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hunbuuhynmpinibubpp Jipunhpubph wwly: Uudbpe Jepughph hwdwp vnugduws i wuhdwyununhly
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Ilepenaya Harpy3Ku oT ABYX NapaJjliesIbHbIX YIPYIHX 0€CKOHEYHOr0 U KOHEYHOr0 CTPHHIEPOB K YNPYroii
OHOPO/JHOH GeCKOHEeYHOil IIaCTHHE

B pabore paccmaTpuBaeTcs KOHTAaKTHas 3ajada O Iepefadye HArpy3Kd OT ABYX MHapalIeNIbHBIX YHOPYTHX
0OECKOHEYHOT0 M KOHEYHOTO CTPUHIEPOB K H30TPOIHOH OXHOPOAHOH ympyroi OecKOHEUHOHl ILIacTHHE.
IIpenmonaraercs, YT0 HECHMMETPUYHO OTHOCUTEIIBHO FOPH30HTAIBHON OCH PACHOJIOKEHHBIE YIIPYTHe CTPUHIEPEL,
XECTKO creruieHb! (IIPUKJICEHbI) K YIPYroil INIACTHHE U MMEIOT pas3Hble yrpyrue cBoiicta. KoHTakTHpyomas napa
(mnacTHHa-CTpUHTEp) AeGOpMUpYETCs IOJ BO3ACHCTBHEM COHAINPABIEHHBIX H OCEBBIX COCPEIOTOYCHHBIX CHIL,
NPHIOKEHHBIX K CTPUHIEpaM, a TaKKe PABHOMEPHO pacHpeleNéHHBIX TIOPH30HTAIBHBIX PACTATUBAIOIIHX
HANpPSDKCHUH TOCTOSHHOW MHTEHCUBHOCTH, JEWCTBYIOIIMX Ha IUIACTUHY B OECKOHEYHOCTH. PeleHne KOHTaKTHOM
3a7aui MaTeMaTHIecKU chOPMYIIHPOBaHa B BUIE CHCTEMbI CHHTYJISIPHBIX HHTETPAIBHBIX YpaBHEHHI IIEPBOTO poja
IPU OIPEAENEHHBIX YCIOBUAX, C SJpaMu, COCTOAIIMMM M3 CHHTYJSIDHOH M peryisipHoil yacrei. IIpu nomomu
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M3BECTHOTO MaTEeMaTHYECKOro ammapara mnpeodpasoBanus Pypbe m MHorowieHoB UeOblmieBa, pelleHHe 3TOU
CHCTEMBI CBOIMTCS K PELICHHIO KBAa3WBIIOJIHE PETyJIPHOH OSCKOHEYHOI CHCTEMBI JIMHEHHBIX alreOpandecKux
ypaBHeHHH. OmpejeneHbl HHTEHCUBHOCTU PpACHpeleNieHHs TaHIeHIUAIbHBIX KOHTAKTHBIX YCHJIMH IIOJ
cTpunrepamu. /{1 6eCKOHEUHOro CTpUHTepa MOTydYeHbl aCHMITOTHYECKHE (HOPMYIIBI, ONUCHIBAIOIINE IOBEACHUE
HaIPsDKEHUH KaK BOJIM3H, TaK M BOAIN OT TOYKHU HPHIIOKESHHS CHIIBL.

In the present paper a contact problem on load transfer from infinite and finite two parallel elastic stringers
to isotropic homogeneous elastic infinite plate is considered. It is assumed, that the elastic stringers are placed non-
symmetrically with respect to the horizontal axis, are attached to the plate rigidly and have different elastic
characteristics and cross-sectional areas. The bodies in contact (plate-stringers) are deformed under influence of
axial concentrated forces, applied on the stringers, as well as uniformly distributed horizontal tensions of
constant intensity, acting at the infinity of the plate. Solution of the problem is mathematically formulated as a
system of constrained singular integral equations of the first kind with moving singularity with kernels consisted of
singular and regular parts. The solution of that system is reduced to solution of quasi completely regular infinite
system of linear algebraic equations using the known mathematical techniques of Fourier transform and Chebyshev
polynomials. Intensities of tangential contact stresses distributions are determined. Asymptotic formulas for infinite
stringer describing the behavior of stresses near and far from force application point are obtained.

