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Hccrnenyercst pacnpocTpaHeHHE BBICOKOYACTOTHOTO 3JIEKTPOYIPYTOro BOJHOBOTO CHTHAlIA B KOMIIO3HTHOM
BOJIHOBOJIE. BOJHOBOJ COCTOMT U3 6a30BOrO IbE303NEKTPUUECKOTO CIOS C IIEPOXOBATHIMH MOBEPXHOCTSIMH,
KOTOPBIE 3aJIUThl COOTBETCTBEHHO MICaJIbHBIM [IPOBOJHHUKOM U HJICAIbHBIM AUIICKTPUKOM. PelieHne npoBoanTcs
HCIIOJIb30BAaHHEM BUPTYaJIbHBIX cpe3oB i BBojioM runiote3 MELS (hypothesis of Magneto Elastic Layered Systems).
OO0Cy)Jal0Tcs KaK BO3JCHCTBUE IIEPOXOBATOCTH MOBEPXHOCTEH, TaK M 3(P(HEKT MOBEPXHOCTHOTO CIrIIaXMBAHMS
pasHeiMH  Marepuanamu  (3G¢deKT pasHbIX (HU3MKO-MEXAaHMYECKHX TPAaHHYHBIX YCJIOBHH) Ha IIpolecc
PacIpoOCTPaHEHHs BBICOKOYACTOTHOTO 3JIEKTPOYIPYroro HOPMaIbHOTO CHIHAA.

YuCIEHHO MCCIICI0BAHBl AMILUTHTYJHOE PACIPENCNCHHUs] W YacTOTHAs XapaKTEPUCTHKA BOJHOBOTO MOJS B
KOMIIO3UTHOM BOJIHOBOJIE IIPU PAcCIPOCTPaHEHHH HOPMAJbHOTO BOJIHOBOrO curHama. llokaszaHo dTo, eciu
MOBEPXHOCTHBIC LIEPOXOBATOCTH HE 3alIMThI, B BOJIHOBOJEC BO3HHKAET TOJBKO OJHA KOPOTKOBOJHOBAas MOJQ.
3anMBKa MOBEPXHOCTHBIX HEINAKOCTEH IPUBOIUT K MOSBICHHUIO 0 YETHIPEX TAKUX BOTHOBBIX MO/ B 3aBUCHMOCTH
OT JUIMHBI BOJIHOBOT'O CHTHAJIA. [IpHBE/ICHBI AUCIIEPCHOHHBIE 3aBHCHMOCTH JUISl BCEX BO3MOXHBIX XapaKTePHBIX MOJ{
BOJIHBI yrpyroro casura. OkasbIBaeTCs, YTO B CiIy4ae PacHpPOCTPAHCHHs MEUICHHBIX BOJH, BO3HHMKACT 30HA
YaCTOTHOTO YMOJIYaHUsI LS BOJIH ONPEAENEHHBIX ITHH.
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Propagation of high-frequency electro-elastic normal wave signal in a composite waveguide is investigated.
The composite waveguide consists of a base piezoelectric layer with rough surfaces, which respectively are filled
with an ideal conductor and ideal dielectric. The problem is solved by the method of virtual cross sections and input
of Magneto Elastic Layered Systems (MELS) hypotheses. The influence of surfaces roughness, as well as and the
influence of surface smoothness (the effects of different physical and mechanical boundary conditions) on the
process of propagation of high frequency electro-elastic normal wave signal is discussed.

The behaviors of wave amplitude and frequency characteristics in the composite waveguide are numerically
investigated at the propagation of normal wave signal.

It is shown that if the surface roughness of the piezoelectric layer is not filled, only one shortwave mode occurs.
The filling of the surface roughness with dielectric and conductor, leads to the appearance of up to four such wave
modes, depending on the length of the wave signal. The dispersion dependencies for all possible characteristic modes
of shear elastic waves are given. It is shown that on the propagation of slow waves, occurs frequency zone of silence
at certain wave lengths.

Introduction. The localization of wave energy near body surfaces is ordinary at the
propagation of wave signals in mediums with geometric constraints. It is known that the
reason of localization near boundary sections of medium is the interruption of homogeneity
of physico-mechanical characteristics of fields, which leads to loads on surface sections of
medium. Often, based on the technical requirements, this phenomenon, as unnecessary, may
be eliminated by proper selection of geometry of structural elements or by material
characteristics of medium. But, often it is possible to take the advantage of the presence of
such phenomenon and select the structural elements in different devices with appropriate
geometrical and physical characteristics.

Different types of localization of the wave energy are found in the sources about elastic
surface waves [1-4]. More details about the conditions of wave energy localization near the
boundary sections of medium, their varieties depending on the nature of the surface
compounds and their applications in various devices can be found in [5-9], etc.

The reason of distortion of the propagating normal wave signal or localization of wave
energy, together with the effective physico-mechanical characteristics of the material can
also be geometric surface heterogeneities, such as roughness and waviness of the surfaces of
the waveguide [10-15].

Surface roughness and waviness of the waveguide formally form peculiarly efficient,
geometrically thin heterogeneous layers in the near-border areas of the waveguide [16-18].

In the proposed work we consider the problem of possible localization of wave energy
near to rough surfaces of homogenecous piezoelectric waveguide at different electro-
mechanical boundary conditions. The electro-mechanical boundary conditions, different by
nature, are obtained due to filling of surface heterogeneities with dielectric or conductive
materials.

