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PacnpocTpaHeHHne ynpyrux BOJIH B INIOCKOM CJI0€e-BOJTHOBOJIE C Y4éTOM
ynpouméHHoii moaean konTunyyma Koccepa

PaccmaTpuBaeTcst pacnpocTpaHeHHEe BBICOKOYACTOTHBIX U HU3KOYACTOTHBIX aKyCTHYECKHX BOJH B IZIOCKOM
YIPYTOM CJIO€-BOJIHOBOJIE HA OCHOBE YMPOIIEHHOH Mozennm cpenbl Koccepa. YuuTeiBas Hamuuue MHKpO-
HOJISIPHOCTU  CPelibl, A Pa3IMYHbIX KOMOMHAIMH TpaHHYHBIX YCJIOBHH Ha TOBEPXHOCTU BOJHOBOJA
chOopMyNIHMpOBaHbl TPAaHWYHbIE 33a7a4d IUIOCKOM W AHTUILIOCKOH nedopmauuii. B JUIMHHOBOJIHOBOM M
KOPOTKOBOJIHOBOM HPHOMIDKCHUSX MONyYCHHBIE Pe3ylbTaThl CPABHHBAIOTCA C Pe3ylIbTaTaMH KIACCHYECKOU
Teopuu ynpyroctd. HalaeHsl ycioBus i BO3SMOXKHOH JIOKQJIM3aLlMK BOJIHOBOM 3HEPruM BOJIM3HM MOBEPXHOCTH
BOJTHOBOZA. [Toka3aHo, 4TO yuéT MUKPOIOISIPHOCTH MaTepuaia B 3aaue aHTHILIOCKOH JedopMaliy He IPHBOIUT
K CYIIECTBOBAHUIO BBICOKOUACTOTHBIX JOKAIM30BaHHEIX (opM. B 3amaue miockoil medopmanuu yd4€T MHKpPO-
HOJIIPHOCTU MaTepuaia, Py pa3InyHbIX TPAHMYHBIX YCIOBHAX HAa IOBEPXHOCTH BOJHOBOJA MOXKET BBI3BATh KaK
HCKa)KeHHE JaCTOTHOTO JHAalla30Ha CyIECTBOBAHUS JOKAIU30BAaHHBIX BOIH Pajes, Tak U IPHBECTH K MOSBICHUIO
HOBOTO YaCTOTHOTO JMana30Ha BO3MOXKHBIX JIOKaJIH30BaHHBIX BOIH ILIOCKOI nedopmamnuu. HalineHbr yacToTHEIE
HOJIOCHI JIOKAJTH30BaHHBIX M FAPMOHHYECKUX HOpM KolebaHuit.

The problem of propagation of high-frequency and low-frequency acoustic waves in a plane elastic waveguide layer

on the basis of a simplified model of the Cosserat continuum is considered. In view, the presence of micro polarity
of the medium, boundary value problems for plane and antiplane deformations for different combinations of
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boundary conditions on the waveguide surface are formulated. In a long-wave and a short-wave approximations the
obtained results are compared with the results of the classical theory of elasticity. The conditions for a possible
localization of the wave energy near the surface of the waveguide are found. It is shown that in the antiplane
deformation problem, the considering of micropolarity of the material is not leads to the possibility of existence of
high localized forms. The frequency bands of localized and harmonic waveforms are found. In the plane deformation
problem, considering of micropolarity of the material under different surface conditions may cause as a distortion
of the frequency band of the localized Rayleigh wave existence so as the emergence of a new frequency band of
possible localized waves.

Introduction. In the classical theory of elasticity it is known that the reason of localization
of high-frequency waves near the medium interface boundary is the disturbance of
homogeneity of effective physical and mechanical characteristics of these fields. We first
encounter the problem of wave energy localization in the primary sources [1+4]. Within the
framework of the classical theory of elasticity, more about localization of wave energy near
the medium interface boundary can be found in [5+7], and others. However, when changes
in the microstructure of the body are essential (that is near the cracks and chipping, where
the stress gradients are essential) there appears a discrepancy between the results of the
classical theory of elasticity and the experiments’ results. Such discrepancies also appear in
the case of granular medium and multi molecular structures, such as polymers.

