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Thuwplynud o dEjuwbhynpit wquu dwlbkpinypubpny  wpwdquljui  wjhpwiwph
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ponnitwlnipjui gnnhubp):

The influence of weak roughness of mechanically free elastic waveguide surfaces on propagation of normal shear
wave is investigated. Thin layers of variable thickness are virtually separated in near-surface areas. Distribution
functions of elastic shears are introduced in separated elastic layers (hypotheses MELS). Introduction of hypotheses
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MELS will make the study of wave processes in waveguides with complicated properties and sophisticated
characteristic roughness of the material of the waveguide and its surfaces more convenient. It is shown that in
contrast to perfectly smooth surfaces, weak roughness of the mechanically free surfaces leads to distortion of
propagating normal waves. Partial localization of wave energy occurs in near-surface layers of the waveguide.
Frequency zones of silence of newly formed waves (as well as zones of frequency bandwidth) appear as well.

Introduction

The interaction of ultrasound wave with rough surface of waveguides currently is actively
investigated from both theoretical and experimental points of view (see e.g. [1-3]). It is
related to applications of elastic wave phenomena in modern technology:
telecommunications (signal processing), medicine (ultrasound measurement), metallurgy
(nondestructive control), etc.

In studies of propagation of high-frequency wave signals (high frequency, short waves) in
layered waveguides it is especially important to take into account the real roughness (non-
smoothness) of surfaces of the waveguide. It is especially important in cases where the length
of the wave signal is of the same order with the amplitude or average step of the surface
roughness. There is a huge body of references about wave propagation in layered waveguide
with perfectly smooth surfaces of attachment of the layers. However, smooth surface is an
idealized model for which it is not always possible to rigorously determine or estimate the
characteristics of the wave field more accurately, especially in near-surface zones of the
waveguide. The roughness of the waveguide layers definitely complicates the mathematical
model, but provides opportunity to identify near-surface wave effects and more accurately
calculate the quantitative characteristics of the formed wave field in the near-surface area.
There are different theoretical approaches and practical tools for investigating surface waves
propagation on rough surfaces (see, for instance, [4-7]). Many papers (see e.g. [8-11]) are
dedicated to different cases of normal high-frequency short monochromatic waves stability
loses, such as localization of wave energy, internal resonance, occurrence of forbidden zones
of frequency, etc.

Possible distortion of the amplitude and phase functions for normal distribution of the wave
signal in a weakly rough elastic waveguide are investigated in [12-14]. The occurrence of
internal resonance is studied, and conditions for existence of forbidden zones of frequency
are revealed using the hypotheses of magneto-electro-elastic layered systems (MELS
hypotheses).

In [15], wave propagation in inhomogeneous media with self-similar structure is studied
using fractional calculus, along with the space-time discontinuous Galerkin methods. One
and two dimensional problems are studied to demonstrate the capability of the proposed
model in modeling inhomogeneous media.

In this paper, we propose a new approach for studying the influence of roughness of the
surface of the layer-waveguide on the propagation of elastic, normal shear wave by so-called
MELS hypotheses.

1. Problem Statement

Let us assume that pure shear normal wave signal

WX, Y, t) =W, (y) xexpli(k,X- b)) (L.D)
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ux,y,t)=0, v(x,y,t)=0, (1.2)
is propagating in elastic, isotropic waveguide

Q:={|x <o; h.(x)<y<h, (x);

Z|<OO} with rough surfaces y=h (x) and

y = h, (X).Here o, is the frequency of the source of wave signal, ko é(21‘1?/ 7\,0) is the
wave number and A, is the length of wave signal. Then, the equation of motion of the
medium has the following form

O*W(X, y,t) . OW(X, Y5 t) _ = O*W(X, y,t)

X2 oy’ ’ ot

! (1.3)