1. Problem Statement. Let us assume have a piezoelectric layer
Q= {|X| <oo; h (X)S y<h, (X); Z| < oo} with rough surfaces Y= hi(X), in

Cartesian coordinate system {X; A Z}. Generally, surface roughness is described by a

random function Y=H (X; Z). But, the roughness (heterogeneities, waviness), which at
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high accuracy can be described by function Y = I'L_r (X) € ]Lz , are often obtained by modern

technological methods of processing. Based on these, without losing the generality of further
considerations, the surface roughness can be set respectively by functions of weak

inhomogeneity Y = I‘L_r (X)
h (x)=-h, [1 +&_sin(K.x)+8_ cos(k_x)],

(1.1)
h, (X)=h,[1+¢,sin(k,x)+3, cos(k,X)],

Y+

where the coefficients €, and O, characterize the amplitude and the initial phase of surface

roughness, moreover Yy, = */83; + Si <1 which is the height of the profile roughness, and

multipliers K, = 27E/ A, , where A, is the step of the profile roughness, characterize

surfaces waviness respectively.

= ¥ : ? N —
| N i

Fig. 1. Piezoelectric waveguide, surface roughness of which are filled with dielectric and
electrical conductor materials

Assume that the surface roughness Y = h+ (X) up to the surface Y= ho (1 +y +) is
filled with a perfect dielectric material, and the surface roughness Y = h (X) up to the

surface Y= —hO (1 +7_ ) is filled with a perfect conductor material.
Then we obtain a composite waveguide of constant thickness consisting of three layers:
conductor -Q° = {|X| <oo; —h, (1 —yi) <y<h (X); Z| < oo} which has thickness

& (X) é‘ho (1 +vy_ ) +h (X)‘ , piezoelectric -
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Qé{|x < o0; hﬁ( ) y< h( ; Z|<oo} which has the following thickness
é; X

( ) ( )‘ nd dielectric —

<ow; h (X)<y<h(1+7,); |[Z<w}  which  has  thickness

Eq (X) =h, (1 +v, ) —h, (X) . These three layers are of variable thickness.

During processing of the basic piezoelectric layer, in addition to the surfaces roughness,
material heterogeneity also occur in the near-surface zones. It is important to take into
account that near-surface zones especially in studies on the propagation of shortwave signals
in the composite waveguide. For accounting these heterogeneities in the near-surface zones

take virtual sections Y =, (1 -V, ) and Y=-h, (1 - y_) . Instead of the waveguide base

layer of variable thickness, we already will consider a three-layer piezoelectric waveguide
consisting of a base homogeneous layer

Q, 2{|x|<o; -h(1-y_)<y<h(1-v,); |7 <o}, (12)
and two inhomogeneous, through the thickness, near-surface thin layers of variable thickness
(g-gél){IXk w; h (x)<y<-h(1-7.)
QF &{|x|<w; hy(1-7,)< y<h, (x);
Thus, in the near-surface zone at the surface Y = (X) will have a composite layer
Q, 2{|x|<o; -h(1+y_)<y<-h(1-7.)

inhomogeneous piezoelectric and homogeneous, perfectly conducting materials

Q =0Pu0°.

z|<oo} (1.3)

7 < oo}. (1.4)

Z|<oo} composed of laterally

Also in the near-surface zone at the surface Y= h+ (X) will have a composite layer

Q, &{|x|<o0; hy(1-7,)<y<h (1+7,);

dielectric and laterally inhomogeneous piezoelectric materials Q, = QP U Q.

Z|<oo} composed of homogeneous

Thus, the homogeneous piezoelectric waveguide surface roughness of which are filled,
is modeled as a multilayered waveguide made of different materials. We will investigate the
localization of the shear elastic wave in the formed near-surface inhomogeneous thin layers

Q =QPUQ’ and Q, =QPUQ! (Fig. 1.1).
Let us assume high-frequency (shortwave) elastic shear (SH) wave signal, whose length
is much less than the base layer thickness A, << 2h,, is propagating in the composite

waveguide. And let us assume the material of the main piezoelectric layer €2, belongs to the

tetragonal class 4MM, or to the class of hexagonal symmetries 6IMM, for which, when the
axis OX, is parallel to the axis of symmetry of the fourth (or sixth) order piezoelectric crystal

P . electroactive shear deformation {0; 0; W( XY, t); (p( XY, t)} is separated from the
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non-electroactive plane deformation {U(X, y,t); V(X, y,t); 0; 0}. Quasi-static

equations of electroelasticity for these crystals, in the base layer of the composite waveguide,
have the following forms:

2 2
VW(X y,t) =G WX v.t), (1.5)
2 2
Vio(x y.t)=(gs/e, ) - V’W(X, Y.t). (1.6)
Here Cgt 2G / p is the speed of the bulk shear electroelastic wave in the homogeneous
piezoelectric, G is the shear modulus, p is the density, € is the piezoelectric modulus

and €, is the dielectric coefficient of the medium.
The equations of electroelasticity of laterally inhomogeneous piezoelectric layer already

will be solved in virtually selected layers QE respectively:

oW, (X, y,t o, (X y,t
Gi(y)%+ei(y)—a(7)+

+ (1.7)
+6c5;z(x, y.t)

:pi(y)'wi(xa yat)a

0’ (%, y,t) aD; (X y.t)
e (y T () T0lenl) DO 0

where the material relations for the component of mechanical stress and induction of the
electric field have the forms

+ 9 7t a n " ’t
o (% y,) = G, (y) e % %t) +e+(y)%
ay gi(y) a

The motion equation for perfectly conducting layer Q° will have in the following form
2 c
. W (X, Y, t) N dcs, (%, y,t)
il ox’ oy
where the relation for mechanical shear stress is the following
oW (X, y,t

ol (% y,t)=Gf—-(ayy )

The equations of elastic shear motion and electrostatics in the dielectric layer Q? will
have the following forms

o*w! (X, y,t)+ao‘;z(x, y,t)
ox’ oy

2

(1.9)

Dy (% y,t)=e.(y)

(1.11)