The influence of microstructure is particularly evident in the case of elastic oscillations of
high frequency and short wavelength. W. Voigt [8] attempted to overcome the disadvantages
of the classical theory of elasticity under the assumption that the interaction of two parts of
the body through the area element is transmitted not only by the force vector, but also by the
vector momentum. However, the complete theory of asymmetric elasticity was developed
only in 1909 by Francois and Eugene Cosserat brothers [9]. Currently Cosserat theory is in
rapid development.

There is an extensive literature on the study of mechanics problems based on the micropolar
theory of elasticity (or based on the Cosserat continuum). General works of A. C. Eringen
and others [10,11] and Vladimir Yerofeyev’s work [12] should be noted.

In this article the problems of waves propagation in a flat elastic waveguide with due regard
to the internal rotation of the medium particles are considered. The limiting cases of short
and long waves (high and low frequency acoustic waves) on the basis of a simplified model
of the Cosserat continuum are investigated.

1. Basic relations of a simplified model of the Cosserat continuum.
In general, the motion equations in the asymmetric elasticity theory are written as:
ot X, =pu;
.. (1.1)
Wi i T Sijk Ok +Y, =J¢,

where G and L, are force and moment stresses, respectively, Xi and YI are mass forces,
€jjc 1s the Levi-Civita tensor, P is the material density, U; are the displacement vector

components, (; are the rotation vector components at medium unit point, J is the rotary
inertia.

The material relations of isotropic material for Gj; force and [1;; moment stresses are:
G = (H+G)in "'(H—(X)in +}“6tikk
B =(y+e)o; +(y—&)o; +Bd 0,
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These relations (1.2) involve material constants A; ; O; [, which are independent, and

Kronecker delta Sik. And besides, these material constants and their combinations are

positive definite ones

u>0; y>0; a>0; €¢>0; 3A+2u>0; 3B+2y>0.

Now, if we exclude Gjand L, stresses from the motion equations (1.1), using the
constitutive equations and defining relations for tensors

Vi =U~ € Px > W = ;

we will obtain a system in vector form of six equations in terms of displacements U = {Ui }
and rotations () = {(pi } :

Dzl]+(7u+p—(x)graddivﬁ+2(xrot([)+)z:O 13
0,6+ (B+y—¢) graddiv § + 2arotii+ Y = 0 '

Where vector and operators 00, and O, are given as

o=(u+a)A-pd; , §=(y+e)A-40J0;.

Many authors have investigated the problem of distribution and localization of elastic waves
by means of a system of general equations of the asymmetric elasticity theory.
Ambartsumyan S.A. and Belubekyan M.V. [13] have also investigated the generalized
Rayleigh waves in a micropolar continuous medium. V.R. Parfitt and A.C. Eringen [14], as
well as J. Stefaniak [15] have investigated the reflection of a plane wave from a free boundary
of the half space.

The same problem was discussed in the expanded paper of S. Kaliski, J. Kupelewski and C.
Rymarz [16]. Propagation of waves in a plate and generalized Lamb waves have been
considered in W.Nowacki and W.K. Nowacki articles [17-18].

In general, the equations and relations in the micropolar theory are quite complex, so far
simple models [19 + 21] are used often for solving some specific problems. On the other
hand, the most significant effects, associated with moment stresses under consideration,
occur in dynamic problems. For such problems, in particularly, where elastic wave
propagation is studied, a simple model considering only the dynamics of the internal rotation
of the particles, was proposed on the basis of the Cosserat model. Simplified Cosserat model

for dynamic problems, apparently independently of one another, has been proposed in works
[22 = 24].

In the Cartesian coordinate system {)ﬂ } for a simplified Cosserat model the known linear
motion equations of the classical theory of elasticity are applied

2
% ol i5] 6{1;2;3} (1.4)

i _
OX, P ot?’

