,,q,, (l+v)thp Yt tgxy J,(x,) 23)
L= L L L 32
& (1—V tex thxt K A
33 ( ) thp g LP + Ymtm Km P a
K, i
2
with K [2, = % the squared coefficient of electromechanical coupling for radial
&u(1-Vv
oscillations. Designation given in the equation (23) has the next form:
Yt tgx”
A{f:AL(l—KZ)+2(l+v)K2 T ng JI(K'L). (24)
’ ’ tgx, that &
thp L +Y;ntm Lm !
K, K,

The condition A" =0 determines the value of the wave vector, and, consequently, the

values of the frequencies at which the resonant increase of the linear ME effect takes place.
The values of these frequencies in turn depend on the dispersion relation between @, and
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k, . From Eq. (24) it follows that in the low-frequency region the value of induced voltage
does not depend on the frequency and is given by the form:

2d,,q,, Yt Yt 1

— 3]q3] PP m”m H3- (25)
ea(1=v) Vb, 4%ty _g2q_ Pl

PV Y

m-m

Low
L

For the voltage which is induced on the plates of the sample due to the nonlinear effect,
we have the following expression:

NL
2d31g31(1+v)thp Yt tgr,” |J (k) o
U, = H;, (26)
NL NL NL NL NL 3
&, (1-v gk, the)" K, A,
thp NL +Ymtm NL
K, K\

where AM is defined by the expression analogous to expression (24), wherein index L is
replaced by the index NL. Total voltage induced in the sample is U =U, +U,, . Fig.3

shows the frequency dependence of the effect for nickel-lead zirconate titanate structure in
an alternating magnetic field H =2 Oe at a value of magnetizing field equal to the field of

the Earth (H,, =02 Oe), and in the bias value H,, =10 Oe.

The following parameters of the structure were used during the calculations: disk radius
is R=4.5mm, thickness of the piezoelectric t, = 0.4mm, thickness of the magnet

t,=0.32mm.
Parameters of the material: for piezoelectric (PZT) — p, = 7800 kg/ m’, Y, =62 GPa,

v=03, &,=1750, d,, =175 pC/N; the magnet nickel (Ni): p, =8900 kg/m’,

Y, =205 GPa, v=03.

0- 150

Voltage U, mV
Voltage U, mV

R T T T T
0 5 100 150 200 250 300 350 0 & 10 10 200 260 300 30

Frequency 7 kHz Frequency £ kHz
a) b)
Fig. 3. The frequency dependence of the voltage induced on the plates by the linear ME
effect — 1 and nonlinear ME effect — 2 in bias field: a) Hpias = 0.2 Oc (Earth field), b)
Hbpias =10 Oe
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The magnetostrictive curve shown in Figure 3, in the initial part was approximated by

the expression A(H)=gH’, where the magnetostrictive coefficient had the value of

g=12:10"0e".

3. Experimental results

Disc-shaped nickel-polymer—PZT—polymer—nickel structures were manufactured for the
experiment by the bonding method. Samples had the following parameters: diameter
D =8.7mm, thickness of the piezoelectric PZT layer Z, =0.32 mm, thickness of the
nickel layer ¢, =0.25 mm, thickness of the bonding polymer layer was of some

micrometers.
The frequency dependence of the ME effect in low-frequency region and in the
electromechanical resonance region is shown in Fig.4.
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Fig. 4. Frequency dependence of the ME effect in disc-shaped trilayer structure
of nickel-polymer-PZT-polymer-nickel. Bias magnetic field Hpias = 50 Oe
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Fig. 5. Field dependence of the ME effect in disc-shaped trilayer structure of nickel-
polymer-PZT-polymer-nickel
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As can be seen from Fig.4, the main resonance is observed at frequency f =338kHz.
There is an additional resonance at frequency f =169kHz, due to the nonlinear ME effect,

which is in full accordance with the theory.
Field dependence of the ME effect is shown in Fig.5.

4. Conclusions

Magnetoelectric effect in composite multiferroics is a result of the mechanical interaction
of the structure layers, which is carried out by tangential stresses, accompanied by shear
strain. This leads to inhomogeneous change of the oscillation amplitude in the direction
perpendicular to the interface. The compatibility condition for solving the equations of
motion for magnetostrictive and piezoelectric phases resulting from the boundary
conditions, leads to a nonlinear relationship between the frequency and the wave number.
Linear ME effect and nonlinear ME effect of external magnetic field occurs due to the
nonlinear dependence of the magnetostriction on the magnetic field. In contrast to the linear
ME effect, it is nonzero in absence of the magnetizing field and its value is comparable
with the linear ME effect in weak magnetization fields.
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