2
where Cj =

G, / Py is the speed of the shear normal wave in the waveguide, G, is the shear
modulus and p is the density of the waveguide material.
It is assumed, that the roughness of the waveguide surfaces y = h, (X) are represented by
the following harmonic functions
h. (x)=h,[1+¢, -sin(k, - X)+8, - cos(k, - X)], s
h (x)=-h,[1+¢_-sin(k -Xx)+38_-cos(k -X)], Sl

where h is the half-thickness of basic layer of the waveguide, &, and §, are the relative

amplitude coefficients of the heights of roughness profiles with {8 g 0 i} <, because the

heights of the protrusions of roughness h, -&, and h; -5, are always much less than the

basic layer thickness: {h) "€y, ho c &_r} < ho k= 2m/), is the number of the waviness
of roughness profile and A, is the step (wavelength) of the roughness profiles.

The boundary conditions on mechanically free non-smooth surfaces of the waveguide
c; (% Y) n}L (X) =0 are written respectively in this form:

- 2 oMY (15)
. y=h, (x) Oy

OX
It is evident from (1.3)-(1.5), that its solution must explicitly depend on the roughness of the

surfaces. Since the roughness is weak {h) "€, ho -0 J_r} < ho , the interaction of roughness

will mainly be available in case of high-frequency (shortwave) wave signals, for which
Ay ~ A, <hy, or equivalently K h, ~k,h >1. Then, one might be interested in

investigation of the influence of surfaces roughness of the waveguide on the propagation of
normal high-frequency shear waves.
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2. Problem Solution

There are two methods to solve the problem: the method of successive approximations and
the method of introduced hypotheses. Later in this article we will compare wave
characteristics of the received wave fields.

2.1. First Approach

When high-frequency, normal shear signal (1.1) is propagated in elastic waveguide,
interaction of the wave signal with the roughness of the surfaces in the near-surface areas
occurs, which consequently leads to amplitude and phase distortion of the primary signal.
New harmonics appear and a new amplitude-phase interaction is formed.

We use Fourier method of variables separation, and the solution of the boundary value
problem (1.3)-(1.5) is represented in the following form:

WOX Y.t = S WL () X, (%) expl—io ). @1

n=1
Then the conditions of mechanically free surfaces of the waveguide, on rough surfaces
y = h, (X) respectively, for each harmonic of propagating wave will have the following

form

W/(h, () = Fhk, -[e, -cos(k, - )8, -sin(k, - )] -f—ixiwnm(x». (22)
X

n

It is suggested, that the equations for determining the desired functions X (X) and W, (y)

are shown in the form
W(y)+ ki [ 3 =1 W, (y) =0,
X(X)+k; X, () =0,

2.3)

. . . . A 5o
where the following assignment for appropriate harmonics 1’]?1 =(,Oikn2002 has been taken
into account, K is the wave number (formation coefficient through the thickness of the

waveguide), corresponding to the generated N-th harmonic.
From surface conditions (2.2) it follows that the undamped solutions of (2.3) in the directions

of the propagation £OX (for Im[ kn] = () are shown in the following form

W, (y)=C,, exp(iknocny)+ C,, exp(—iknocny),

(2.4)
X, (x) = C, exp(*ik,x),

. . 24,2 .

which, for slow waves, i.e. when O, =M, —1 <0, corresponds to the damped harmonics

from the surface up to the depth of the waveguide, and for fast waves, i.e. when
24 2 . . .

o, =M, —120, corresponds to harmonic forms over the thickness of the waveguide.

From (2.3) it also follows that fast damped waves occur in the directions of wave propagation
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+OX in the case of Re[kn] =0:
W) -k [ma =1 W, (y) =0
X0~k X, (0 =0 |
For slow wave, i.e. when Oti éni —1< 0, the solution corresponds to harmonic forms over

. . . A .
the thickness of the waveguide, and for fast wave, i.e. when Otrz1 =T]r21 —12>0, it corresponds

to damped harmonics from the surface up to the depth of the waveguide.