Introduction

Investigation of problems of interaction between massive deformable bodies
containing stress concentrators such as cracks, thin-walled inclusions and stringers with
homogeneous or composite (piecewise - homogeneous) massive deformable bodies is one of
the priority directions of the contact and mixed problems of elasticity theory.

Since such problems often arise in mechanics of composites, rock mechanics,
measurement technology, problems of load transfer from thin-walled elements to massive
deformable bodies, and in other fields of applied mechanics, therefore their study is one of
the modern problems in both theoretical and applied aspects. Taking into account the
interaction between different types of stress concentrators often leads to new statements of
contact and mixed problems, qualitatively changes the character of the stress concentrations,
significantly affects stress intensity factors.

The problems of interaction between thin-walled elements in the form of stringers, i.e. rods
without bending stiffness, and more massive bodies, are under consideration by many
authors.

§1. Problem statement and system of resolving equations derivation

Let an elastic continuum isotropic sheet representing infinite thin plate of constant
thickness h is strengthened by two parallel infinite and finite stringers with different elastic
properties and sufficiently small rectangular cross section attached to the y=a and y=-C

(a; ¢>0) lines of its upper surface. It is assumed that the stringers are attached to the plate

rigidly.

The aim of the paper is to determine the intensity of tangential stresses distribution
along contact lines, and normal (axial) stresses arising in elastic stringers, and by that
determine the contraction of the contacting bodies (plate-stringers) subjected to concentrated

forces P& ( X) 5( y— a) and Q0 ( x—d ) ) ( y+ C) (d > 0), applied to elastic stringers, as

well as uniformly distributed tensile horizontal stresses of intensity G, acting on the infinite

plate at infinity.
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Fig. 1. Diagram of the deforming contact bodies

In the contact problem under consideration, the combined model of uniaxial stress state
and contact along a line are accepted with respect to the stringers [1— 9], i.e. it is assumed
that the distribution of contact tangential stresses intensity are concentrated along the middle
lines of the contact areas. Moreover, it is assumed that the stringers do not resist to bending,
i.e. do not have bending stiffness. With respect to the plate the model generalized plane stress
state is assumed to be true, due to which the plate is deformed as a plane (see Fig. 1).

Proceeding to derivation of resolving equations for the contact problem let us note, that
the elastic stringers are stretched or compressed in horizontal direction being in uniaxial
stress state, then according to the aforesaid, the differential equations of equilibrium can be
written as follows:

dul’(x;a) 1% Po(X) o
) . (O] < L0
& 2E0FD Lsgn(s x)t"(s)ds JEET T E (—o < Xx<0),
(1.1)
du”(x;—c) 1§ Q
> — )
= sgn(U—Xx)t?(U)du+—=— (-b<x<d), (1.2)
) (2) 2)E@)
dx 2EPF _Ib 2EPF
under the following conditions:
d(xa) o, duP(x-c) _, du(x-c)] __ Q
dx X0 ES) > dx b > dx " E;Z)FS(Z) 5
(1.3)
as well as the equilibrium conditions of the stringers:
© d
jr(”(s)ds: P j ™ (u)du=Q. (1.4)
P -b

In formulas (1.1) = (1.4), uél) (x;a) and ugz) (X;—C) are the horizontal displacements

of the stringers at y=a and Y =-C; lines, el (X) = dél)r(l) (X; a) R A (X; a) is the

intensity of unknown contact tangential stresses, arising under the elastic infinite stringer at
_ : (2) — d(2) Q) (y-_ 2 (y-_ : : .