G! =pl Vil (X y,t), (1.12)
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2 d d
0 O*@l (%, y:t) ) oDy (X, y,t)
' ox’ oy
where the material relations for the component of mechanical stress and induction of the
electric field have the forms

oy, (X, y,t):GfW; Dy (%, y,t)=—¢

=0, (1.13)

d
4 005 (X, y,t)
+ 8y :
The separation of the near-surface zones to multiple layers leads to the increase in the
number of boundary conditions on existing and introduced virtual surfaces of the multilayer

waveguide.
Only one boundary condition will have on the mechanically free surface

y= —h) -(1 + y_) of the perfectly conducting thin layer
W (X, y,t)
% y=—hy-v-

The continuity conditions of the electromechanical fields of piezoelectric and the

(1.14)

oy (x—-h -y ,t)=G° =0. (1.15)

continuity conditions of the perfect conductor are satisfied on the rough surface Y = h (X)
w (xh (x),t)=wf(x.h (x),t): ¢_(xh (x),t)=0, (1.16)
h' (X)- o, (x, h (x),t)+ o, (x, h (x),t) =

=N (x)-05 (% h (x),t)+0% (xh (x),t).

The continuity conditions of the electromechanical fields of homogeneous and
heterogeneous piezoelectric layers are satisfied on the virtually selected surface

y=-h(1-v.)

W, (%=t (1=v.),t) =w (3 —hy (1=7.). 1),

¢ (%=1 (1=7.).t) =9 (x=hy (1-7.).1).

oy, (%~ (1-v.).t) =0, (x-h (1-7.).t), (1.19)
DY (% —h, (1-v.),t) =D, (x—h, (1-7.),t). (1.20)

Similarly, the continuity conditions of the electromechanical fields, taking into account
the fact that the electric field is related to the vacuum half-space of outside through the

(1.17)

(1.18)

dielectric layer, are satisfied on the mechanically free surface Y = h) (l +v +)
(Pi(X’ho(1+Y+)at):(P(e)(xaho(lﬂu),t), (1.21)

c‘;'z(x,ho(1+y+),t):GfM =0, (1.22)
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20 (x, y,t
O 907 (% y,t) ~0. (1.23)
ay y=h(J(1+V+)

The continuity conditions of electromechanical fields, considering surface roughness,

Dy (x.hy (1+7,).t) =~

are satisfied on the rough surface Y = h, (X) respectively

w, (xh (x),t)=w! (xh, (x),t), o, (xh (x),t)=0!(xh (x),t), (.24
h (x)-o5 (% h, (X).t)+c%, (xh, (X),t)=

=h (x)-5 (xh, (x),t)+0% (x.h, (X).t),

h (x)-D; (% h, (x).t)+D; (xh, (X),t)=

=h (x)-D§ (x.h, (x),t)+DJ (% h, (x),t),

(1.25)

and on the virtually selected surface Y = h) (1 =Y. ) respectively are satisfied the continuity

conditions of electromechanical fields

w, (% h (1=7,),t) =w, (x.h (1-7,).t),
0, (X0, (1-7.),t) =@, (X h (1-7.).1),
oy (% (1-7.).t) =03, (6 Ry (1-7.).1),
Dy (% (1-7.),t) = Dy (x Iy (1-7,).t).

It is shown from the introduced boundary conditions, that tangential components of
mechanical strain and induction of electric fields are participating in conditions (1.17) and

(1.26)

(1.27)

(1.25) due to the rough surfaces m(X) respectively. The tangential components of
mechanical strain and the induction of electric fields have the following forms

. ow, (X, Y.t oo, (X, Y.t
o2 (o) =6, (1) I g () B LEVL),

(1.28)
. ow, (X, Y,t oo, (X, Y.t
sz(xayat):e-*—(y)(a—x)_gh(y)#’
ow! (%, y,t) oS (X, y,t)
d _ d + 2 J d —_ d + s Yo
o (X Y,1) =G o D, (%, y,t)=—¢€} " (1.29)
c;(x,y,t)=G°W. (1.30)

The values of potential and normal component of induction of the electric field of the

vacuum half-space on the surface Y = h, (1 +y +) are involved in the boundary conditions

(1.20) and (1.21) too. Quasi-static potential of the electric field (p(e) (X, y,t) is determined
from the equation
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V2o (x,y,t)=0. (1.31)

Considering its decay at infinity Y —> o0, it will have the following form

0¥ (%, y,t) = E,e e, (1.32)

Thus, the homogeneous piezoelectric waveguide with geometrically heterogeneous
surfaces, smoothed by dielectric and perfectly conducting materials, is modeled as a
multilayer waveguide of different materials. So, the problem of wave process (localization

of shear elastic waves in formed near-surface heterogeneous thin layers ) = QPuQ’

and Q, =QPUQ,, delay of normal waves of certain frequencies, dynamic surface load

etc.), when electroelastic normal shear wave is propagating in the multilayer waveguide,
leads to the boundary-value problem, system of quasi-static equations (1.5)-(1.8), (1.10),
(1.12), (1.13) and (1.31) with related electromechanical boundary conditions (1.15)-(1.30).

2. Problem Solution. The obtained boundary-value problem from a mathematical point
of view is complicated by the fact that the equations of electroelasticity (1.7) and (1.8) for
laterally inhomogeneous piezoelectric, with variable coefficients, should be solved in

virtually selected both layers of variable thicknesses Q2 and Qf . Also, there are boundary

conditions with variable coefficients on the rough surfaces Y = h (X) and Y= h+ ( X) .