Taking into account that the roughness of the surface of the waveguide is weak and its impact
on the propagating wave is described by boundary conditions (2.2), the solution of system
(2.3) is represented in this form

Xo ()= 9™ A exp(ikp,X). 2.5)
m=0

bﬁ—}/r

2hory.ty

—jJH—]f

Fig.2.1. The model of elastic waveguide as a multilayer waveguide

Moreover, the value M= 0 corresponds to the case of homogeneous waveguide. Here, the
introduced wave number k*m should be formed by the impact of normal wave signal and

roughness of the surfaces of the waveguide.
The roughness of the surfaces, in its turn, is characterized by the greatest common divisor of

wave numbers K, =min { k./p; k/ q} =27/, is the smallest common wave number

of roughness on the surfaces corresponding to the generated M_th harmonic waves, and
A . . .
Y = max {1/8%; + Si } < 1 is a small parameter characterizing the weak roughness of the

surfaces of the waveguide.
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knan[cnl exp(ikyotah. (9))-Cp exp(—ikqouah, (X))} i}Y " Amexp(iK.X)=
=Fhk, [ &, -cos(k, - X) =38, -sin(k, - X) | x 2.6)
<[ Coexp(ikta OO} Copex Tkt (00)] 3 Ko™ Amexp(ik )

Considering that the right hand sides of boundary conditions (2.6) are in small M+1 order

inthe N'= 0 approximation, for non-trivial solutions of (2.6) we obtain the dispersion equation
with the following solution

2nc, TNG
@ = KpnGy =——-=——. @7
Ao By
. . . h.(X) .
Consequently, interaction of the normal wave (1.1) with surface roughness =+ is not

occur in the N=0 approximation, and the propagating wave is still normal as in N=0
approximation of longitudinally weakly rough waveguide with mechanically free surfaces [13]

W, (X, y,t) = i A, -exp|:i(%r:x—(o0nt):| : (2.8)

From the conditions of synchronization of the surface distortions at the mid-plane of the

waveguide Y =0, we get
exp[i (ko —k.,) X} _k (e, -cos(k, - x) =8, -sin(k, - X)]

k_-[e_-cos(k_-x)—3&_-sin(k_-x)]

2.9)

Considering that the wave number is formed as K,(X)=K,,—K, and

k. = min{ pk+; qkf} =27/ ., it is easy to get the allowed wavelengths from (2.9) for
the first approximation:

k, -[e, -cos(k, - X) -8, -sin(k, - X)]

M(X) =2, -2marccos ' 4 — : . (2.10)
‘ k -[e_-cos(k -X)—8_-sin(k_-X)]
Then from the boundary equations (2.6) for the first approximation we will have
eXp(i k()na‘n (h+(x) - hf(X))) _eXp(_i k()na‘n (h+(X) - hf(x))) =0 >
therefore formation coefficient of generated distortions of waves is obtained as
mn

o, =— (2.11)

kOn 1n h+(X)—h7(X)

The wave number of the first generated harmonic depends on the surfaces of the non-smooth
waveguide
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km<x>{%‘J(n(x)—h_(x))[hé+(h+(x>—h_(x))T/2. )

In the first approximation, the interaction of the normal wave with surface non-smoothness
affects to the propagating wave:

W (X, Y,1) = D W (Y)- X, (X) - exp(—img,t), (2.13)
n=1
where
o h -k (XY - h -k (X)y
W, (y)=C, exp|i——""——|+C, exp| i ——"——
[ (h+(><)—h(><))j ( (h+(X)—h(X))ja

X, () =vA, exp (ik  (x)- X).
Note that if the rough surfaces are “symmetric” with respect to the mid-plane of the
waveguide, i.e.

—h (¥)=h.(x) =h(x) =h[1+&-sin(k-X) +8- cos(k- X)], (2.15)

then from relations (2.11) and (2.12) for the wave number over the thickness of the
waveguide and the coefficient of formation, respectively, are obtained as follows

(2.14)

) -1/2
s .
K (X) = h [4h2(x)+1} ; (2.16)
2 -1/2
S NS _ T h,
Kin(X) a“‘(x)__h(x) {hz(x)“‘} . 2.17)

The solution (2.14) will be correspondingly transformed into

s _ S ; h)'kfn(x) s i h)k;(X)
Vvln(y)_clnexp[l[ h(X) ]y]—l_CZneXp[ I( h(X) ija (2.]8)

Xin(X¥)=vA, exp(ikfn(x) : X)-
In the case of “synchronous” (parallel to each other) roughness on the surfaces of the
waveguide, will have the following representations:

h (X)= ho[1+8-sin(k~x)+8~cos(k-X)],
h (x) =—h,[1—¢-sin(k-X)—38-cos(k - X)].