However, in (1.4) the shear stresses are not symmetrical, and are defined as a generalization
of the classical Hooke's law for isotropic material

G =21y; +0; VY +J (620)” /8’[2) (1.5)
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where strain tensor j; is defined by the usual way

_1 ou; L ou 16
7 o Tax |

and the transposed tensor of additional rotations i defines the asymmetry of shear stresses

(“’u = _‘”ii)

1( oy ou
o == —- . (1.7)
2( ox ax

Consideration of two-dimensional dynamic problems, when all the physico-mechanical
characteristics of the elastic field don’t depend on the coordinate X, , i.e. (6/ 8)(3 = 0) , 18

much easier. As in the general micropolar elasticity theory, in the simplified theory of the
Cosserat continuum the constitutive equations (1.5) and the equations of motion (1.4) allow
the separation of the problems to plane and antiplane deformations.

This model was used to solve a number of problems on propagation of acoustic waves, the
reviews are given in [20, 25].

In the next, for convenience instead of {)ﬁ } coordinates we will use {X, Y, Z} coordinates,

and instead of the displacement vector components {Ui } we will use {U; v, W} notation.

Then, for plane strain problems from (1.4) in view of (1.5) = (1.7) the following equations of
motion are obtained:

oo, 0o,  ou doc,, 0o, o0’v
x4 =p—; + =p—. (1.8)
oX oy ot oX oy ot
The corresponding constitutive equations are
O =(A+2W7, +AYy; Oy =(A+2W)7,, +A7,;
2 2
Oy =21y, +J s = Gy =21y, +J 6t2yx (1.9)
The defining relations are
ML {8u avj -7
o OX Yooy’
2% o (1.10)
o =| B-Z |
v oy Ox e
For antiplane strain problems we obtain the equations of motion:
dc, 0o, o'w
+ =p (1.11)

ox oy ot

the constitutive equations:
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0’ 0’
G =27, + 3225 G, =2y, + I
ot 112
5 5 (112)
o, =2uy,+J 6t2yz; G,y =2uy, +J atzzy
the defining relations:
1 ow 1 ow ow ow
,YXZ . — . =— =M. W . =—=—W (113)

=— > — T (l)xz 2
2ox” Ty ox Ty 0

2. The antiplane deformation problem. Let us consider an elastic, homogeneous isotropic
waveguide, which occupies the region €2 = {—OO <X<oo, 0<y<h, —w<z< oo}

Equations of purely shear waves (1.11), with accounting the material equations (1.12) and
defining relations (1.13) are reduced to the form:

0° o*w

Presenting the solution of equation (2.1) in the form of normal harmonic waves
WX, Y, 1) = W, (Y) expli(ot —kx)] (2.2)

where @ is the oscillation frequency, K 2 2TE/ A is the wave number, A is the length of
the wave, Wo(y) is amplitude function, which determines the distribution across the
waveguide’s thickness, we obtain the following ordinary differential equation:

242
W (Y)+Kkgw,(y) =0, 2.3)

where

q° énz/(l—ﬁmz)—l 0 207/(KS) 1 G 2u/p ;B 2 (I p 24)
From these notations one can see that for all wave numbers K values >0 and 3, >0
are positive.

The condition of the existence of harmonic oscillations q2 > 0 is easily obtained from the
first notation (2.4) in the form of

2
1/A+B,)<n’<1/B, or /Jlilz—k+p<w< n/J (2.5)

If the condition (2.5) is valid, the general solution of equation (2.3) can be represented by
trigonometric functions as

w, (y) = Asin(kqy) + Bcos(kqy) (2.6)
It should be noted, that when the micro rotation does not take into account (if J =0 then
B, — 0), the condition (2.5) takes the known formm) > 1. From (2.5) it is also obvious that
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for normal short waves, when A < 27[,/\]/ P, the frequency range is very narrow

Ju/J —o(Wp/antd) <o <\fu/J.

Consequently, the condition for the existence of harmonic waves is transformed into
mne(wm/\] —o(\*p/4n*d); ,/p/J) (2.7)

Here ®,, is the oscillation frequency of corresponding harmonic. The resulting waveforms

and the corresponding frequencies are determined by the boundary conditions on the
waveguide walls.

In particularly, the problems for a waveguide with boundary conditions of clamped or traction
free wall, according to (2.6) lead to the definition of the phase velocity satisfying (2.5).