To avoid from mathematical complexities, for building the solution of the mathematical
boundary value problem apply a hypothetical approach.
The normal wave solution of the system of equations (1.5) and (1.6) in the base

homogeneous piezoelectric layer €3 at propagation of normal wave signal in the composite
waveguide, will be written in the following form

W, (%, y.t) =[ A" + B,e o |t @.1)
0o (% y,t)={C,€¥ +D,e™ +(g;/2, )-[Abe(’“)"y + Boe’“""q} glocent), (2.2)

1- T]g is the formation coefficient of elastic waves through the thickness

~ \12
of the base layer, and 1, = (COO / k) : (po / Go) is the phase velocity of the normal wave

in the base layer Qo , which already will be functions of variable wave number k(X) in the

common case.
Considering the thinness of the other four boundary layers and the complexity of the
analytical solution of the electroelasticity equations in virtually selected heterogeneous layers

QP and Qf, through the thickness of each layer input hypothesis of MELS [16-18] for

distributions of elastic shear and potential of electric field.
The elastic shear and electric field potential in the virtually selected heterogeneous

piezoelectric layer Qf introduce in the following forms
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e smneam LT L
wxhi-r)Y,

x,h (x),t)-
¢, (X y.t)= f+(kho;h+(x)/m>' T:p((th(l)—ti ),t)]+ (24

+(P0(X>ho(1_3’+)’t)'
Here
f, (khysh, (x)/hy) 2sh[ o k(y—h, (1-7,))]/sh[ a.k(h (x)=h, (1-7,))]

is the distribution function (or formation) of electromechanical field in heterogeneous
piezoelectric layer, corresponding to the electroelasticity equations (1.7) and (1.8).

Obviously, here the formation function f, (kh), h, ( X)) of the indefinite characteristics of

the wave field is represented by the formation coefficient Ol ( ) |:( p, oy / k’G ) i|

and by the variable thickness &, (X) =h (X) -h, (l -y +) of the layer.

+

Similarly, the elastic shear and potential of electric field in the homogeneous dielectric

layer Qf introduce in forms

+w, (x.h, (x),t), )
04 (60)= (k0 (/) “"‘(X’““”*)’t)‘]+
¢, (xh.(x).t) 2.6)
+(p+(X,h+(X),t), )
where the formation coefficient

fy (khyh, (x)/hy ) 2sh[ ok (y=h, (x))]/sh agk(h, (1+7,) = (x))] inthe

homogeneous diclectric layer already is presented by the appropriate parameters of the

homogeneous layer Ocd( [(pd(oo/k2 )_ :|1 and & (X) él’b(l+y+)—h+(x)

. In this case the representations (2.5) and (2.6) are automatically satisfied to the boundary
conditions (1.24) and (1.26).
Analogically, the elastic shear and potential of electric field in the virtually selected

heterogeneous piezoelectric layer QP will be introduced in the following forms
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W (X, y,t)= f_(kho;h+(x)/ho)-[wc(x, h_(x),t)—wo(x,—m(l—y_),t)]+
+w, (%, —h, (1-7.),t),

2.7)
¢ (% y,t)= {1— f (kho;h+ (x)/ho)} @, (x,—ho (1+y7),t), 2.8)
where the formation function

f(Khysh, (x)/hy) 2sh[ o k(y+h, (1-7.))]/sh[ e k(h (x)+h (1-7.))]

in the inhomogeneous piezoelectric layer is represented by new formation coefficient

o (k) é[(pf@é/szf ) — 1]1/2 and variable thickness &_ (X) £ h) (1 -y ) -h (X)
for the given layer.

The potential of the electric field is absent in the perfectly conducting layer Q°, and for

elastic shear will have the following representation

w, (% —h, (1+7_),t)-
W (6 :t) = f (ks (x)/h) -w_(x h (x),t) " (2.9)
+w_(x,h (x),t),
where the formation function
fo (Khysh, (x)/hy ) 2sh ak(y—h (x))]/sh[ ak(-h (1+7_)=h (x))] in
the homogeneous perfectly conducting layer is represented by formation coefficient
o, (k) é[(pcmé/szc ) - IT/Z and variable thickness ac (X) = h (X) - h) (1 + Y_) .

It is important to note that the boundary conditions (1.16), (1.18), (1.21), (1.24) and
(1.26) for elastic shear and electric field potential are automatically satisfied by the selection

of formation functions fd (kh), h+ (X)/I’b), fJr (kl'b, h+ (X)/h)), f (kh(), h+ (X)/I’b),
fC (kf‘b, h+ (X) / h) ) and hypothetical representations (2.3)-(2.9).

In addition, the characteristic formation coefficients for each layer are involved in the
distribution representations, as well as electromechanical field values on surfaces of adjacent
layers are involved.

We receive all elastic shear and electric field potential values on the smooth and rough

surfaces Y=h ty,, y=-hty, y= h_r (X) expressed by arbitrary amplitude

constants {A)aBoa CO,DO,EO} of piezoelectric waveguide and vacuum half-space,
satisfying the boundary conditions (1.15), (1.19), (1.22) and (1.27) on smooth surfaces
y= h() iY+ and y:_h() Ty..

The representations for elastic shear and potential of the electric field, using the obtained

surface values of distributions (2.3)-(2.9) for elastic shear and potential of the electric field,
can be written in expanded forms

49



w(x.y)=w (xh ()=
A exp| —akhy, (1-7_) | {

1+ oo,k +

(/e )E (xk )O+mﬁ+

xooc k-

(/0 )& (K )0+m&+

o (6 (%K) +ka.)