Then from relations (2.11) and (2.12) for the wave number over the thickness of the
waveguide and the coefficient of formation, respectively, are obtained as follows:

\/g mn . \/g in

E'E’ kln(x)'aln(x) =~

20 ho (2.20)
The solution (2.14) changes accordingly
34

(2.19)

ki (%) =



h

0 0

* . (A5 * 5 mn
V\lln(y)zclnexp Yy +CZn€Xp ==Y
20 h 20

(2.21)
min

Js
X = ji—-—-X|.
LX) =YA, exp(l P X

0

2.2. Second Approach
To analyze the propagation of the normal, pure shear wave signal (1.1) and (1.2), taking into

account that in the isotropic waveguide (2:= {|X| <oo; h (X)<y<h (x)

Z| < oo}
roughness of surfaces Y =h (X) and Y =h, (X) are described by the functions (1.4), the

near-surface thin layers with variable thickness (the waveguide is presented as three-layer,
see Fig.2) are virtually selected 2 =0 U Qo uQ . » where

Q. é{|x| <oo; h (X)<y<-h +v;
Q, 2{|X<ow; —h+y_ <y<h -y;
Q, 2{|x<o0; hy =y, <y<h (X); (2.22)

We intend to solve the equation of medium motion (1.3) for all three layers separately with

4<w%

4<w%

4<w}

boundary conditions (1.5) on mechanically free, non-smooth surfaces Y =h (X) and
y=h_(X) for elastic displacements W (%, ¥.1) (respectively for layers Q. ), and the

conditions of continuity on virtual cross-sections y ho V- and y m Ve

W (%, y’t)|>’=4b+v_ =W.(x, y’t)|)’=*fb+v_

UACS AN NN A S A .

(2.23)
oW, (X, Y, t) _ oW (X Y1)
oy y=—hy+7. oy y=hy+r
W, (X, ¥, 1) _ oW (X Y,b)
O  yne O - (2.24)

Considering the thinness of the surface layers Q) _, the solution in them are represented with
the hypotheses of MELS [11, 13] taking into account the nature of the changes arising from
surface roughness Y =h (X) and y=h, (X)
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sh(p,[y-h+7.])
sh(w, [h,0—h +7,]
W, (%1~ 7. ); (2.25)
sh(w [y+h -7 ])
sh(p [ (9+h 1.
W (%~ +7.), (2.26)

where the values W, (X, h+(X)) and W_ (X, h_(X)) are determined from the conditions

w.(%y) = j Lo e 0) - )]

W.(X,Y) = ])-[W(Kh(x))—wo(xa—ho”)}

on mechanically free surface (1.5) as follows:
. -eth (i, [0~y +7.])-[ 1= {0} |
. -oth (i, [n. 00—y +7,]) [ 1= {N.00}" [+h(0

w-cth(p [ 9+, —y])-{l—(h'(x))z}
. -cth(p_ [h_(x)+h)—y_])-[l—(h_'(x))z}h_'(x)

Substituting (2.27) and (2.28) into (2.25) and (2.26), we reach the solution in the near-surface
thin layers of the waveguide formed by the propagation of the normal wave

W, (X, Y, t) =W, (y)- eXp[i(kOX—Q)Ot)] in the basic layer Q) :
Sh(lh[y_h)"'%]) %
Sh(“+[h+(x)_rb+7+])

W, (x,h, (X)) = w, (x,h, -7, ); 227

W (xh (X)= w(x—h+y_). (228)

W, (X, Y)= h 00 w(xh-v,): (229
peth(y, [P O0-h,])-{ 1RG0} Joh (9
sh(wfy+h-r])
sh(p_[h_(X)H‘b—y_])