Herewith consideration of the internal rotation reduces the given phase velocity \/ﬁ If
waveguide walls Y =0 and Y =h are clamped: W,(0) =0 and W,(h) =0, then from

the dispersion equation the values of natural frequencies are obtained:

q é% where N=0; 1; 2; ... 2.8)

n

n*=(1-a2)/[1+B. (1-0)] :
The condition of existence (2.5) of the n™ oscillations harmonic is transformed into
uk’ 1+n’n?/k*h?
——<kc - <\un/Jd (2.9)
K> +p . 1+(Jk2/p)-(1+n2n2/k2h2) b/

and the value N = 0 corresponds to the limiting wave, for which the frequency is defined as

®,, = kzu p+ JK*) . For higher harmonics when N —>00, the limiting frequency is
01

®, =1/ J (Fig.1a).
From (2.9) it also follows that in this frequency range there always exist harmonics with

numbers N> [2h/7\.] .

From (2.9), taking into account (2.4), it follows that the phase velocity of the N"™ harmonic
is represented as

Vi (k)é%:\/p(1+(nn/kh)2)/[p+ Jk2(1+(nn/kh)2)}

The behavior of harmonics phase velocity is shown on Fig. 1b.
In frequency intervals

0<n<l/(1+B,) or mn>1/B, (2.10)

according to (2.4) we get q2 < 0. Then, non-harmonic solutions of the wave formation

equation (2.3), with the notation P = iq = \/1 - p((ﬂz/k2 )/(u —Jo’ ) , are represented
by hyperbolic functions
20



W, () = A-sh(kpy) + B-ch(kpy) .11

For the frequency and phase velocity of the normal wave, we obtain the ranges

|_uk’

0 > Ju/J 2.12
<m< Kip or ®>/u/ (2.12)
0<v,(k)< ’szu+p or Vf(k)>k_1-,“,t/\]

Here ukz JK* +p) and J are the limiting frequencies for harmonic formations
p [

of normal waves across the waveguide thickness.

For a waveguide with camped walls or traction free walls according to (2.12) the problem
under consideration leads to determination of an oscillation frequency (or phase velocity)
which does not satisfy condition (2.11).

3. The plane deformation problem. In the elastic, isotropic homogeneous waveguide

Q= {—OO <X<w; 0<y<h; ow<z< OO} the plane strain equations (1.8) in view of

the material equations (1.9) and the defining relations (1.10) are reduced to the system of
equations for the components U(X, Y,1) and v(X, Y,1) of the displacement vector

3 2
uAu+(k+p)§(a—u+a—Vj—J 0 (@—@jzpa“

x| ox oy) “oyottlox ey) ot o
o(ou ov o (ov ou) v '
PAV+(A+p)—| —+— |- J S| == |=Pp=
oy\ ox oy oxot~\ ox oy ot
By means of Lame's transformation for plane strain problems
uéa_‘PJra_‘l’ : Véa_(P_a_‘V (3.2)

ox oy oy ox
the system of equations (3.1) gives a separate equations of longitudinal and transverse waves

[28], for Lame’s functions @(X, Y,t) and y(X,Y,t)

R0
A +p)Ae= P (3.3)
0’ o’y
HAY +J —(Ay) =p—-
ot? ot?
Equation (3.4) coincides with equation (2.1) of the antiplane problem. Representing the
solutions of equations (3.3) and (3.4) in a form of normal wave

o(% Y,1) = oy (V) exp[i(ot —k9]; w(x V,t) =y, (Y)expli(ot—k9]  3.5)
we obtain ordinary differential equations for amplitude functions @,(Y)and y,(Y),

34)

which general solutions are

@, (y) = Asin(kpy) + Ccos(kpy) ; y,(y) = Dsin(kqy)+ Bcos(kqy) (3.6)
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Where (] has the same notation as in (2.4) and

p2Jm-1; 02p/(L+2p) (3.7)

Let us consider a wave process in a waveguide with different boundary conditions.