+B, exp [aokho (1 —7- )] {
+{CO exp [—kh0 (I-y_ ]}
)

W (%)=

¢

A, exp| —o,hy (1-7_) ]+ B, exp| ayh, (1-
{[A)exp[ ok, (1-7.)]- B, expl ok, (1-7 )]
(JWJD+mé( K)- (& (k) +ka) |+
+[ G, exp[ K, (1-7_) |- D, exp[ khy (1-
(&W=ﬁ—€%&©ﬂ{wkw+m( 7)) ]

C, exp[—kho (1-y. )]+ D, exp[kh0 (1-v_ )]+

(p+ (X9 y) -
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_(q)/ )[A)exp[aokho ]1 [C pexp khy (1-v.) ]+

B, exp[ —o,khy (1-v,)] | | +D,exp[—kh, (1-7,)]
(CYCH R
shak(y-h(1-1.))] x{/xexp[aow%(l—v;)]— ]+
o, —B, exp| —o,kh, (1-7, ) |
+[CoeXp[kho(1Y+)] ]
~D, exp[ —kh, (1-7,) ]

]+sh[oc k(y+l‘5(1—

7))

v )]J (e ke (xk »}

(2.10)

,(2.11)

(2.12)
(e /¢, )[A) exp[—ocokhO (1-v_ )] +B, exp[ocokhO (I-y_ )ﬂ}

P

(2.13)



W+(Xv y) =
[ A exp[onky (1-7.) ]+ Byexp[ ok, (1-7.) ]|+
+(0to/0t+)sh[oc+k(y_ h, (1y+))J[A) exp[(xokho (1—y+)]_ }

-B, exp[—ocokh0 (1 -, )]
W, (X, Y) =W, (x,h (X)) =

_[A)exp[aokho(l—%):l+ ]+

+B, exp [—ocokh0 (1-vy, )] ,
A exp| okt (1-v,) |- ]

-B, exp[—(xokh0 (1-v, )]

(2.14)

(2.15)

+(ag /o), (%, k)[

(Pd_(X’ y)=
f, (kf‘b’h+ (x/h)) Eoefkfb(lm) +[1_ f, (kl‘b,l‘L (X/h))}x

(&/20) [ Aexp[akty (1=7.)]+ By exp[ -k (1-7,)] ]+
+Cyexp| Khy (1-7,) |+ Dy exp[ —kh, (1-7,) |+ - 216)
oo L (x Avexplagkhy (1-v.) |- .
(@) (oo )2, (%K) {BO o M)]}
+oc &, (k) [ Gy exp[ Ky (1-7,)]- D, exp[ K, (1-7.)]
Here introduced  assignations &, (X, k) =sh [(lik(hi (X) +h, (1 —V: ))]

characterizing the functions of near-surface distributions in the formed heterogeneous layers

QP and QP respectively.

The introduced distributions of wave field characteristics (2.10)-(2.16) allow to build the
picture of distribution through all thickness of the composite waveguide, if in them put the

value of wave number K ( h, (X) / h;v.; (00) determined from the dispersion equation.
We obtain a system of five homogeneous algebraic equations related to amplitude
Constant{A),Bo,Co,Do,Eo} , satisfying boundary conditions (1,17), (1,20), (1,23) and

(1,25). The dispersion equation of the formed wave field is obtained from the condition of
existence of nontrivial solutions in the following form
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Gss (crg36”/e%5h (x): Ky )
xdet|g; (G pii 8 & h. (X); 00k (x.0y)), = 0

where the variable coefficients {gij (Gk Pk €€l I‘LI (X) VIS k ( X, M, ))}4 y (tensor) of

(2.17)

dispersion equation have bulky appearance (Appendix-1). The coefficients of the fifth
column of the tensor equal to zero §;s =0,s = 0,5 = 055 =0, and 0,5 is positively

definite g, (ad;s(e) / g’ ;h, (X);kho) >0 and characterizes oscillations of the electric
field in vacuum.

Obviously this is due to the presence of expressions hi (X) GJZIX(X, h, (X),t) and
h;(X) D;‘r (X, h+(X),t) in boundary conditions (1.17) and (1.25). But, for selected

formation functions fd(kh);th(X)/h)), f+(kh);h+(X)/h)), f_(kh);th(X)/h))

and fc(kl'[);h+(X)/ h)) the imaginary part of the dispersion equation is satisfied
automatically.

It is easy to see from the coefficient relations in Appendix-1, that and amplitude
distribution and frequency of wave field through the waveguide depend on as physico-
mechanical constants of boundary materials, as characteristic linear dimensions of the surface
not-smoothness of composite waveguide.

3. Numerical Calculation and Comparative Analysis.
Table 1. Numerical test data of constants of composite waveguide materials

G-c| o oo | g-¢
pic lj:rl;s‘ffg‘;‘:f;s 149x10°|  4.82x10°|  7.99x10™| —0-21
Z
N/m? kg/m? F/m
6mm (4mm)

Nonhomogeneo | 1 39,10 | 5302x10° | 8.789x10™" | —0.231
Elsassl)lezgzﬁgzimgi N/m? kg/m3 F/m —0.189
+10% 1.341x10" 4338x10° | 7.191x10™"

N/m? kg/m? F/m

Dielectric 1.788x10° | 5.784x10° | 9.588x10™"

N/m? kg/m3 F/m
1.192x10" 3.856x10° | 6.392x10™"
N/m? kg/m? F/m
Conductor 1.788x10° | 5.784x10’
N/m? kg/m?
1.192x10"° | 3.856x10°
N/m? kg/m?
Vacuum 1041 F/m
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The study on the propagation of high-frequency (shortwave kh > 1) wave signal in

waveguides with rough surfaces, of course are due to the fact that the linear dimensions of

these roughness are small compared to the thickness of the base layer y, = \/81 + Si «1

. Also in paper [20], it is shown that the interaction of propagating waves and weak roughness
hardly occurs at the propagation of long-wave signals.

On the basis of numerical calculations are taken the numerical test data of material
constants for appropriate layers, shown in table 1, as well as the geometric linear dimensions

of the base layer and the surface roughness (h, =1; &, =8, =1/100).

3.1 Frequency characteristic of propagating wave. The dispersion equation (2.17)
certainly does not have intuitive analytical solutions. But, obviously there is a short-wave

approximation when |<h0 >>1, and a long-wave approximation when |<h0 <<1. It has

already been said that in the second case, the normal propagating wave signal does not
interact with the surface roughness.