y=a line, T X)=0;"1 X;—C), = X;—C) is the intensity of unknown

85



contact tangential stresses, arising under the elastic infinite stringer at y=-C line,
EX (k=1,2)are the elastic moduli, F.*) =dh " are the areas of cross sections, h.*
and d® are the height and width of the stringers, respectively. P and Q are the intensities
of axial concentrated forces applied to the stringers at (0;a) and (d;-c) points,

respectively, E is the elastic modulus of the infinite plate.
From the other hand, for horizontal strain of the plate subjected to contact tangential

stresses ’C(l)(X) (—OO<X<OO) and T(z)(X) (-b<x<d), at y=a andy=-C, and

to uniformly distributed horizontal tensile stresses of constant intensity G, acting at the

infinity of the plate, respectively, is given by
du(x;a) 1% (s
(xa)_17"(s),

d

hi ax 7] sox %J;K(U—X)T(z)(U)dU‘FEElGO (—OO<X<00),

(1.5)
d 2) (v _ d _() OO
hl¥:%.[b Tu_(l:()_du+%LK(s—x)r<1>(s)ds+h—Elc50 (—0 < x< ),
(1.6)
2 ’t

t Nate)t 4E v .

= = A=—_"
2 2 s s

t’+(a+c) [tz +(a +c)2] (3-v)(1+v) 3-v
u® (x;a)and u® (x;-c) are the horizontal displacements of the infinite plate at y=a and

y =—C; lines, respectively, V is the Poisson ratio of the plate.
The contact conditions take the formulas

du” (x;a) du®(x;a) du,® (x;—c)  du®(x;-c)
_ ~ - 1.
dx dx (- <x<e), dx dx (18

With  respect to the distributions of contact tangential stresses
e (X) (—oo <X< OO) and T (X) (- b<x<d), we derive the following system of

singular integral equations of the first kind:

d

— J. {—+ msgn(S— X)} “)(S)dslIK(u—x)r(z)(u)du=—%Psgnx, (1.9)
n_
(—oo<X<oo),

I AT
Tc—oo

(-b<x<d), (1.10)

ld
2

b
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h ., __h
OHgm > ™M T EQE®@ ¢
ES FS ES FS
Thus, under assumptions made, the solution of the problem is reduced to system of
singular integral equations of the first kind with moving singularity (1.9) and (1.10) under
integral constraints (1.4).

2. In order to solve the resolving system constrained by (1.4), we apply Fourier
transform. Then, using the convolution formula we obtain the following functional equation

where A =

. . . 1
with respect to Fourier transform of unknown function e (X) (o< x<w):

[X+|G|] “) ) XP+H(|0|)(p o} (-o<o<m). 2.1
d
T(])(G)ZF[T“)(X)] J‘ (l)(S)e'GSdS (P( ) J‘ (2)( )e“’“du,
S b 2.2)

H (|c|) = [A(a+c c —|GH (@)lel
Let us note, that the solution of (2.1) must satisfy (1.4), which will be transformed to
W (O) =P and (p( ) Q Solving (2.1) with respect to 7! ( ) we will arrive at

- AP
r(l)(G)ZX+|c| 7»+|c5| H (|o]) (~o<o<®). 2.3)

It is important to determine also the Fourier transform of normal (axial) stresses
GS) (X; a) (—OO <X< OO) , which arise in infinite stringer:

—m(_... P isgnclcp(cs)isgnc g
' (o:a)= FO a+lo]  F" A+[of Ha(Joij+ 5 273(0) -
(-o<o<®),
in which
H, (o) =[ A(a+c)|o|-1]e @9 5 (c:a) = F[ o} (x:a) |- 2.5)
(2.1) and (2.4) are derived taking into account the following relations [3,10 — 13]:
t iTsgno t itc
F = ; F = , )
F[sgnt]zz—i ; F[l]:2n8(c) (—oo<(5; y;t<oo),
(&)

If we apply Fourier inverse transform to (2.3) and (2.4), between unknown functions
(%), o’ (x;@) (—oo<x<0) and T%(X) 1% (X) we will derive the following

functional relatlon.