W (XY)= W(x-hy+y ). (230)

h'(x)
pcth( {00+, =) 1-(h' G0 [rh' (9
Let us represent the normal wave in the basic layer Q) in a common form

W, (X, Y, t) =[ Acos(p.y) + Bsin(u.y) |- exp[i(k.X—ot)], 2.31)

X

36



here k. £ min{pk ; gk } =2mn/A, is the smallest common wave number of the roughness

on the surfaces corresponding to the generated harmonic of the wave.
From the conditions of continuity of mechanical stresses (2.24), we obtain a dispersion
equation to determine the formation coefficient ., :

ul —p-otg (a2 = (v, +72)) (£, (13 h (0) = f_(nsh(0)) =

(2.32)
=—f, (nsh.(0)-f (1 sh(x),
in which
1 " ]
| sh(w[h0-h+v.])
f.(nsh(x)= ! e
x = 1rh (X
| wecth(p, [ 00ty ])- IHOOF e 00 _
1
sh{p_[h (x) -7 *
f(ush (%)= (h-[n09+h-1.]) 1 L(2.34)

X 3 ; u_h’(x)
peth ([P (90 —7_])- | 1={ 00} [ (%)

They characterize the influence of the rough surfaces on the formation coefficient.
It is obvious, that the solution of the dispersion equation (2.32) significantly depends on the
surface roughness h, (X).

3. Numerical Analysis of Obtained Results
Considering the surface roughness, in the first approach, the solutions for formation

coefficient kOnOtln and wave number km(X) are obtained in the forms (2.11) and (2.12)
respectively. As expected, the variable thickness through the waveguide plays the main role
in these expressions &(X) = h,_(X)—h_(X) , by means of which the wave process can be

controlled.
B
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Fig. 3.1. The wave number for “synchronous” and “symmetric” surface roughness of the waveguide
(the first approach)
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Graphics of the formation coefficient and the wave number for different particular
characteristic surfaces of roughness are given in Figs. 3.1 and 3.2 using the relations (2.15)-
(2.21), respectively. From the figures of the wave number and formation coefficient it follows
that for “symmetric” surface roughness of the waveguide (2.15) the changes of these values
are characteristically different from the case of “synchronous” surface roughness (2.19).

e hay

0014 o088k —
oon2f /
o024 / N\
oo0f / \

[ 187 b !
o008 f b /

0.006F 0.0280} / Y

0.004F / Y
0.0278 /
o002

1 1 1 1 Lox e

L L L Ly
0.2 04 0.6 0.8 10 0.2 04 0.6 0.g 10

Fig. 3.2. The formation coefficient for “synchronous” and “symmetric” surface roughness of the
waveguide (the first approach)

From Figs. 3.1 and 3.2 it is obvious that in the case of “symmetric” surface roughness of the
waveguide (2.15), the wave number and the formation coefficient are periodically changed

with respect to the half-thickness of the waveguide in the interval X [O; X*] :

In the case of “synchronous” surface roughness of the waveguide (2.19) the wave number
and the formation coefficient are only changed by a constant value for each N-th harmonic.

In the general case of arbitrary surface roughness Y = hﬁ(X) and Y= h+(X) from (2.9)-

(2.14) it follows that due to the difference of surface roughness in the near-surface areas there
occur qualitatively identical, but quantitatively different harmonics, a synchronization which

occurs at the mid-plane Y = 0. From (2.11) and (2.12) it is obvious that the wave number
kln (X) and the formation coefficient k;, o, (X) for the propagation of the waves is always
positive, since h, (X) —h_(X) > 0 . From relations (2.18) and (2.21) we can easily get the

nature of the changes of elastic shear through the thickness of the waveguide, according to
the variable thickness of the waveguide (see Figs. 3.3 and 3.4). The picture of elastic shear