Fig. 1.a Dispersion surface for wave with distribution functions sin |:Otok : ( y— hi (X))} ,

where the wave number K = k(X)

In the case of propagation of short-wave (high-frequency) electro-elastic signal, the
presence of a surface geometrical heterogeneity leads to the wave number dependence on the

coordinates of the propagation exp [k ( X) cX— (Dot:l .
Although, in this case, we can ignore the damped, from the surface up to the depth of
base layer, wave forms of type exp [—ai (030; k ( X)) . y] and obtain two unrelated tasks

of half-spaces with rough surfaces which are filled with dielectric and conductor materials,
but we will lose the ability to accurately calculate the influence of surface roughness on the
forming waves in the base layer of the waveguide. Therefore, quantitatively small, but
qualitatively important components are saved in the calculations.

For the comparative analysis, first we present the frequency characteristic of the
propagating plane electro-elastic wave signal in piezoelectric homogeneous waveguide with
mechanically free, rough surfaces, when one surface of the waveguide is electrically open

53



and the other surface is electrically closed. Practically, this means that we ignore the
mechanical effects of thin surface layers of dielectric and conductor.

0.00 -, 't ' ' L 3

' '
a zoo =00 e00 200 1000 1200

Fig. 1.b Dependence of wave number k(X) on X coordinate at fixed source frequency ®, = 100

Fig. 1.c Dispersion surface for wave with distribution functions sh |:OLOk . ( y— h_r (X)):I , where

the wave number K = k(x)

The dispersion surface and the dependence of the wave number for normal wave with
harmonic oscillations sin [(xok( y—h, (X))] are shown in Figs. l.a and 1.b. The
calculations show that they exist only at low frequency (long-wave) signals, up to certain
length K ~0.046, which is determined by the physico-mechanical material constant and

geometric ratio of the linear dimensions of the base layer and the surface roughness of the
waveguide.
It is seen from these figures, that the long-wave signals have numerically small distortion

of the dispersion surface (Fig. 1.a) and to each source frequency ®, = const correspond
two wave numbers K, and K. The cycle period of the wave formation (in the above

calculations it is T =2007) is determined by the ratio of the linear dimensions of the base
layer and surface roughness.
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The dispersion surface and the dependence of the wave number for waves with non-
harmonic distribution sh I:(xok( y—h, (X))] are shown in Figs. 1.c and 1.d respectively,

from where it is obvious that the dispersion surface at high frequency (short-wave) signal
varies strongly.

ano [T T T T T T T .l

ANl

Fig. 1.d Dependence of wave number K ( X) on X coordinate at fixed source frequency ®, = 100 Hz

W
Qo
a

1000

This leads to weak quantitative change of the second wave with the wave number koz-
Wave number |<01 of the first wave changes qualitatively for quite short wave signals
Ky, ~100 (A, ~0.0628 mm), opening space for the appearance of new wave mode (Fig.

1.d). It is also interesting that approximately when kn > 350, ultrashort wave solutions do

not exist.

1108

1108 |

Fig. 2.a Dispersion surface for wave with distribution functions sin I:Otok . ( y— I"L_r ( X)):I , where

the wave number k = k(X)

The investigation of emergent frequency images gives interesting results, when one of
the waveguide surface roughness is filled with a perfect conductor and the other is filled with
is a good dielectric.
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Fig. 2.b Dependence of wave number k(X) on X coordinate at fixed source frequency

®, =100 Hz

The calculations show that in this problem, the dispersion surface and the dependence of

the wave number K ( X) for normal waves with harmonic oscillations are almost identical to

the previous case (Fig. 2.a € Fig.1.a and Fig. 2.b 22 Fig. 1.b) at low-frequency (long-wave)

signals, up to some length k0n, which is determined by the physico-mechanical constant of

adjacent materials and by the ratio of geometrical linear dimensions of the base layer and
surface roughness of the waveguide.

This means that surface weak heterogeneities, and very thin material layers on the
surfaces of the layer of the waveguide don’t have any effect on the low-frequency, electro-
elastic wave signal at it’s propagation.

Fig. 2.c Dispersion surface for wave with distribution functions sh |:OLOk . ( y— hi (X)):I , where

the wave number K = k(X)
The dispersion surface and the dependence of the wave number for waves with non-
harmonic distribution sh [(xok ( y—h, (X))] are shown in Figs. 2.c and 2.d respectively,

from where it is obvious that the dispersion surface at high frequency (short-wave) signal
varies strongly.
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Fig. 2.d Dependence of wave number k(X) on X coordinate at fixed source frequency

®, =100 Hz.

110 |, ' i

' P
TRO TBS5 To.0 Te5 200

Fig. 2.e Curves for wave number functions K,, (X) and Kk, (X)

213.185 E

213190 - E

213185 1

213.175 | L =
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T8.0 78.5 o0 -1 80.0

Fig. 2.f Curves for wave number functions k41 (X) and K, (X)
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Here, as in the previous case, high frequencies lead to weak, quantitative change of the
second wave with the wave number koz» which is well seen on Figs. 2.c and 2.d. More
interesting transformation occurs with a low-frequency form, with the corresponding wave
number k01 . At relatively short wave signals k01 ~25 (ﬂm ~ (0.25 mm), wave number

k“ (X) strongly changes the direction, opening space for the emergence of new wave modes

(Fig. 2.d). The wave number k21 (X) of the newly emerged wave mode at first decreases,

making the leap on the vertical X, =const, and then increases up to the limit of the
existence of high frequency oscillations. According to the same scheme, two high-frequency

wave modes (Fig. 2.d) with changeable wave numbers K, (X) and K,, (X) occur there. It

is interesting that the existance limit of these ultrashort waves again is the same K <350.