87



T T
(o< x<®), 2.7
P 14 0
o'(x;2) ‘E@Hs(x)‘@_jﬁm(“—x) ©(u) S, 2.38)

(o< x<®),

providing the qualitative and quantitative picture of the interaction of the stringers. Here the
following notations are introduced:

H.(x) T cos(oX) do Ho. (X) _]E H (o)cos(oX) | do

: - — @9
H (x)| o [sin(ox) [A+c " |H(X)| ¢|H,(o)sin(ox)|A+o 29

o . . . 1
Thus, the distribution of contact tangential stresses of intensity 1t (X) (—o<x<®)

and normal (axial) stresses G (X a) (- < x<o), arising in the infinite stringer,

consequently are expressed in terms of intensity 2 (X) (—b <X< d) of contact
tangential intensity in the elastic finite stringer by formulas (2.7) and (2.8).

3. For derivation of the distribution of contact tangential stresses
e (X) (—b <x< d) let us substitute the expression of 7"’ (X) (—o0 < X <o0) given by

(2.7) into (1.10). Then, we will arrive at the following singular integral equation of the first
kind:

— _[ {—+—nsgn(u X)+M (u; x)} (2)(u)du:%Q—EE|cO—&PN (x), 3.1
T
(-b<x<d),
Here the following notations are introduced:
M(u;x)zlj' K (S—X)Hq (u—s)ds; N(x)=— j )H.(s)ds (3.2)
TC o0

Note, that the solution of (3.1) must satisfy the first constraint in (1.4).

Taking into account that near the contact line end-points the intensities of the contact
tangential stresses have singularity of the square root power of integrable order, let us
represent the solution of (3.1) under (1.4(b)) in the form of expansion into series with respect
to Chebyshev polynomials of the first kind

2u+b-d

(2) _ 1 N . _
T (u)_m;’sxnﬂ[g(u)], g(u)_m, lg(u) <L, @3
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where T, (X) = cos(narccos X) <|X| <l; n= (),_oo) — are the Chebyshev polynomials of the
first kind, and the unknown coefficients X, (n = (),_oo) must be determined.

Substituting expansion (3.3) of the function r? (u) into (3.1), and using the following

spectral relations [6—8]:
1f 1 Tew] [ n=0.

nUX flmg?(u)  |Una[9(X)]: (n=T),
d 0; n=m,
g @, [V [0 pra | (mm=a),

T —n=

(-b<x<d),

3.4)

sin(narccos X)

where U, (X) = (|x| <l;n= O,_oo) — are the Chebyshev polynomials of the

sin (arccos X)

second kind, for derivation of the coefficients X, (nzl;_oo) following the traditional

method [6-8], we will obtain the following quasi-completely regular infinite system of linear
algebraic equations:

xm+§ H..X, =, (m=T;e0). (3.5)
n=1

The kernels and the free term of (3.5) are defined as follows:
© 2. M 2)
H,,=H,,+H o, =0, +o, —X,H

nm?
0; m=1,

m_ @_ 47“P -
OLm_%Q—h—EIGO;m:I, = b+d j (U [9()IN(X)

om>

0; Im-n|=1,
HO - M (b+d) 2m[1+(—1)m+n} . (3.6)
[(mn)z—l} [(m—n)z—l} ’ ’
H® :LT jiz(;()Tn[g(u)}le[g(x)] M (u; x) dudx

(n;mzl;_oo).

Let us note, that it is characteristic to system (3.5), that the coefficient X, is not

explicitly involved in its left hand side, therefore the rest coefficients X, (n = 1,_00) will be
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linearly dependent on X,. At that, the unknown X, is determined from equilibrium
condition (1.4(b)) as follows:

__2Q
xo_”@+dy 3.7)

The normal (axial) stresses arising in the finite stringer are evaluated according to the
following formula'

(2)(X C) F(z) [n arccosg( )J ;;S)J Z XUnl[g :|, (3.8)

(-b<x<d).