V\/lf,(y) over the thickness of the waveguide for the “symmetric” surface roughness is

defined by relation (2.18) and is shown in Fig.3.3. Fig. 3.3 shows that over the thickness of
the waveguide for the “symmetric” surface roughness (2.15), the normal waveform is
periodically distorted depending on the law of variation of its thickness

E(X) = h, (X) — h_(X) . Accordingly, the phase velocity of the generated harmonic is also

changed. The elastic shear V\/1; (Y) over the thickness of the waveguide for “synchronous”
surface roughness is defined by relation (2.21) and is shown in Fig.3.4. From (2.20) it follows
38



that in this case only short waves with lengths A, = \/g : ho / N propagate for large numbers

of harmonics N, such that NA, <<\/§ : f'b .

Fig. 3.3. The elastic shear through the thickness of the waveguide for “symmetric” surface roughness

(the first approach)
Solving the problem with the method of hypotheses MELS, through the thickness of the
waveguide we obtain the expression of elastic shear in the basic layer Q  in the form of
(2.31), which is analytically continued in both near-surface zones Q and Q _, accordingly

(2.30) and (2.29). The image over the thickness of the waveguide is constructed after
determining the formation coefficient p1, from the dispersion equation (2.32). From relations

(2.29)-(2.34) it is obvious that the solutions, received in the near-surface zones 3 and Q) ,

are characteristically the same, but numerically different at different surface roughness

I’l+ (X) and h_ (X).
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Fig. 3.4. The elastic shear through the thickness of the waveguide for “synchronous” surface

roughness (the first approach)
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The dispersion equation (2.32) is much simplified in the cases of “symmetric” (2.15) and

“synchronous”
(2.19) surface roughness, considering the expressions of the coefficients of the dispersion

equation f . (LL g h+(X)) and T_ (Ltf; hﬁ(X)), in relations (2.33) and (2.34) respectively.

Fig. 3.5 shows the graphical dependence of the formation coefficient p, on X.

u

100

=)

-100 b -100t
Fig. 3.5. The formation coefficient for “synchronous” and “symmetric” surface roughness of the
waveguide (the second approach)

To each formation coefficient p,  naturally corresponds a wave number

k“‘n = 21{/7\’*n = wgncaz _Mzn i

L7
1.0 - 50

Fig. 3.6. The elastic shear through the thickness of the waveguide for “symmetric” surface roughness
(the second approach)

From the dispersion equation (2.32) and the relations (2.33) and (2.34) it is evident that in
the absence of roughness on the surfaces of the waveguide, i.e. when h!(x) =h'(x) =0,

both introduced multipliers (2.33) and (2.34) become zero and from the dispersion equation
we obtain the case of homogeneous waveguide M., = H,, = 7N/ h,.

From the obtained graphs it is also seen how the presence of “symmetric” (2.15) or
“synchronous” (2.19) surface roughness of relatively homogeneous waveguide leads to
distortion of forms (formation coefficient ., and wave number K, ).

40



1050

Fig. 3.7. The elastic shear through the thickness of the waveguide for “synchronous” surface

roughness (the second approach)
From relations (2.32)-(2.34) and the received graphs it is also clear that weak surface
roughness do not lead to appearance of damped propagating harmonics through the depth of
the waveguide. Partial localization of the wave energy occurs only in the thin surface rough
layers, which can be seen in the given figures of elastic shear over the thickness of the
waveguide. The images of elastic shear throughout the thickness of the waveguide in
particular “symmetric” (2.15) and “synchronous” (2.19) surface roughness cases are shown
in Figs. 3.6 and 3.7.

4. Conclusion

It is shown that weak surface roughness lead to instability of a normal propagating wave in
the waveguide. The presence of surface roughness can lead to prohibition of waves of certain
lengths depending on the characteristic values of the functions of the roughness. Only partial
localization of wave energy in thin near-surface areas of roughness occurs. The localized
surface waves do not occur. The introduced method of hypotheses MELS allows to analyze
the process of distortion of the normal waves, that will make it convenient for studies of wave
processes in waveguides with complicated properties and sophisticated characteristic
roughness of the material of the waveguide and its surfaces.
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