It follows from Figs. 2.c and 2.d, that at higher frequencies of the wave signal occurs
branching of first low-frequency harmonic (Fig. 1.b) on four waves with different wave

lengths A, (X) =2Tc/ K, (X) respectively. So, it means that the function K, (X) has

multiple branches which are not intersecting. On some points the branches are becoming
very closer to each other which is shown on Figs. 2.e and 2.f.

soo0 T T T T -

4000

3000

2000

1000

Rl o L
0.0 o.5 1.0 1.5

Fig. 3.a Dependence of fast, long wave frequency ( k) from wave number, when K € [O; 1 .6]
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Fig. 3.b Dependence of fast, short wave frequency (1)("() from wave number, when

k €[1.6;350]

Different orientations of the closer curves describing wave numbers, implies that there
is fuss of new mode due to the surface roughness of the waveguide (Fig. 1.d), which is

dissected on newly formed wave modes K, (X) , |(31 (X) and K, (X) under wave
interaction of the first main mode. Moreover, for all of the newly formed wave modes on the
primary phase section X;, = const.

Such branching of course is a consequence of the wave signal dissipation on surface
roughness and scattering of wave energy along selected layers of the waveguide. It also
follows from Fig. 2.d, that the branching into different lengths (on different wave number)

occurs at different wavelengths A, (X) = 2TI:/ K, (X) (at different values of wave number

kn1 (X) ), which should lead to different dispersions.
For fast waves when the phase speed is greater than values of shear body waves in the

adjacent materials V¢(k;co) > C,, the dispersion of long waves, when k 6[0;1.6],
happens in the interval @(k)E[O;SOOO] (Fig. 3.a) and is close to the value
@y (K) = 316000

Fig. 3.b shows that, the second frequency is induced at a certain value of wavelength.
Also, for the fast, short wave the frequency is quite great m ( k) € [1 7x10%;:8x10° ] Ltis

necessary to pay attention to the fact that, starting from some value of the wave length, a
wave with a specific length can be propagated with three different frequencies.
In the case of slow wave signals, when the phase velocity is less than the values of shear

body waves in the adjacent materials V¢ (k; 0)) < C,,, Teceive an interesting phase picture
(Fig. 3.c and Fig. 3.d).
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Fig. 3.c Dependence of slow, long wave frequency ( k) from wave number, when K € [O; 0.5]

00000 [
500000
400000 [ E
300000 [ ]

200 000 /l"' 4

L # N

100000 |- r)r/rr‘ :

Fig. 3.d Dependence of slow, short wave frequency (D(k) from wave number, when
ke [60;350]

It is seen from figure 3.c that in contrast to the fast, long waves (Fig. 3.a), where to each
wavelength corresponds two frequency values, here to each frequency value correspond two
wave modes with different wavelengths. In this case the interval defining long

S [271:/ 1.6;2m/ 0.5] is larger than in the case of faster, longer waves.
For slow, short waves, when A € (TC/ 175; TC/ 90] , to each wave length corresponds two

frequencies, and in the interval A € (TC/ 90; TE/ 30] correspond already three oscillation
frequencies. In the case of slow waves it is noteworthy that there is a frequency zone of
silence. For waves of the length A€ [ﬂ:/ 30; 271:/ 0.5] , frequencies does not exist
o(k)ed .

Comparing Fig. 1.b, 1.d and 2.d with Fig. 3.a-3.d it is easy to see that, if long waves are
propagating in the range of relatively low frequencies g € [0;300] and
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W, € [0; 5000] , then short waves are propagating in the range of very high frequencies
®,, €[170000;800000] and e, € [0;600000].

3.2 Amplitude distribution at propagation of wave signal. Given distribution of wave
field characteristics (2.10)-(2.16) allow to note that, in the thin surface layers of conductor
and dielectric, elastic shears equal to the surface shears of virtually allocated layers from the

base layer W, (X Y,t)=w (X h (X),t) and W (xy,t)=w, (xh (x),t)

respectively.
It is also clear that, in all relations the main dominant is the wave signal (2.1) and (2.2),
and the components due to the interaction of the wave signal with surface roughness, in them

appear in the form ﬁgl(x,k)-sh[ank(y+ ho(l—yn))] and
((xo/ocn ) -sh [ocnk ( y-h, (1 -, ))] . These components at any wavelength can’t cause

internal resonance, since at values 0., (X) . k( X) — 0 they do not go to infinity.

Relations (2.10)-(2.16) also show that due to the summation of the surface values and
the effect of the interaction of the wave signal with surface roughness, amplitude distributions

of slow and fast, short waves (at high-frequency oscillations OJ( k) ~10° ) have maximum
values in the formed near-surface inhomogeneous thin layers Q =QPUQ° and
Q. =0y QY (Fig. 1.1). This corresponds to the case when the length of the propagating

wave signal is comparable with the linear characteristics of the surface roughness A ~7y +-
Then using relations (2.10) and (2.11), the elastic shear in the geometrically and
physically heterogeneous near-surface layer Q= QP U Q° will be presented in the form
w, (%, y) ye[-h(1+7.); h(x)]
W (X y)= 3.1
w(xh(x)  ye[h(x); -h(1-7.)]
As well as, the elastic shear in the geometrically and physically heterogeneous surface
layer Q, =QP U QY will be presented in the form

W, (x,y) ye[h(1-7.); h(x)]
w, (x.h, (X)) ye[h, (x); hy(1+7,)]

All the above numerical calculations have been done for test numerical values of the
material constant of composite waveguide and linear dimensions of surfaces roughness of
the waveguide. The algorithm of calculations and formulas allow to calculate and construct
the needed parameters of the composite waveguide from both real and newly created
materials.

W4 (X Y)= (3.2)

Conclusion. A mathematical modeling of the problem on propagation of electro-elastic
wave signal shear in a homogeneous piezoelectric waveguide with filled surface roughness
is suggested. Using MELS hypotheses (hypothesis of Magneto Elastic Layered Systems),
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analytical distribution of the elastic shear and the electric potential in the base layer, as well
as in each formed layer of the composite waveguide are built by inputting hypothesis of
MELS.

Numerically investigated the amplitude distribution and frequency characteristics of the
wave field in the composite waveguide at the propagation of normal wave signal.