Note, that after evaluation of (3.3), the normal (axial) stresses arising in infinite stringer
are given by (2.8).

4. We investigate the behavior of intensity of the contact tangential stresses an (X)

(- < x<w)and normal stresses cs (X a) (-o <x<ow)— arising in the infinite
stringer, which characterize their behavior near and far from the concentrated force P. acting

point. Let us first derive asymptotic formulas for functions Tm( ) and (5(1) (X; a) as

|x| > 0. Since as |G| — o0 the following asymptotic representations take place [10]:

-2n-2

j—zn—1 ) Z (%j | “n

-2n-1 -2n-2
isgne i sgn c o
A+|o] Y :E:[ ) ;E;[x) ' (4-2)

Then, after application of Fourier inverse integral transform, taking into account the

(¢

X+|G| et

A

properties of Fourier integrals, for ™ (x ( ) and (5(1) (X; a) we will derive the following
asymptotic formulas as|x| - 0 :

|;L |2 n+1 X)Zn

) AP 1
W(x)==—=> (- 1) 2(2n+1).+ 2n) (\y(2n+1)+lnmj , (4.3)

" ] ?\, 2n ?\, 2n+1
G(Xl)(X;a):nlz”r;)(_l) _Msgn(}Lx)Jr&(\p(mJJ)HnLJ . (44)

2(2n)! (2n+1)! 8%
From representations (4.3) and (4.4) it follows that the function e (X) has logarithmic

singularity as|x| — 0, and the function (5 (X a) has finite discontinuity as|x| — 0 . Both
phenomena are due to the concentrated force with intensity P.

Let us now reveal the behavior of the functions T(l) ( ) and G(l) (X; a) as |x| - .
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Taking into account that as |G| — 0 the following asymptotic representations take place

[loi - G 2n - - 2n+l1

o/
. . . 2n+1

Isgnc  1sgnoc LR

Atlo] A zoixj A Z( ] ’ ()

After application of Fourier generalized inverse transform, taking into account the properties
of the Fourier integrals, for the functions T(l)( ) and (5(1) (x;a) we will derive the

following asymptotic expansions as|x| — oo :

AP & n(2n+1)!
r“><x>=7; ) —Ewl , @
n 2n ()]
c,’ (x;a) Fm Z )z)nﬂ +E“*?00 - (4.58)

It is evident from (4.7) and (4.8), that as |x| — oo e (X) = O(Xﬁz) ;

0 (x)

Fig.2. Contact tangential stresses under the infinite elastic stringer
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Numerical analysis is performed and main characteristics of the contact problem are
investigated. In Figures 2 and 3, the contact tangential stresses and the normal stresses arising
in infinite stringer are captured in its finite part, symmetric with respect to the concentrated
force application point. It can be seen, that the increase of parameter A in the range A = 0.01,
A=0.05,L=0.1,,=0.5,A=1,A=2,A=3,A =4 whichis inversely proportional

to the stringer elastic modulus, leads to decrease of both stresses.

ol (x;a) FY
P

Fig. 3. Normal stresses arising in the infinite elastic stringer

Conclusion

Using Fourier generalized integral transform the closed form solution of the problem
is derived in terms of expansion into infinite series with respect to Chebyshev orthogonal
polynomials. The implementation of the solution requires solution of infinite system of linear
algebraic equations, the quasi-completely regularity of which is established. Consideration
of particular cases showed the consistency of the solution with solutions of corresponding
problems evaluated earlier.

Numerical analysis revealed the main characteristics of the stress state of the
contacting bodies: the contact tangential stresses between the plate and the infinite stringer,
as well as the normal stresses arising in the infinite stringer. Under fixed geometrical
configuration of the infinite stringer, it was established, that with decrease of its elastic
modulus leads to decrease of both tangential and normal stresses.
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