3.1. Navier Conditions on both walls of the waveguide. Suppose that Navier conditions
are defined on the wall Y =0 of the waveguide

0=0; Oy/oy=0 (3.8)
Satisfying solution (3.6) to conditions (3.8), we obtain C = D = (. Thus the solution forms
for the required functions @,(Y) and y,(Yy) are simplified, by what problems with

different conditions on the other surface of the waveguide can be investigated.
The simplest version of the boundary value problem is when Navier conditions (3.8) are also

given at the wall Y = h . In that case, as in the general classical theory of elasticity, the effect

of micropolarity is included in the components of the elastic displacement, while the wave
equations for Lame’s function (3.3) and (3.4) are completely separated from each other.

u(x, y,t) =—k[ Ash(kp, y) + kaBcos(kay) | exp[i(wt — kx)] (3.9)
v(x Y, t) = k[ pAsin(kpy) + Beh(kg, y)] exp|i (ot — k)] (3.10)
Here P, =ip=4/1-6n, and q =iQ= \/l—nz/(l—ﬁknz) are the coefficients of

formation in the plane strain problem.
Moreover, wave of (3.9) and (3.10) types will exist at the phase velocity

v, (D)< (7»/27‘5)\/;1/(\] + p(?x.z/47't2 )) for all permitted frequencies ® < /1t/J . For

higher frequencies @ > 4/ H/ J the waves will exist with the phase velocity
(K/ 271:) \/M/ J< Vs, )< G, which length is determined by the physical characteristics

of the micropolar material. Phase zones of such waves’ existence are shown in Fig. 2.
The second option of setting a boundary value problem assumes that with the boundary

conditions (3.8) on Y =0, the clamped boundary conditions on the other wall of the
waveguide must be satisfied

ux,ht)=0; v(xht)=0 (3.11)
Conditions (3.11) with the use of required functions @,(Y),W,(Y) and in the view of
(3.5), are represented as:

—ikp,(h)+y (h)=0; @ (h)+iky,(h)=0 (3.12)
Satisfying solution (3.6) when C = D =0 to satisfy conditions (3.12), we obtain a system

of algebraic equations for arbitrary constants A and B. Condition for the existence of
nontrivial solutions gives the dispersion equation

tg(kph) = —pq- tg(kgh) (3.13)
Equation (3.13) always has a solution satisfying to (2.5).
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The question arise does the equation has any solution satisfying the condition
0<n<1/(1+PB,) of (2.10) Such decision would mean the existence of localized waves
near the walls of the waveguide layer. To answer this question it’s sufficient to consider
equation (3.13) in a short-wave approximation (Kh>>1). By substituting P = ip1 and

g= iq1 , equation (3.13) reduces to the equation with hyperbolic functions, where in a short-

wave approximation we obtain

th(khp,) = khp, and th(khq,) = khq, (3.14)
The condition of the existence of waves is obtained as
1+6 1

n= > ; (3.15)
(1+B)6 1+,
From (3.15) it follows that (3.13) cannot have roots, which satisfy to the first condition of

(2.10).

On the other hand, when

B,>0: or k’>p0J” (3.16)
the characteristic equation (3.13) has roots, which satisfy the second condition of (2.10)

o' >n>B or  (A+2u)/p>o/k>p/(IK) (3.17)
The frequency of these waves will be limited for each length 7»0 in a way

27(h+2p)/ (Xop) > ©(A) > Ao /(27) (3.18)

3.2. Mixed boundary conditions on the surfaces of the waveguide. Suppose that in
addition to Navier conditions (3.8) on the wall Y =0, on the other wall Y=h of the
waveguide the conditions of mechanically free boundary are defined

c,(xht)=0 and o,(Xht)=0 (3.19)
Conditions (3.19) by means of functions @(X,Y,t)and y(X Y,t), in the view of (3.5)

reduce to

(4219 — K2, + 2ikuyg =0
=2ikeg + (1= By +k* 1+ an)y, =0

Assuming that, in addition to conditions (3.19) on the other wall of the waveguide Y =10
Navier conditions (3.8) are defined and using solutions (3.6) when C = D = 0, from (3.20)
we obtain the equations for the arbitrary constants A and B . The dispersion equation
2
2-n[1+pn—-A-Bma’]- tg(khp)+4 pg- tg(khg) =0 (3.21)

is obtained from the condition of existence of nontrivial solutions.
To investigate the waves, localized at the free surface, which satisfy (2.5), it is more
convenient to rewrite equation (3.21) as follows:

Q-m+Bn+1-Ba’]-th(khp) -4 pq, - th(khg,) =0 (3:22)
where p=ipl and = iql.

(3.20)
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From equation (3.22) in a short-wave approximation, when Kh >> 1, we obtain the equation
[26].