It is shown that, in the case of non-filled surface roughness of the waveguide occur only
one short-wave mode (Fig. 1.g), but the case of filled surface roughness leads to the
appearance of up to four such wave modes, depending on the length of the wave signal (Fig.

2.d). The dispersion dependence OJ( k) of all possible characteristic modes of shear elastic

waves is shown (Figs. 3.a-3.d). It is shown that in the case of slow wave propagation
V¢ (k;(D) <C,, occurs frequency zone of silence for waves with length

A €[n/30;21/0.5].

References

1. Rayleigh L., On Waves Propagated along the Plane Surface of an Elastic, Solid. Proc.
London Math. Soc., 1885, vol. s1-17 issue 1, pp. 4-11.

2. Love A.E.H., Some problems of geodynamics, first published in 1911 by the Cambridge
University Press and published again in 1967 by Dover, New York, USA. (Chapter 11:
Theory of the propagation of seismic waves).

3. Lamb H., On Waves in an Elastic Plat. Proc. Roy. Soc. London, 1917, vol. 93, issue 648,
pp. 114-128.

4. Bleustein J.L., A new surface wave in piezoelectric materials, Appl. phys. Lett., 1968,

vol. 13, Ne2, pp. 412-413.

Viktorov I. A., Sound surface waves in solids., M:, Nauka, 1981, p. 287 (in Russian)

Achenbach, J. D., Wave Propagation in Elastic Solids, New York, Elsevier, 1984, p. 364.

7. Biryukov S.V., Gulyaev Y.V., Krylov V., Plessky V., Surface acoustic waves in
inhomogeneous media, Springer Series on Wave Phenomena, Vol. 20, 1995, p. 388.

8. D. Royer, E. Diculesaint, Elastic Waves in Solids I: Free and Guided Propagation,
Springer Science & Business Media, 2000, p. 374.

9. Brekhovskikh L., Waves in Layered Media 2¢, Applied mathematics and mechanics,
Elsevier Science, 2012, p. 520.

10. Flannery CM, von Kiedrowski H., Effects of surface roughness on surface acoustic wave
propagation in semiconductor materials, , 2002, vol. 40, issues 1-8, pp. 83-87.

11. Svetovoy V.B., Palasantzas G, Influence of surface roughness on dispersion forces, Adv
Colloid Interface Sci., 2015, vol. 216, pp. 1-19.

12.S. S. Singh, Love Wave at a Layer Medium Bounded by Irregular Boundary Surfaces,
Journal of Vibration and Control, 2011, vol. 17, issue 5, pp. 789-795.

13. Catherine Potel, Michel Bruneau, Ludovic C. Foze N’Djomo, Damien Leduc, Mounsif
Echcherif Elkettani, Jean-Louis Izbicki, Shear horizontal acoustic waves propagating
along two isotropic solid plates bonded with a non-dissipative adhesive layer: Effects of
the rough interfaces, J. App. Phys., 2015, vol. 118, issue 22, pp. 118-134.

14.B. F. Apostol, The Effect of Surface Inhomogeneities on the Propagation of Elastic
Waves, Journal of Elasticity, 2014, vol. 114, issue 1, pp. 85-99.

15. Valier-Brasier T., Potel C., Bruneau M, Leduc D, Morvan B, Izbicki J-L, Coupling of
shear acoustic waves by gratings: Analytical and experimental analysis of spatial

62

SN



periodicity effects, Acta Acustica United with Acustica, 2011, vol. 97, issue 5, pp. 717—
7217.

16. Avetisyan A.S., On the formulation of the electro-elasticity theory boundary value
problems for electro-magneto-elastic composites with interface roughness, Proceedings
of NAS of Armenia, Mechanics, 2015, vol. 68, Ne2, pp. 29-42.

17. Avetisyan A.S., Hunanyan A.A., The efficiency of application of virtual cross-sections
method and hypotheses MELS in problems of wave signal propagation in elastic
waveguides with rough surfaces, Journal of Advances in Physics, 2016, vol. 11, Ne7, pp.
3564-3574

18. Avetisyan A.S., The boundary problem modelling of rough surfaces continuous media
with coupled physical-mechanical fields, Reports of NAS of Armenia, 2015, vol. 115,
Ne2, pp. 119-131.

19. Avetisyan A.S., Belubekyan M.V., Ghazaryan K.B. Magneto-electro-thermo-elastic
hypotheses for contact problems of composite waveguides, The International Conference
«Modern roblems of thermomechanicsy», 22-25 September, 2016, Lvov, Ukraine,
Collection of scientific papers, pp.142-144.

20. Hunanyan A.A., The instability of shear normal wave in elastic waveguide of weakly
inhomogeneous material, Proc. of NAS Armenia, ser. Mechanics, 2016, vol. 69, Ne3, pp.
16-27.

Funding: This study was funded by Ministry of Education and Science of Armenia, State

Committee of Science (grant number 15T -2C026).

About authors:

A.S. Avetisyan — Corresponding Member of NAS, Professor, Institute of Mechanics,
National Academy of Sciences, Yerevan, Republic of Armenia

Address: 0019, Yerevan, ave. Baghramyan, 24/2, Phone: (+37493) 00-44-55

E-mail: ara.serg.avetisyan@gmail.com

A.A. Kamalyan — Researcher, Institute of Mechanics, National Academy of Sciences,
Yerevan, Republic of Armenia

Address: 0019, Yerevan, ave. Baghramyan, 24/2, Phone: (+37494) 90-96-92

E-mail: kamalyan.andranik@yahoo.com

A.A. Hunanyan — PhD student, Institute of Mechanics, National Academy of Sciences,
Yerevan, Republic of Armenia
Address: 0019, Yerevan, ave. Baghramyan, 24/2, Phone: (+37491) 77-55-33
E-mail: hunanyan.areg21@gmail.com
Received 23.12.2016

63