2
Q-n)I+Bn+A-BnG 1-4pg =0 (3.23)
If we ignore the internal rotation of the particles (Bk =0) from (3.23), we obtain the
dispersion relation of Rayleigh waves [17].

In a long-wave approximation, when k’h* «1 , assuming thz~ Z— z / 3, a well-known
dispersion equation of one-dimensional bending oscillations of a plate can be obtained [27]

4(1-0)k’n’
(1+4B)n = -k 3) (3.24)
From dispersion equation (3.24), the equation of oscillations of a plate can be restored as
o'w o'w o*w
D —-8hJ +2ph =0 3.25
x acer e (2

where D 2(2EN’)/3(1-v7).
The same analytical result was obtained in [27] on the basis of Kirchhoff's hypothesis.
4. Numerical analysis of the wave process behavior.

In the case of wave propagation for antiplane deformation in an elastic micropolar
waveguide, the band of permitted frequencies is constrained by micropolarity of the material.

2000 [/ \ Vil

2500 \ Vylk, 10)
1285 wik, €0)
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=
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Fig. 1a. The region of frequencies of harmonic  Fig. 1b. The zone and the behavior of the phase

forms of shear wave’s oscillations and the behavior  velocity of the shear wave’s harmonic forms in a
of the natural frequencies waveguide with mechanically free surfaces

In the case of ignoring microrotation (if J =0 then Bk — 0) the condition of existence

of harmonic waveforms takes the known form 1 > 1, while the microrotation account in the
material narrows the band of the permitted frequencies and takes the form (2.9).
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Figure la shows the frequency region of existence of waves with harmonic forms of
oscillations for a waveguide of N=50-10"" m thickness from a material with physical-

mechanical constants [l =5Xx 10°

I|I wyz Nm?, J=3x10° kg/m, ,

a000] |,//, p=2x10"kgm}, A=12x10
|' N N/ .

| Here we see that the natural

frequencies of oscillations forms for
all the harmonics are enclosed in the

fooor \ wss region ®,, < ®,(K) <®, .
For low harmonics the dispersion
' ' ' : form with a phase velocity

0 g 10 15 7
a 5 a 5 20

_ 2 )
Fig. 2. The region of frequencies of plain deformation wave’s Voi (k) - l"t/ ( ‘]k + P ) 18 the

localized form and the behavior of the frequency. limiting one, and for the higher

harmonics the limiting dispersion

form is the one with a phase velocity V, (K) = k_lwlu/ J (Fig. 1b).
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4000 ~

The calculations also show that the accounting of micropolarity of the material results in
appearance of forbidden frequency zones for a shear wave harmonics in a waveguide with

rigidly clamped or mechanically free surfaces 0 < (Dn(k) < Mkz / ( K> + p) or

o, (K) >\/M-

In the case of plane strain wave propagation in an elastic micropolar waveguide the
accounting of rotations leads to a possible localization of wave energy near the surface of the
waveguide.

In frequency determination zone (3.17) the wave signal of plane deformation is localized near
the surface of the waveguide and has a  propagation frequency

(k) = k\/(q2 +G )/(1+ I/p).

From Fig. 2 we can see that the localized wave signals of plain deformation have a

wavelength A, < TC(Q /Ct)qJ/p .

Conclusion. On the basis of a simplified model of the Cosserat continuum, the conditions
of possible localization of the wave energy with different boundary conditions on the surfaces
of the elastic micropolar waveguide are obtained. The conditions for a possible localization
of the wave energy near the surfaces of the waveguide are found. It is shown that in the
antiplane deformation problem for a waveguide with clamped or mechanically free walls, the
accoun of material micropolarity doesn’t lead to the possibility of localized forms existence
of high frequency. In the plain strain problem the micropolarity account of under different
boundary conditions may cause a distortion of a frequency band of the existence of localized
Rayleigh waves, and the emergence of a new frequency band of possible localized waves.
Frequency bands of localized and harmonic waveforms are found.
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In a long-wave and a short-wave approximation the obtained results are compared with the
results of the classical theory of elasticity. Characteristic distribution of elastic displacement
across the thickness of the waveguide with different combinations of boundary conditions is
given.
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